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ABSTRACT: The climate of North West Europe is mild compared to Alaska because the overturning circulation in
the Atlantic carries heat northwards. If this circulation were to collapse, as it appears to have done in the past, the cli-
mate of Europe, and the whole Northern Hemisphere, could change rapidly. This event is normally classified as a ‘low
probability/high impact’ event, but there have been few attempts to quantify the probability. We present a statistical
method that can be used, with a climate model, to estimate the probability of such a rapid climate change. To illustrate
the method we use an intermediate complexity climate model, C-GOLDSTEIN combined with the SRES illustrative
emission scenarios. The resulting probabilities are much higher than would be expected for a low probability event,
around 30-40% depending upon the scenario. The most probable reason for this is the simplicity of the climate model,
but the possibility exists that we may be at greater risk than we believed.

7.1 Introduction

Northwest Europe is up to 10°C warmer than equivalent
latitudes in North America because a vigorous thermo-
haline circulation transports warm water northwards in
the Atlantic basin (Rind et al., 1986). However, due to
increasing concentrations of CO; in the atmosphere, this
circulation could slow markedly (Cubasch et al., 2001) or
even collapse (Rahmstorf and Ganopolski, 1999). The
climatic impact of such a change in the ocean circulation
would be severe, especially in Europe (Vellinga and
Wood, 2002), but with worldwide consequences, and
could happen on a rapid time scale. It is important there-
fore that we assess the risk of such a collapse in the ther-
mohaline circulation (Marotzke, 2000). Recent studies
have developed and adopted a probabilistic approach
to address the climate response to rising levels of
greenhouse gases (Wigley and Raper, 2001; Allen and
Stainforth, 2002; Stainforth et al., 2005). However, to our
knowledge, no study has yet addressed the probability of
substantial weakening of the overturning circulation and
the implied rapid climate change. In this paper we pre-
sent a statistical technique that can be used to estimate the
probability of such a rapid climate change using a model
of the climate and illustrate it with a model of intermedi-
ate complexity.

7.2 A Method for Calculating Probabilities of
Climate Events

Most modern climate models are deterministic: given a set
of inputs they always give the same results on a given hard-
ware platform. There are two standard ways to introduce
an element of randomness and hence to make probabilistic

predictions. The first is to use the internal, chaotic vari-
ability of the model. The initial conditions are varied by a
small amount and an ensemble of model runs is per-
formed. This method is widely used in weather forecast-
ing. This is suitable for problems where the initial
conditions are the important factor for predictability, pre-
dictability of the first kind. However, for long-range cli-
mate forecasting we believe we have predictability of the
second kind where it is the boundary conditions that mat-
ter. In this case the perturbations need to be made on the
boundary conditions. In our case these are the model
parameters. A numerical model of the climate system con-
tains a number of parameters, the ‘true’ value of which is
unknown. If we represent our ignorance of these param-
eters in probabilistic terms we can propagate this uncer-
tainty through the numerical model and hence produce a
probability density function of the model outputs. This is
the method we will use in this paper.

In essence, our method is to sample from a specified
uncertainty distribution for the model input parameters,
run the model for this combination of inputs and compute
the output. This process is repeated many thousands of
times to build up a Monte Carlo estimate of the probabil-
ity density of the output. This type of Monte Carlo
method is too computationally expensive for practical
use; even intermediate complexity climate models such
as C-GOLDSTEIN (Edwards and Marsh, 2005) are not
fast enough to allow us to carry out such calculations
with the required degree of accuracy. To overcome this
problem we introduce the concept of an emularor. An
emulator is a technique in which Bayesian statistical
analysis is used to furnish a statistical approximation to
the full dynamical model. In preference to a neural net-
work (Knutti et al., 2003), we follow Oakley and O’Hagan
(2002) and use a Gaussian process to build our emulator.
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This has the advantage that is easier to understand and
interpret, and every prediction comes with an associated
uncertainty estimate. This means that the technique can
reveal where the underlying assumptions are good and
where they are not. Our emulators run about five orders of
magnitude faster than a model such as C-GOLDSTEIN.

Full mathematical details of Gaussian processes and
the Bayesian methods we use to fit them to the data are
given in Oakley and O’Hagan (2002). The basic process
of constructing and using an emulator is as follows:

1. For each of the parameters of the model, specify an
uncertainty distribution (a ‘prior’) by expert elicit-
ation and thereby define a prior pdf for the parameter
space of the model.

