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This is a shallow book on deep matters, about
which the author knows next to nothing. The con-
cept of the book is appealing: a popular review of
geometrical notions from Euclid to Einstein as
background to contemporary string theory with
comments on the related intellectual history and
portraits of some principal figures: Descartes,
Gauss, Riemann and Einstein. Unfortunately the au-
thor is indifferent to mathematics, has only ap-
proximate notions of European history, and no cu-
riosity about individuals. Famous names serve only
as tags for the cardboard figures that he paints. Dis-
oriented by ideas and by individuals whose feelings
and behavior are not those of late twentieth-cen-
tury America, he attempts to hide his confusion by
an incessant, sometimes tasteless, facetiousness,
almost a nervous tick with him, by railing at or
mocking his pretended dolts or villains, Kant,
Gauss’s father or Kronecker, or by maudlin at-
tempts to turn his heros into victims. There would
be little point in reviewing the book, were it not that
the germ of an excellent monograph is there that,
in competent and sensitive hands, could have been
read with pleasure and profit by students, mature
mathematicians, and curious laymen. As a
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member of the second group who knows scarcely
more than the author about the material, I cer-
tainly found it an occasion to reflect on what I
would have liked to learn from the book and, in-
deed, an occasion to discover more about the top-
ics discussed, not from the book itself, but from
more reliable sources.

String theory itself or, better and more broadly,
the conceptual apparatus of much of modern the-
oretical physics, above all of relativity theory, sta-
tistical physics and quantum field theory, whether
in its original form as quantum electrodynamics,
or as the basis of the standard theory of weak and
strong interactions, or as string theory, is mathe-
matics, or seems to be, although often not mathe-
matics of a kind with which those with a traditional
training are very comfortable. Nonetheless many
of us would like to acquire some genuine under-
standing of it and, for students especially, it is a
legitimate object of curiosity or of more ambitious
intellectual aspirations.

Mlodinow was trained as a physicist, and, at the
level at which he is working, there is no reason, ex-
cept perhaps his rather facile condemnation of
Heisenberg, to fault his chapter on string theory,
the culmination of the book. It is a brief rehearsal,
larded with low humor, of the standard litany: the
uncertainty principle; the difficulty of reconciling
it with the differential geometry of relativity; par-
ticles and fields; Kaluza-Klein and the introduction
of additional dimensions; the function of “strings”
as carriers of multiple fields and particles; super-
symmetry; and, finally, M-branes that permit the
passage from one form of the theory to another.

In his introduction and in an epilogue Mlodinow
expresses vividly and passionately his conviction
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that geometry is the legacy of Euclid and string the-
orists his heirs. Mathematicians, to whom this re-
view is addressed, will recall that there is more in
Euclid than geometry: Eudoxus’s theory of pro-
portion; the irrational; and primes. Since the last
two are central to the modern theory of diophan-
tine equations, there are other claims on the her-
itage, but they need no defense here. We are con-
cerned with the geometry; with it alone we have our
hands full.

A reservation that is more in need of expression
is that, with their emphasis on string theory or, bet-
ter, the geometrical consequences of quantum field
theory, mathematicians are in danger of short-
changing themselves. These consequences, espe-
cially the dynamical methods—dynamical in the
sense of dynamical systems—used to deduce them,
methods discovered, I believe, largely by Witten, are
of great appeal and undoubtedly very deep. They
are certainly worthy of the careful attention of
mathematicians; but, as a community, we should
well be trying to address in a coherent way all dy-
namical questions, both analytic and geometric,
raised by or related to renormalization in statisti-
cal mechanics and in field theory.

Although these questions as a whole lie athwart
Mlodinow’s concept, it is difficult when reading the
last chapter of his book not to reflect on them and
on the current relation between mathematics and
physics. So after finishing with other aspects of the
book, about which there is a good deal to be said,
I shall return to these matters.

History and Biography

Euclid. The background metric, thus the general
theory of relativity, is a feature of string theory that
is not present in most other field theories. There
are several evident milestones on the way from an-
cient mathematics to Einstein’s theory: Euclid’s ac-
count of plane geometry; Descartes’s advocacy of
coordinates to solve specific geometrical prob-
lems; the introduction of curvature by Gauss and
the discovery of noneuclidean geometries; Rie-
mann’s conceptions of higher-dimensional geome-
tries and his criterion for flatness; Einstein’s equa-
tions for general relativity. To isolate these five
developments, each a major moment in intellectual
history, as the themes of a single essay on mathe-
matics was brilliant; to realize the concept an enor-
mous challenge, beyond me, beyond most readers
of the Notices, and certainly far beyond the au-
thor, locked in the present, upon which for him all
windows open, and dazzled by his own flippancy.

Euclid’s Elements are, above all, a window on
themselves and on Greek mathematics. Difficult to
appreciate without commentary, they could never
have been, in spite of tradition, suitable as inde-
pendent reading for schoolboys. In Mlodinow’s
first chapter, the one on Euclid, the mathematics
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is given very short shrift; the author
prefers trivial puzzles to real math-
ematics. He presents Euclid’s five
postulates, including the fifth, or
parallel, postulate in Euclid’s form
(two lines falling on a given line in
such a way that the sum of the in-
terior angles on the same side is
less than two right angles neces-
sarily meet) and, in addition, in the
form known as Playfair’s axiom (a
unique parallel to a given line can
be drawn through any point), prob-
ably because Playfair’s axiom is
more familiar to him from high-
school. If our concern is with Eu-
clid as Einstein’s predecessor, then
itis Euclid’s form that is pertinent,
for it expresses the flatness. What
the student or the layman needs
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from this chapter is an explana-

tion of the fifth postulate’s relation to flatness: to
the basic property of a triangle that the sum of its
interior angles is 1t and especially to the existence
of similar figures, thus to what one might call a lit-
tle pretentiously, imitating the current jargon, the
conformal invariance of Euclidean geometry. Even
the mature mathematician may enjoy recalling
these deep, important, and yet elementary, logical
relations, for not all of us have taken the time to
think through the manifold concrete implications
of noneuclidean geometry. It appears, however,
that the author has not even read Heath’s comments
and does not appreciate how flatness manifests it-
self in the simple geometric facts that we know al-
most instinctively, so that, with all the impudence
of the ignorant, he can, later in the book, mock Pro-
clus, who attempted, as other important mathe-
maticians, like Legendre, were still doing centuries
later, to prove the postulate, or Kant, whose philo-
sophical imagination was unfortunately inadequate
to the mathematical reality.

Otherwise the space in the first chapter is largely
devoted to tales suitable for children, or some-
times not so suitable for children, as the author has
a penchant for the lewd that he might better have
held in check. He trots out the old war-horses
Thales and Pythagoras and a new feminist favorite,
Hypatia. Cajori, in his A History of Mathematics, ob-
serves that the most reliable information about
Thales and Pythagoras is to be found in Proclus,
who used as his source a no longer extant history
by Eudemus, a pupil of Aristotle. Thales and
Pythagoras belong to the sixth century BC, Eude-
mus to the fourth, and Proclus to the fifth century
AD. Common sense suggests that there is consid-
erable room for distortion, intentional or
unintentional, in information that has been trans-
mitted over a thousand years. This did not stop
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Cajori and many other historians of science from
using it. Nor does it stop the present author, who
even adds some gratuitous speculation of his own:
could the merchant Thales have traded in the
leather dildos for which Mlodinow claims Miletus
was known?

Although Neugebauer writes in The Exact Sci-
ences in Antiquity, “It seems to me evident, how-
ever, that the traditional stories of discoveries
made by Thales or Pythagoras must be regarded
as totally unhistorical”, there may be a place in pop-
ular accounts for the myths attached to them, but
not at the cost of completely neglecting the re-
sponsibility of introducing the reader, especially the
young reader, to some serious notions of the his-
tory of science, or simply of history. I have not
looked for a rigorous account of Thales, but there
is a highly regarded account of Pythagoras, Weisheit
und Wissenschaft, by the distinguished historian
Walter Burkert in which the reality is separated from
the myth, leaving little, if anything, of Pythagoras
as a mathematician. One’s first observation on
reading this book is that it is almost as much of a
challenge to discover something about the Greeks
in the sixth century as to discover something about
physics at the Planck length (10733 cm., the char-
acteristic length for string theory). A second is that
most of us are much better off learning more about
the accessible philosophers, as a start, Plato and
Aristotle, or about Hellenistic mathematics, that the
earlier mythical figures are well left to the spe-
cialists. The third is that one should not ask about
the scientific or mathematical achievements of
Pythagoras but of the Pythagoreans, whose relation
to him is not immediately evident. Burkert’s argu-
ments are complex and difficult, but a key factor
is, briefly and imprecisely, that for various rea-
sons Plato and the Platonists ascribed ideas that
were properly Platonic to Pythagoras, who in fact
was a religious rather than a scientific figure.

Whether as mathematician, shaman, or purveyor
to Ionian and Egyptian sex-shops, neither Thales
nor Pythagoras belongs in this essay; nor does Hy-
patia. Since Hypatia is a figure from the late fourth
century AD, it is easier to separate the myth from
the reality, and there is an instructive monograph
Hypatia of Alexandria by Maria Dzielska that does
just this. Mlodinow refers to the book but there is
no sign that he has read it. If he has, he ignored it!

Mlodinow’s book is short, and the space is largely
taken up with material that is irrelevant or false,
and often both. Much of the reliable information
about Hypatia comes from the letters of Synesius
of Cyrene, bishop of Ptolemais. An Alexandrian
philosopher, a late Platonist, and mathematician of
some repute, the daughter of the mathematician
Theon, Hypatia was renowned for her wisdom,
erudition and virtue. Of some political influence in
the city, an ally of the prefect Orestes, she was
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brutally murdered in 415 at, according to Dzielska,
the age of sixty (this estimate is not yet reflected
in standard references) by supporters of his rival,
the bishop Cyril. Although now a feminist heroine,
which brings with it its own distortions, Hypatia
first achieved mythical status in the early eigh-
teenth century in an essay of John Toland, for
whom she was a club with which to beat the
Catholic church. His lurid tale was elaborated by
Gibbon, no friend of Christianity, in his unique
style: “...her learned comments have elucidated
the geometry of Apollonius ...she taught ...at
Athens and Alexandria, the philosophy of Plato
and Aristotle ...In the bloom of beauty, and in the
maturity of wisdom, the modest maid refused her
lovers ...Cyril beheld with a jealous eye the gor-
geous train of horses and slaves who crowded the
door of her academy ...On a fatal day ... Hypatia was
torn from her chariot, stripped naked, ...her flesh
was scraped from her bones with sharp oyster-
shells ...the murder ...an indelible stain on the
character and religion of Cyril.” This version, in
which Hypatia is not an old maid but a young vir-
gin, so that itis a tale not only of brutality but also
of lust, is the version preferred by Mlodinow.