2. We generate a set of parameter values that allow us to
span the parameter space of these prior pdfs and run
the climate model at each of these points to provide a
calibration dataset of predicted MOC strength.

3. Estimate the parameters of the emulator using the cali-
bration dataset using the methods given in Oakley and
O’Hagan (2002).

4. Sample a large number (thousands) of points from the
prior pdf.

5. Evaluate the emulator at each of these points. The out-
put from the emulator then gives us an estimate of pdf
of the variable being emulated from which we can cal-
culate statistics such as the probability of being less
than a specified value.

Ideally, in step 2 we would use an ensemble of model
runs that spanned the complete parameter space of the
model. However, as dimensionality increases this becomes
difficult, and a factorial design soon requires an impractic-
ally large number of model runs. We therefore use the
latin hypercube design (McKay et al., 1979), which
requires us to specify in advance the number of model runs
we can afford, in our example below this is 100. The range
of each parameter is split up into this number of intervals
of equal probability according to the uncertainty distribu-
tion of the input parameters. Our experience is that this dis-
tribution should be longer tailed than the input distribution
used for the Monte Carlo calculations: the emulator is,
along with all such estimation techniques, poor at extrapo-
lation but good at interpolation so we want model runs out
in the tails of the distribution to minimise the amount of
extrapolation the emulator is called upon to do. For step 4,
the order of the values of each parameter is now shuftled
so that there is one and only one value in each of the equi-
probable interval of each parameter (that is, the marginal
distribution is unchanged), but the points are randomly
scattered across multi-dimensional parameter space.

A Gaussian process is the extension of a multivariate
Gaussian distribution to infinite dimension. For full math-
ematical details of Gaussian processes and the Bayesian
methods we use to fit them to the data see Oakley and
O’Hagan (2002). A Gaussian process is given by the sum
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of two terms: a deterministic, or mean, part and a stochas-
tic part. The mean part can be considered as a general
trend while the stochastic part is a local adjustment to the
data. There is a trade-off between the variation explained
by the mean function and the stochastic part. Following
Oakley and O’Hagan (op. cit) we specify a priori that the
mean function has a simple form (linear, in our case) with
unknown parameters. The stochastic term in the Gaussian
process is specified in terms of a correlation function. We
use a Gaussian shape for the correlation function. This is
parameterised by a correlation matrix. The elements of
this matrix give the smoothness of the resulting Gaussian
process. For simplicity we use a diagonal matrix, setting
the off-diagonal terms to zero. These correlation scales
cannot be estimated in a fully Bayesian way so are esti-
mated using cross-validation. An alternative approach is
to use regression techniques to model the mean function
in a complex way. This means that the stochastic term is
much less important and may make problems such as
non-stationarity less important; for a non-climate example
where this is done see Craig et al. (2001). Gaussian
process emulators specified in this way are perfect inter-
polators of the data and it can be shown that any smooth
function can be expressed as a Gaussian process.

It is important to specify the uncertainty distributions of
the model inputs/parameters in step 2 carefully. In our
case we elicit the information from experts, in this case
the model builders and tuners. Our method was to request
reasonable lower and upper limits for each parameter and
interpret these as fifth and ninety-fifth percentiles of a log
normal distribution. Because of the importance of the
input distributions a sensitivity analysis was carried out to
identify important input parameters; step 4 was repeated
with doubled standard deviation for those parameters (see
below for details). It is difficult to elicit the full joint input
distribution so we have elicited the marginals and assumed
that the inputs are independent. This assumption is almost
certainly wrong and needs to be tested in further work.
More complex elicitation methods (see the review by
Garthwaite et al., 2005) need to be considered.

7.3 An Illustration: Emulating the MOC Response
to Future CO, Forcing in C-GOLDSTEIN

To illustrate the methods described above we estimate the
probability of the collapse of the thermohaline circulation
under various emission scenarios using an intermediate
complexity climate model. The climate model we use is
C-GOLDSTEIN (Edwards and Marsh, 2005). This is a
global model comprising a 3-D frictional-geostrophic
ocean component configured in realistic geometry, includ-
ing bathymetry, coupled to an energy-moisture balance
model of the atmosphere and a thermodynamic model of
sea ice. We use a priori independent log-normal distribu-
tions for 17 model parameters (Table 7.1). For 12 of the
parameters, we use the distributions derived in an objective
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Table 7.1 Mean value and standard deviation for each model parameter.