There is yet another component of the myth: Hy-
patia’s death and the victory of Cyril mark the end
of Greek civilization and the triumph of Chris-
tianity. Such dramatic simplification is right up
Mlodinow’s alley, who from this springboard leaps,
as a transition from Euclid to Descartes, into a
breezy tourist’s account of Europe’s descent into
the Dark Ages and its resurrection from them, in
which, in a characteristic display of ambiguity, the
author wants to make Charlemagne out both a
dunce and a statesman.

Descartes. Mlodinow would have done well to pass
directly from Euclid to Descartes. Both Descartes
and Gauss had a great deal of epistolary energy; so
a genuine acquaintance with them as individuals
is possible. The letters of Gauss especially are often
quite candid. A good deal of their mathematics, per-
haps all that of Descartes, is also readily accessi-
ble without any very exigent prerequisites. Yet
Mlodinow relies on secondary, even tertiary,
sources, so that his account, having already passed
through several hands, is stale and insipid. More-
over, he exhibits a complete lack of historical imag-
ination and sympathy, of any notion that men and
women in other times and places might respond
to surroundings familiar to them from birth dif-
ferently than a late twentieth-century sight-seer
from New York or Los Angeles. What is even more
exasperating is that almost every sentence is in-
fected by the itch to be jocose, to mock, or to cre-
ate drama, so that a mendacious film covers every-
thing. Without a much deeper and more detailed
knowledge of various kinds of history than I
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possess, there is no question of recognizing each
time exactly how veracity is sacrificed to effect. In
some egregious instances, with which I was more
than usually outraged, I have attempted to analyze
his insinuations. It will be apparent that I am nei-
ther geometer nor physicist, and not a philoso-
pher or a historian; I make no further apology for
this.

Descartes was primarily a philosopher or natural
scientist, and only incidentally a mathematician. So
far as I can see, almost all the mathematics that we
owe to him is in one appendix, La géométrie, to Dis-
cours de la méthode. Anyone who turns to this ap-
pendix will discover, perhaps to his surprise, that
contrary to what Mlodinow states, Descartes does
not employ the method we learned in school and
“begin his analysis by turning the plane into a kind
of graph”. Not at all, Descartes is a much more ex-
citing author, full, like Grothendieck and Galois, of
philosophical enthusiasm for his methods. He be-
gins by discussing the relation between the geo-
metrical solution with ruler and compass of sim-
ple geometrical problems and the algebraic
solution, goes on to a brilliant analysis of the curve
determined by a generalized form of the problem
of Pappus, an analysis that exploits oblique coor-
dinates, not for all points but for a single one, and
chosen not once and for all but adapted to the
data of the problem. The analysis is incisive and
elegant, well worth studying, and is followed by a
discussion of curves in general, especially alge-
braic curves, and their classification, which is ap-
plied to his solution of the problem of Pappus.
Descartes does not stop there, but the point should
be clear: this is analytic geometry at a high con-
ceptual but accessible mathematical level that could
be communicated to a broad public by anyone with
some enthusiasm for mathematics. He would of
course have first to read Descartes, but there is no
sign that Mlodinow regarded that as appropriate
preparation.

Although adverse to controversy, even timid,
Descartes, a pivotal figure in the transition from
the theologically or confessionally organized society
to the philosophically and scientifically open so-
cieties of the Enlightenment, made every effort to
ensure that his philosophy became a part of the cur-
riculum both in the United Provinces where he
made his home and in his native, Catholic France.
In spite of the author’s suggestion, his person was
never in danger: with independence from Spain, the
Inquisition had ceased in Holland and by the sev-
enteenth century it had long been allowed to lapse
in France. Atheism was nonetheless a serious
charge. Raised by his opponent, the Calvinist the-
ologian Voetius, it could, if given credence, have led
to a proscription of his teachings in the Dutch uni-
versities and the Jesuit schools of France and the
Spanish Netherlands, but not to the stake. The
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This portrait of Descartes is the frontispiece of
the 1659 edition of the Latin translation of La
Géométrie. The engraver, Frans van Schooten
the younger, was also the translator and editor
of the book, from which many mathematicians
of the late seventeenth century learned analytic
geometry.

author knows this—as did no doubt Descartes—but
leaves, once again for dramatic effect and at the cost
of missing the real point, the reader with the con-
trary impression.