Parameter* Mean St. Dev.
Windstress scaling factor 1.734 0.1080
Ocean horizontal diffusivity (m%s~ 1) 4342 437.9
Ocean vertical diffusivity (m?s~!) 5.811e—05 1.428e—06
Ocean drag coefficient (1073 ~1) 3.625 0.3841
Atmospheric heat diffusivity (m?s~!) 3.8982+06 2.705e+05
Atmospheric moisture diffusivity (m?s~!) 1.631e+06 7.904e+04
‘Width’ of atmospheric heat diffusivity profile (radians) 1.347 0.1086
Slope (south-to-north) of atmospheric heat diffusivity profile 0.2178 0.04215
Zonal heat advection factor 0.1594 0.02254
Zonal moisture advection factor 0.1594 0.02254
Sea ice diffusivity (m?s~?) 6786.0 831.6
Scaling factor for Atlantic-Pacific moisture flux (x 0.32 Sv) 0.9208 0.05056
Threshold humidity, for precipitation (%) 0.8511 0.01342
‘Climate sensitivity’" (CO, radiative forcing, Wm~2) 6.000 5.000
Solar constant (Wm™2) 1368 3.755
Carbon removal e-folding time (years) 111.4 15.10
Greenland melt rate due to global wa.rming1 0.01(Low) 0.005793
(Sv/°C) 0.03617 (High)

*The first 15 parameters control the background model state. The first 12 of these have been objectively tuned in a previous
study, while the last three (threshold humidity, climate sensitivity and solar output) are specified according to expert elicitation.

control tr

The last two part

forcing (CO, concentration and ice sheet melting). Italics show the parameters that exert

particular control on the strength of the overturning and which we varied in our experiment. For these parameters, the standard

deviation was doubled in the cases with high uncertainty.

T The climate sensitivity parameter, AF,,, determines an additional component in the outgoing planetary long-wave radiation
according to AF,,In(C/350), where C is the atmospheric concentration of CO, (units ppm). Values for AF,, of 1, 6 and 11 Wm™2
yield ‘orthodox’ climate sensitivities of global-mean temperature rise under doubled CO; of around 0.5, 3.0 and 5.5 K,

respectively.

¥ We used two mean values of the Greenland melt rate parameter (see main text).

tuning exercise (Hargreaves et al., 2004). For the others
we elicited values from one of the model authors (Marsh)
using the method described above. We specify particu-
larly high variance for climate sensitivity, in line with
recentresults (Stainforth et al., 2005). We thus account for
uncertainty in the model parameters, but not in the model
physics (so called ‘structural’ uncertainty).

To generate our emulator as described above we need
an ensemble of model runs to act as our ‘training set’. We
use an ensemble of 100 members in a latin hypercube
design. We first ‘spin up’ the climate model for 4000
years to the present day (the year 2000, henceforth ‘pre-
sent day’) in an ensemble of 100 members that coarsely
samples from a range of values for fifteen key model
parameters (see Table 7.1); the remaining two parameters
are only used for simulations beyond the present day.
Following 3800 years of spin-up under pre-industrial
CO, concentration, the overturning reaches a near-
equilibrium state in all ensemble members (see Figure 7.1).
For the last 200 years of the spin-up, we specify histori-
cal CO; concentrations (Johnston, 2004), leading to slight
(up to 5%) weakening in the overturning circulation. After
the complete 4000-year spin-up we have 100 simulations
of the current climate and the thermohaline circulation.
Figure 7.2 shows fields of mean and standard deviation in
surface temperature. The mean temperature field is

similar to the ensemble—mean obtained by Hargreaves
et al. (2005). The standard deviations reveal highest sen-
sitivity to model parameters at high latitudes, especially
in the northern hemisphere, principally due to differences
(between ensemble members) in Arctic sea ice extent.
‘We obtain an ensemble of present day overturning states,
with s, in the plausible range 12-23 Sv for 91 of the
ensemble members (see Figure 7.1). The overturning cir-
culation collapsed in the remaining nine members after
the first 1000 years. Since we know that the overturning
is not currently collapsed, we remove these from further
analysis. This is a controversial point that we will return
to in the discussion. We then specify future anthro-
pogenic CO, emissions according to each of the six illus-
trative SRES scenarios (Nakicenovic and Swart, 2000)
(A1B, A2, B1, B2, A1FI, A1T), to extend those simula-
tions with a plausible overturning to the year 2100.

In extending the simulations over 2000-2100, we spe-
cify the SRES CO; emissions scenarios and introduce two
further parameters (the last two parameters in Table 7.1)
that relate to future melting of the Greenland ice sheet
and the rate at which natural processes remove anthro-
pogenic CO, from the atmosphere. The rate of CO, uptake
is parameterised according to an e-folding timescale that
represents the background absorption of excess CO; into
marine and terrestrial reservoirs. This timescale can be
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Spin-up and CO, forcing of 100-member ensemble:
Maximum Atlantic Overturning Circulation (Sverdrups)
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Figure 7.1 Spin-up of the Atlantic MOC, including CO; forcing from 1800.
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Figure 7.2 Mean and standard deviation of surface air temperature at year 2000.
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Figure 7.3 Time series of emitted CO, uptake, atmospheric CO, concentration and temperature rise over 2000-2100, under

scenarios B1 and A1FL

roughly equated with a fractional annual uptake of emis-
sions. Timescales of 50, 100 and 300 years equate to
fractional uptakes of around 50%, 30% and 10% respec-
tively (see Figure 7.3, top panel), spanning the range of
uncertainty in present and future uptake (Prentice et al..
2001). For each emissions scenario, a wide range of CO,
rise is obtained, according to the uptake timescale (see
Figure 7.3, middle panel). This in turn leads to a wide
range of global-mean temperature rise, which is further
broadened by the uncertainty in climate sensitivity (see
Figure 7.3, bottom panel). The freshwater flux due to melt-
ing of the Greenland ice sheet is linearly proportional to

the air temperature anomaly relative to 2000 (Rahmstorf
and Ganopolski, 1999). This is consistent with evidence
that the Greenland mass balance has only recently started
changing (Beggild et al. 2004). Over the range chosen for
this parameter (combined with the uncertainty in emis-
sions and climate sensitivity), the resultant melting equates
to sea level rise by 2100 mostly in the range 0—30cm (see
Figure 7.4), consistent with predictions obtained with a
complex ice sheet model (Huybrechts and de Wolde,
1999).

As a consequence of the applied forcing, ;. declines
to varying degrees, in the range 10-90% in the case of the
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Figure 7.4 Sea level rise due to Greenland melting over
2000-2100, under scenarios B1 and A1FL.

AlFI scenario (see Figure 7.1). The range of MOC weak-
ening is compatible with that suggested by IPCC (2001)
AOGCM results. At 2100, the IPCC AOGCMs cover a
range of +2 to —14 Sv with 9 model runs. The range for
our 91 run ensemble is —1 to —17 with 90% between —2
and —15. Under the B1 scenario, the regional impact of
this MOC slow-down is a local cooling in the Atlantic
(see Figure 7.5, upper panel), also the location of highest
standard deviation (Figure 7.5, lower panel), due to wide
variation in the extent of slow-down. In several extreme
cases (not clear from the ensemble-mean temperature
change) of substantial slow-down, North Atlantic cooling
under B1 exceeds 5°C. Under the A1FI scenario, global
warming is amplified and the effect of MOC slow-down
is to locally cancel warming (Figure 7.6, upper panel),
and highest standard deviations are found in the Arctic
(Figure 7.6, lower panel) due to disappearance of Atlantic
sector Arctic sea ice cover in some ensemble members.
Using the model results for each SRES scenario at
2100, we build a statistical model (emulator) of ¢, as a
function of the model parameters. A separate emulator is
built for each emissions scenario. We then use these six
emulators, coupled with probability densities of param-
eter uncertainty, to calculate the probability that s, falls
below 5 Sv by 2100 using Monte Carlo methods. We use
a sample size of 20,000 for all our Monte Carlo calcula-
tions. An initial, one-at-a-time, sensitivity analysis shows
that the four most important parameters are: (1) sensitiv-
ity to global warming of the Greenland Ice Sheet melt
rate, providing a fresh water influx to the mid-latitude
North Atlantic that tends to suppress the overturning;
(2) the rate at which anthropogenic CO, is removed from
the atmosphere; (3) climate sensitivity (i.e., the global

Towards the Probability of Rapid Climate Change

warming per CO, forcing); (4) a specified Atlantic-to-
Pacific net moisture flux which increases Atlantic surface
salinity and helps to support strong overturning. We per-
form a number of experiments calculating the probability
of substantial slow-down of the overturning under varia-
tions in the values of these parameters and their uncer-
tainties.