Gauss. It appears that, in contrast to many other
mathematical achievements, the formal concept
of noneuclidean geometry appeared only some
time after a basic mathematical understanding of
its properties. This is suggested by the descriptions
of the work of Gauss and of earlier and later au-
thors, Lambert in particular, that are found in Re-
ichardt’s Gauf und die nicht-euklidische Geome-
trie and by the documents included there. It was
known what the properties must be, but their pos-
sibility, whether logical or in reference to the nat-
ural world, was not accepted. Modern mathemati-
cians often learn about hyperbolic geometry
quickly, almost in passing, in terms of the Poincaré
model in the unit disk or the upper half-plane.
Most of us have never learned how to argue in el-
ementary geometry without Euclid’s fifth postulate.
What would we do if, without previous experience,
we discovered that when the sum of the interior
angles of just one triangle is less than 1t, as is pos-
sible when the parallel postulate is not admitted,
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then there is necessarily an upper bound for the
area of all triangles, even a universal length? Would
we conclude that such a geometry was totally ir-
relevant to the real world, indeed impossible? If we
were not jaded by our education, we might better
understand how even very perceptive philosophers
could be misled by the evidence.

An intelligent, curious author would seize the
occasion of presenting these notions to an audience
to which they would reveal a new world and new
insights, but not Mlodinow. What do we have as
mathematics from him? Not the thoughts of Le-
gendre, not the contributions of Lambert, not even
the arguments of Gauss, taken from his reviews,
from his letters, from his notes, nothing that sug-
gests that the heart of the matter, expressed of
course in terms of the difference between 1 and
the sum of the interior angles of triangles, is
whether the plane is curved. No, he does not even
mention curvature in connection with noneuclid-
ean geometry! There is a discussion, cluttered by
references to the geography of Manhattan, of an at-
tempt by Proclus to prove one form of the fifth pos-
tulate, but something that incorporated the per-
ceptions of the late eighteenth or early nineteenth
century would have been more useful. There is
also a brief description of the Poincaré model,
muddled by references to zebras, but any appre-
ciation of an essential element of Gauss’s thought,
noneuclidean geometry as a genuine possibility
for the space we see around us, is absent. The
weakness of the Poincaré model as an expository
device is that it puts us outside the noneuclidean
space; the early mathematicians and philosophers
were inside it.

Gauss’s paper on the intrinsic curvature of sur-
faces, Disquisitiones generales circa superficies cur-
vas, seems to have been inspired much less by his
intermittent reflections on the fifth postulate than
by the geodetic survey of Hannover. The paper is
not only a classic of the mathematical canon but
also elementary, not so elementary as noneuclid-
ean geometry, but as the sequence Gauss, Riemann,
Einstein begins with this paper, a serious essay
would deal with it in a serious way and for a broad
class of readers.

Having learned, as he claims, from Feynman
that philosophy was “b.s.”, Mlodinow feels free to
amuse his readers by abusing Kant. He seems to
have come away, perhaps because of the impov-
erished vocabulary, with a far too simple version
of Feynman’s dictum. It was not, I hope, encour-
aging us to scorn what we do not understand, and
it was surely not to apply universally, especially not
to the Enlightenment, in which Kant is an honored
figure. As a corrective to the author’s obscurantism
and pretended contempt—since his views are plas-
tic, shaped more by changing dramatic needs than
by conviction, he has to concede some insight to
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Kant in his chapter on Einstein—I include some
comments of Gauss, in which we see his views
changing over the years, as he grows more certain
of the existence of a noneuclidean geometry, and
some mature comments of Einstein.

In a sharply critical 1816 review of an essay by
J. C. Schwab on the theory of parallels of which, ap-
parently, a large part is concerned with refuting
Kant’s notion that geometry is founded on intuition,
Gauss writes,! “dass von diesen logischen Hilfs-
mitteln ...Gebrauch gemacht wird, hat wohl Kant
nicht laugnen wollen, aber dass dieselben fiir sich
nichts zu leisten vermogen, und nur taube Bliithen
treiben, wenn nicht die befruchtende lebendige
Anschaung des Gegenstandes iiberall waltet, kann
wohl niemand verkennen, der mit dem Wesen der
Geometrie vertraut ist.” So, for whatever it is worth,
Gauss seems here to be in complete agreement
with Kant. In the 1832 letter to Wolfgang von Bolyai,
he comments on the contrary,? “in der Un-
moglichkeit (to decide a priori between euclidean
and noneuclidean geometry) liegt der klarste Be-
weis, dass Kant Unrecht hatte...” So he has not
come easily to the conclusion that, in this point,
Kant was wrong. He also refers Bolyai to his brief
1831 essay in the Gottingsche Gelehrte Anzeigen
on biquadratic residues and complex numbers, in
which he remarks,3 “Beide Bemerkungen (on spa-
tial reflections and intuition) hat schon Kant
gemacht, aber man begreift nicht, wie dieser scharf-
sinniger Philosoph in der ersteren einen Beweis
fiir seine Meinung, dak der Raum nur Form unserer
aulern Anschaung sei, zu finden glauben kon-
nte,...”

Einstein’s remarks appear in his Reply to criti-
cisms at the end of the Schilpp volume Albert Ein-
stein, Philosopher-Scientist. Excerpts will suffice:
“you have not at all done justice to the really sig-
nificant philosophical achievements of Kant”; “He,
however, was misled by the erroneous opinion—

Language is bound to time and place; translation, even by
a skilled hand, entails choices and changes not merely its
intonations but sometimes its sense. Since so much space
has had to be devoted in this review to the issue of mis-
representation, I thought it best to let Gauss and Riemann
speak for themselves. As a help to those unfamiliar with
German, I add rough translations.