For each SRES scenario, we show in Table 7.2 the prob-
ability of substantial reduction in Atlantic overturning for
five uncertainty cases. Each case is split into low and high
mean Greenland meltrate, as this has been previously iden-
tified as a particularly crucial factor in the thermohaline
circulation response to CO, forcing (Rahmstorf and
Ganopolski, 1999). The probabilities in Table 7.2 are much
higher than expected: substantial weakening of the over-
turning circulation is generally assumed to be a ‘low prob-
ability, high impact’ event, although ‘low probability’ tends
not to be defined in numerical terms. Our results show that
the probability is in the range 0.30-0.46 (depending on the
SRES scenario adopted and the uncertainty case): this
could not reasonably be described as ‘low’. Even with the
relatively benign B2 scenario we obtain probabilities of
order 0.30, while with the fossil fuel intensive A1FI we
obtain even higher probabilities, up to a maximum of 0.46.

Our probabilities are clearly less sensitive to the uncer-
tainty case than to the SRES scenario. Increasing the
mean Greenland melt rate from ‘low’ to ‘high’ increases
only slightly the chance of shutdown in the circulation,
probably because even the low melt rate already exceeds
a threshold value (for substantial weakening of the over-
turning rate). The dependence of probability on parameter
uncertainty is unclear, but any increase in uncertainty will
broaden the distribution of the overturning strength and
should theoretically lead to a higher proportion less than
5Sv. While in some cases this is reflected in a slightly
higher probability under higher parameter uncertainty (as
expected), in other cases the probabilities are slightly
lower. By comparing estimates from our sample of 20,000
between sub-samples of size 1,000 we estimate the stand-
ard error of our probability estimates to be about 0.01. If
we had simple binomial sampling we would expect a
standard error of about 0.05. We believe this difference in
error comes from the correlation between estimates of the
output. How much of this correlation comes from
C-GOLDSTEIN and how much from the emulation process
needs to be investigated. These error estimates imply that
most of the random variation in our estimates is due to
uncertainty coming from the fact that our emulation is not
perfect, although some may also be caused by complex
positive and negative feedbacks in the climate model.

7.4 Conclusions and Discussion
We have described a method that can be used to estimate

the probability of a substantial slow-down in the Atlantic
thermohaline circulation and a consequent rapid climate
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SRES scenario B1, 100-member ensemble;
2000-2100 increase in annual-mean air temperature (deg C)
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Figure 7.5 Mean and standard deviation of air temperature change in 2100 (relative to 2000) under scenario B1.

change. To illustrate the method we have applied it to an
intermediate complexity climate model, C-GOLDSTEIN.
The results we obtained were surprising. The probabili-
ties we estimate are much higher than our expectations. A
priori we expected to obtain probabilities of the order of
a few percent or less. The probabilities in Table 7.2 are
order 30-40%. There are a number of possible explana-
tions for these differences. Our statistical methodology
may be somewhat flawed, the model we have used could
be showing unusual behaviour or our a priori ideas (and
the current consensus) could be wrong. Let us consider
each in turn.

The first possibility is that there is a problem with our
statistical methodology. The basic method is sound but in
our implementation we have made some assumptions
and compromises that may influence our results. For
example, we have assumed that the input distributions for
our parameters are independent of each other and we
have discarded the nine runs where the circulation col-
lapsed during spin up. Both of these decisions could have
altered our estimated probabilities of collapse. A more

thorough elicitation of the input distributions and better
sensitivity analysis will enable us to address the prob-
lems of specifying input distributions in future work.
Moving on to the nine runs that collapsed during the spin
up: from measurements we know that the current strength
of the Atlantic overturning circulation is in the range
15-20Sv. When we performed the spin-up, nine of our
runs produced current day climates with the overturning
circulation approximately zero. We therefore infer that
the parameter values used in these runs are not possible.
‘We simply ignored these runs when we built the emula-
tor. This is not correct. When we perform our Monte
Carlo simulation we will still be sampling from these
regions with parameter sets that we know do not generate
the present day climate. Because we discarded those
runs, the emulator will interpolate across this region from
adjacent parts of parameter space. It is likely that these
will themselves have collapsed in 2100 so we may well
be overestimating the probability of collapse by includ-
ing this region. A better procedure would be to build an
emulator for the present day and to map out those parts of
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SRES scenario A1FI, 100-member ensemble:
2000-2100 increase in annual-mean air temperature (deg C)
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Figure 7.6 As Figure 7.5, under scenario A1FI.

parameter space that result in a collapsed present day cir-
culation. This region could then be set to have zero prob-
ability in the input distribution before carrying out the
Monte Carlo simulations. This discussion leads us to
consider more widely how we might include data in our
procedure. The methodology for doing this is explained
in Kennedy and O’Hagan (2001).

The second possibility is that the circulation in
C-GOLDSTEIN is much more prone to collapse than real-
ity. An intermediate complexity model must by necessity
include many assumptions and compromises. A consensus
view is that, compared to AOGCMs, the overturning circu-
lation in such models is generally considered more prone
to the collapse. However, no one has yet managed to fully
explore the behaviour of the overturning circulation across
the parameter space of an AOGCM. As discussed above,
the spread of our ensembile is not dissimilar to the variation
across the set of AOGCMs used by the IPCC. This gives us
some confidence that the response of C-GOLDSTEIN’s
overturning is not very different from the AOGCMs.

The final possibility is that the current consensus is
wrong and that the probability of a collapse in the over-
turning circulation is much higher than believed. There has

90 1.7-18
1.6-17
1.5-16
14-15
1.3-14
1.2-13
1.1-12
1.0-11
09-1.0
0.8-0.9
0.7-08
0.6-0.7

— 60

30

[=]

3 8
RNNNRNNRT TN

8
]
8
g

-20 20 60 100

been little previous work attempting to quantify the prob-
ability. Schaeffer et al. (2002) using ECBilt-CLIO, a dif-
ferent intermediate complexity model, state that ‘for a high
IPCC non-mitigation emission scenario the transition has a
high probability’, but they do not quantify what they mean
by ‘high’. Most model runs investigating the collapse of
the overturning circulation, such as CMIP, are run at the
most likely value for the parameters and therefore approxi-
mately at the 50% probability level so would not detect
probabilities of collapse of less than 50%. We should,
therefore, at least consider the possibility that the current
consensus is wrong and that the probability of a shutdown
in the overturning circulation is higher than presently
believed. However, the most likely reason for our high
probabilities is the model we have used is too simple and
has omitted important aspects of the climate system. We
caution against giving our results too much credence at this
stage. However, we believe that our results do show that it
is important that quantitative estimates of dangerous, even
if unlikely, climate changes can be made. Our calculations
need to be repeated with other models and in particular our
statistical methodology needs to be extended to make it
viable for use with AOGCMs.
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Table 7.2 Probability of Atlantic overturning falling below
5 Sv by 2100.

SRES scenario
Uncertainty
Case AlIB A2 Bl B2 AIFI  AIT
default uncertainty
Case la 037 038 031 032 043 032
Case 1b 038 040 030 031 046 0.31
doubled uncertainty in climate sensitivity
Case 2a 037 038 033 033 043 033
Case 2b 039 040 031 032 046 032
doubled uncertainty in Atlantic-Pacific moisture flux
Case 3a 037 038 032 033 043 033
Case 3b 040 040 030 030 046 032
doubled uncertainty in CO, uptake
Case 4a 038 038 031 032 04 033
Case 4b 038 039 031 031 044 032
doubled uncertainty in Greenland melt rate
Case 5a 037 038 031 032 043 032
Case 5b 038 039 030 032 045 032

In Case 1, ‘default uncertainty’ refers to the standard deviations for all
17 parameters in Table 7.1. In Cases 25, ‘doubled uncertainty’ refers
to twice the standard deviation on an individual parameter (italics in
Table 7.1). In each case, ‘a’ (‘b") indicates low (high) mean Greenland
melt rate.
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