L“Kant hardly wanted to deny that use is made of these
logical methods, but no-one familiar with the nature of
geometry can fail to recognize that these alone can achieve
nothing and produce nothing but barren blossoms if the
living, fructifying perception of the object itself does not
prevail.”

2“the clearest proof that Kant was wrong lies in this im-
possibility...”

3“Kant had already made both observations, but one does
not understand how this perceptive philosopher was able
to believe that he had found in the first a proof for his view
that space is only a form of our external intuition,...”
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difficult to avoid in his time—that Euclidean geom-
etry is necessary to thinking...”; “I did not grow up
in the Kantian tradition, but came to understand
the truly valuable which is to be found in his doc-
trine, alongside of errors which today are quite
obvious, only quite late.”

There is a grab-bag of doubtful tales about
Gauss’s family and childhood; Mlodinow, of course,
retails a large number of them. He seems to be par-
ticularly incensed at Gauss’s father, of whom he
states, “Gauss was openly scornful...calling him
‘domineering, uncouth, and unrefined’,” and to be
persuaded that Gauss’s father was determined at
all costs to make a navvy of him. Having dug a good
many ditches in my own youth, I can assure the au-
thor, who seems to regard the occupation as the
male equivalent of white slavery, that it was, when
hand-shovels were still a common tool, a health-
ful outdoor activity that, practiced regularly in
early life, does much to prevent later back prob-
lems. In any case, the one extant description of his
father by Gauss in a letter to Minna Waldeck, later
his second wife, suggests that the author has cre-
ated the danger out of whole cloth:4 “Mein Vater
hat vielerlei Beschiaftigungen getrieben..., da er
nach und nach zu einer Art Wohlhabenheit
gelangte...Mein Vater war ein vollkommen
rechtschaffener, in mancher Rucksicht
achtungswerter und wirklich geachteter Mann; aber
in seinem Haus war er sehr herrisch, rauh und un-
fein ...obwohl nie ein eigentliches MiRverhdltnis ent-
standen ist, da ich frith von ihm ganz unabhéngig
wurde.” As usual, Mlodinow takes only that part of
the story that suits him and invents the rest. The
reader who insists nonetheless on the “herrisch,
rauh und unfein” and not on the virtues that Gauss
ascribes to him should reflect on possible diffi-
culties of the father’s rise and on the nature of the
social gap that separated him, two hundred years
ago, from Gauss at the age of thirty-three and,
above all, from Gauss’s future wife, the daughter
of a professor.

Reimann and Einstein. In two booklets published
very early, the first in 1917, the second in 1922,
Uber die spezielle und die allgemeine Relativitdits-
theorie, and Grundziige der Relativitdtstheorie, the
second better known in its English translation, The
meaning of relativity, Einstein himself gave an ac-
count of the Gauss-Riemann-Einstein connection.
If Mlodinow had not got off on the wrong foot with
Euclid, Descartes, and Gauss, he might have made

4“My father had various occupations...since he became
over the course of time fairly well-off...my father was a
completely upright, in many respects admirable and, in-
deed, admired man; but in his own home he was over-
bearing, rude, and coarse...although no real disagree-
ment ever arose because I very soon became independent
of him.”
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the transition from Gauss to Riemann by, first of
all, briefly describing the progress of coordinate
geometry from Descartes to Gauss. Then, the Bolyai-
Lobatchevsky noneuclidean geometry already at
hand as an example, he could have continued with
Gauss'’s theory of the intrinsic geometry of surfaces
and their curvature, presenting at least some of the
mathematics, especially the theorema egregium
that the curvature is an isometric invariant and the
formula that relates the difference between 1T and
the sum of the interior angles of a triangle to the
curvature. (Why he thinks the failure of the
pythagorean theorem is the more significant fea-
ture of curved surfaces is not clear to me.) For the
rest of the connection, he could have done worse
than to crib from Einstein, who explains briefly
and cogently not only the physics but also the
function of the mathematics. On his own, Mlodi-
now does not really get to the point.

In the first of the two booklets, Einstein explains
only the basic physical principles and the conse-
quences that can be deduced from them with sim-
ple arguments and simple mathematics: the spe-
cial theory of relativity with its two postulates that
all inertial frames have equal status and that the
velocity of light is the same whether emitted by a
body at rest or a body in uniform motion; the gen-
eral theory of relativity, especially the equivalence
principle (physical indistinguishability of a gravi-
tational field and an accelerating reference frame)
as well as the interpretation of space-time as a
space with a Minkowski metric form in which all
Gaussian coordinate systems are allowed. These
principles lead, without any serious mathematics
but also without precise numerical predictions, to
the consequence that light will be bent in a gravi-
tational field.

In the second, he presents the field equations,
thus the differential equations for the metric form,
which is now the field to be determined by the mass
distribution or simultaneously with it. More so-
phisticated arguments from electromagnetism and
the special theory allow the introduction of the en-
ergy-momentum tensor Ty, which appears in the
field equation in part as an expression of the dis-
tribution of mass; the Ricci tensor Ry, a contrac-
tion of the Riemann tensor associated to the met-
ric form g, is an expression of the gravitational
field. The field equations are a simple relation be-
tween the two,

1
Ruv — EguvR = —KTyy,

R =g Rag
where k is in essence Newton’s constant.

With this equation the mathematics becomes
markedly less elementary, but, with some expla-
nation, accessible to a large number of people and
inevitable if Riemann’s contribution is to be ap-
preciated. Although it would certainly be desirable
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to explain, as Einstein does, how Newton’s cus-
tomary law of gravitation follows from this equa-
tion and to describe how Einstein arrived at it, the
cardinal point, where the mathematics anticipates
the needs of physics, is the introduction of the
Riemann tensor. It does not appear explicitly in Rie-
mann’s lecture, published as Uber die Hypothesen
welche der Geometrie zu Grunde liegen and in-
tended for a broad audience, so that the mathe-
matical detail is suppressed; at best it is possible
to extract from the lecture the assertion that, to use
our terminology, a Riemannian manifold is eu-
clidean if and only if it is flat. The mathematics that
was developed by his successors and that Einstein
was able to exploit is implicit in this assertion but
appears only in a paper on heat conduction pub-
lished posthumously in Riemann’s collected works.
Because it was submitted in response to a prize
theme proposed by the Academy in Paris, the paper
is often referred to as the Pariserarbeit. Once again,
Mlodinow misses the point. Coming up to the plate
against several of the great geometers of history,
he strikes out each time. I could hardly believe my
eyes, but it seems he is persuaded that the intro-
duction of elliptic geometry was the principal
achievement of the lecture.

It appears from the biography prepared by
Dedekind and included in his collected works that
Riemann, born in 1826, was very moved as a child
by the stories that he heard from his father, a lieu-
tenant during the Napoleonic wars and later pas-
tor, of the> “ungliickliche Schicksal Polens”, parti-
tioned at the Congress of Vienna and then
oppressed by the first Tsar Nicolas. Entering uni-
versity, Riemann chose at first to study theology,
partly at the urging of his father, who was devoted
to his vocation, but partly to secure his future so
that he could contribute to the support of his fam-
ily. Mlodinow, unmoved by parental sentiments or
filial piety or by the plight of a hapless nation but
always ready with a wisecrack, suggests that his
choice was so that “he could pray for the down-
trodden Poles”.

It is well known that of the three possible top-
ics proposed by Riemann for his qualifying lec-
ture on the occasion of his Habilitation, Gauss
chose, sometime in December, 1853, the third, on
the foundations of geometry, the only one that
Riemann did not have in a drawer fully prepared.
There are two accounts of Riemann’s reactions to

S “unhappy fate of Poland”

6“T'was so deeply occupied with my investigation of the con-
nection of the basic physical laws that I could not abandon
it immediately when the topic of the qualifying lecture for
the colloquium was proposed to me. Shortly thereafter I be-
came ill, partly because of too much brooding, partly be-
cause I had kept too much to my room in the bad weather;
my old ailment appeared again with great tenacity, so
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Gauss’s unexpected choice, one by Mlodinow, one
by Riemann.

Mlodinow: “Riemann’s next step was understand-
able—he spent several weeks having some kind of
breakdown, staring at the walls, paralyzed by the
pressure. Finally, when spring came, he pulled him-
self together and in seven weeks hammered out a
lecture.”

Riemann in a letter to his brother:6 “...dass
ich...mich wieder mit meiner Untersuchung uber
den Zusammenhang der physikalischen Grundge-
setze beschiftigte und mich so darin vertiefte,
dass ich, als mir das Thema zur Probevorlesung
beim Colloquium gestellt war, nicht gleich wieder
loskommen konnte. Ich ward nun bald darauf
krank, theils wohl in folge zu vielen Griibelns,
theils in Folge des vielen Stubensitzens bei dem
schlechten Wetter; es stellte sich mein altes Uebel
wieder mit grosser Hartnackigkeit ein und ich kam
dabei mit meinen Arbeiten nicht vom Fleck. Erst
nach mehreren Wochen, als das Wetter besser
wurde und ich wieder mehr Umgang suchte, ging
es mit meiner Gesundheit besser. Fiir den Sommer
habe ich nun eine Gartenwohnung gemiethet und
habe seitdem gottlob iiber meine Gesundheit nicht
zu klagen gehabt. Nachdem ich etwa vierzehn Tage
nach Ostern mit einer andern Arbeit, die ich nicht
gut vermeiden konnte, fertig geworden war, ging
ich nun eifrig an die Ausarbeitung meiner Probevor-
lesung und wurde um Pfingsten damit fertig.”

Recalling that Pentecost falls seven weeks after
Easter and subtracting fourteen days, we find that
the preparations took only five weeks, but this dis-
crepancy is of little importance. The others make
for two accounts with quite different implications.

According to Pais, in his scientific biography
Subtle is the Lord, Einstein, at the age of sixteen,
troubled by the separation from his family, which
had moved to Italy, and anxious at the prospect of
military service, obtained, with the help of his fam-
ily doctor, a medical certificate that released him
from the Luitpold Gymnasium and allowed him to
join his parents in Pavia. It was apparently not rare
to leave the gymnasium before the Abitur. Thomas
Mann, the novelist, left with two years to go, per-
haps for similar reasons, as his recently widowed
mother had moved from Liibeck to Munich. Einstein
left early to avoid military service; Mann stayed only
to the end of the Obersekunda, the stage required

that my work stood stock-still. Only after several weeks,
as the weather improved and I began to get about again,
did my health improve. I rented a country place for the
summer and since then, thank goodness, have had no
complaints about my health. After I finished another paper
that I could hardly avoid, I started, about fourteen days
after Easter, to work zealously on the preparation of my
qualifying lecture and was finished by Whitsuntide.”
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for a reduction of compulsory military service to
one year. The account in Victor Klemperer’s auto-
biography, Curriculum vitae, suggests that for
many students it was even normal to stay only to
this point and then to find a commercial position
of some sort.

Einstein, who was, Pais stresses, an excellent
student, had, however, no such intention. He re-
sumed his studies elsewhere almost immediately.
Nonetheless, this turn in his career gives Mlodinow
a foot in the door: Einstein becomes, in a late twen-
tieth-century word with inevitable modern conno-
tations, a dropout. This is a pernicious notion.

As André Weil pointed out many years ago in an
observation at the beginning of his essay, The
mathematics curriculum, “The American stu-
dent...suffers under some severe handicaps,...
Apart from his lack of earlier training in mathe-
matics..., he suffers chiefly from his lack of train-
ing in the fundamental skills—reading, writing,
and speaking...”. Unfortunately this is not less
valid today than when written; indeed it may now
be true of students in Europe as well. It has certainly
always applied to North Americans. Although we
sometimes do better than Weil foresaw (L’avenir
des mathématiques), we are, almost without ex-
ception, handicapped all our lives because we could
not begin serious thinking when our minds were
fresh and free.

What is striking about the education of Gauss
and Einstein is the conjunction of talent and timely
opportunity. They were both encouraged very early:
Gauss by his first teachers, Biittner and Bartels; Ein-
stein by his uncle and by a family friend, Max Tal-
mud. Both had excellent educational opportuni-
ties: Einstein because of his milieu; Gauss by chance.
An Einstein from a home without books, without
music, without intellectual conversation would al-
most certainly have been much less confident, less
intellectually certain, and much more dependent;
a Gauss without early freedom, without early, ex-
tensive knowledge of the eighteenth-century math-
ematical literature would not have discovered the
implications of cyclotomy or proved the law of
quadratic reciprocity so soon, if at all.

To forget this, to exaggerate his difficulties and
to represent Einstein as an academically narrow,
misunderstood or mistreated high-school dropout
is a cruel disservice to any young reader or to any
educator who swallows such falsehoods.

Mlodinow adds the occasional literary touch,
not always carried off with the desired aplomb. The
first lines of Blake’s Auguries of Innocence,

To see a World in a Grain of Sand
And a Heaven in a Wild Flower,

Hold Infinity in the palm of your hand
And Eternity in an hour.
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are fused, compressed to the universe in a grain
of sand, and attributed to Keats. This is a fair
measure of his scholarly care and, I suppose, of his
literary culture. His own style is smooth enough;
he adheres by and large to the usual conventions
of contemporary American grammar, although
there is a smattering of dangling participles and the
occasional blooper. Confronted with an unexpected
“like”, he panics; the resulting “like you and I”
might in earlier, happier times have been caught
by his copy-editor.

The book is wretched; there is no group of read-
ers, young or old, lay or professional, to whom I
would care to recommend it. Nonetheless, there are
several encomiums on the dust-jacket: from Edward
Witten, the dean of string theorists, and from a
number of authors of what appear to be popular-
izations of mathematics. They are all of the con-
trary opinion; they find that it is “written with
grace and charm”, “readable and entertaining”, and
so on. Perhaps the book is a hoax, written to ex-
pose the vanity of physicists, the fatuity of vul-
garizers, the illiteracy of publishers, and the
pedantry of at least one priggish mathematician.
Would that this were so, for it is certainly thor-
oughly dishonest, but not to any purpose, rather
simply because the author shrinks from nothing in
his desperation to be “readable and entertaining”.

The lesson to draw for those who have a gen-
uine desire to learn something about mathematics
and its history is that the most effective and the
most entertaining strategy is to go directly to the
sources, equipped with a competent, straightfor-
ward guide, say Kline’s Mathematical thought from
ancient to modern times or, for more specific top-
ics, Buhler’s Gauss and similar studies and, of
course, whatever linguistic skills they can muster.
To learn about current goals the sources are of lit-
tle help, and it is up to mathematicians to acquire
sufficient understanding of their own field to pro-
vide clear and honest introductions. Whether the
subject is old mathematics or new, intellectual
junk-food just undermines the constitution and
corrupts the taste.

Mathematics and Physics

Although this heading is brief, it is far too sweep-
ing. More established areas aside, the dynamics of
renormalization by no means exhausts even those
domains of mathematical physics in which funda-
mentally novel conceptual structures are called
for. Nevertheless, if what is wanted is encourage-
ment to a broader view of the relation between
mathematics and physics than is suggested by Eu-
clid’s Window and similar books then it is a good
place to begin. So, at the risk of seriously over-
stepping my limits, for the subject is large and my
knowledge fragmentary and uncertain, I recall the
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(T, P(T)) of the temperature and pressure where the
two states can coexist. It was Thomas Andrews, a
calorimetrist in Belfast, who in 1869 first under-
stood the nature of the thermodynamic phenom-
ena at that pair of values for the temperature and
pressure at which for ordinary substances, such as
water, or in his case carbon dioxide, there ceases
to be any difference between the liquid and the
gaseous state. More precisely, for a fixed temper-
ature below the critical temperature, as the pres-
sure is increased there comes a point, P = P(T),
where a gas, rather than simply being compressed,
starts to condense. This is the point at which there
is a transition from gas to liquid. When the pres-
sure is large enough, the gas is completely con-
densed and the substance entirely in the liquid
phase, which upon further increase of the pressure
continues to be slowly compressed. When, however,
T reaches the critical temperature T, different for
different substances, there ceases to be any sud-
den change at P = P, which can therefore only be
defined as a limiting value. The liquid at pressures
above P; is not distinguishable from the gas at
pressures below. For T > T, P(T) is no longer even
defined. So the curve of values (T, P(T)) ends at the
critical point. What happens at the curve’s other end
is not pertinent here as the solid state is not con-
sidered.

There is a fascinating phenomenon, critical
opalescence, associated with the critical point that
the mathematical physicists among the reader’s col-
leagues may or may not be able to describe. If not,
I recommend the description in Michael Fisher’s
contribution to Lecture Notes in Physics, v. 186. Crit-
ical opalescence is a manifestation of a statistical
mechanical feature of the critical point: the corre-
lation length becomes infinite there. This shows it-

self in a less flamboyant way as singular behavior
at the critical point of various thermodynamic pa-
rameters, compressibility or specific heats, al-

From an article of Thomas Andrews, Proceedings of the Royal
Society of London, vol. 18, no. 114 (1869), pp- 42-45. Shows P-V
curves for air and carbonic acid, with the carbonic acid curves
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near the critical point.

dynamical questions that arise in statistical physics
and in quantum field theories.

Thermodynamics and Statistical Mechanics. An
historical approach, beginning with the statistical
mechanics and even the thermodynamics, is the
simplest and perhaps the most persuasive. Fortu-
nately there is a very good book to draw on, Cyril
Domb’s The Critical Point, written by a specialist
with wide knowledge and great experience. It would
be a superb book, were it not for the high density
of misprints, especially in the formulas, which are
often a challenge to decipher. Even with this flaw,
it can be highly recommended.

Few mathematicians are familiar with the notion
of the critical point, although all are aware of the
phase transition from the liquid to the gaseous
state of a substance. It occurs for pairs of values
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though the disturbing influence of gravity renders
the experiments difficult. The critical point also ap-
pears for magnets, investigated later by Pierre
Curie, for which other thermodynamic parame-
ters, susceptibility or spontaneous magnetization,
are pertinent. What was understood only much
later was the nature of the singularities. They are
the focus of the mathematical interest.

The first theory of the critical point, now referred
to as a mean-field theory, was proposed within a
very few years by van der Waals in his thesis and
was warmly greeted by Maxwell, for whom it seems
it was an occasion to learn Dutch or Low German,
as it was then called, just as earlier, Lobatchevsky
seems to have been an occasion for Gauss to begin
the study of Russian. The mean-field theories, for
gases and for magnets, were in general highly re-
garded, so highly regarded indeed that almost
no-one paid any attention to their experimental
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confirmation. The critical indices describing the sin-
gular behavior are not those predicted by van der
Waals, but almost no-one noticed, at least not until
the forties, when Onsager, exploiting the spinor cov-
ering of orthogonal groups, succeeded in calculating
explicitly some critical indices for a planar model
of magnetization, the Ising model, and discovered
values different than those of mean-field theory.

Suddenly there was great interest in measuring
and calculating critical indices, calculating them
above all for planar models. A striking discovery
was made, universality: the indices, although not
those predicted by the mean-field theory, are
equal—or appear to be for they are difficult to
measure—for broad classes of materials or mod-
els. Then came the first glimpses, by L. P. Kadanoff,
of a dynamical explanation. At the critical point,
the material or the model becomes in a statistical
sense self-similar, and the behavior of the critical
indices is an expression of the dynamics of the ac-
tion of dilation on the system.

The probabilistic content of statistical mechan-
ics is determined by the Boltzmann statistical
weight of each state, an exponential with a nega-
tive exponent directly proportional to its energy and
inversely proportional to the temperature. The en-
ergy will usually be an extensive property that de-
pends on the interactions defined by a finite num-
ber of parameters and by a finite number of local
properties such as the magnetization. The basic
idea of the dynamical transformation is that, be-
cause it is only the statistics that matter, small-scale
fluctuations can be averaged and substantial
chunks of the system, blocks, can be reinterpreted,
after a change of scale, as small uniform pieces with
well-defined local properties.

It appears to have been K. G. Wilson who turned
this idea into an effective computational tool, the
renormalization group, and it is probably his pa-
pers that it is most important that analysts read,
for the success of the renormalization-group
method is a result of a basic property of the asso-
ciated (infinite-dimensional) dynamical system: at
certain fixed points, the pertinent ones, there are
only a finite number, usually one, two or three, of
unstable directions (or, more precisely, a finite
number, perhaps larger, of nonstable directions).
All other directions are contracting and indeed
most of them strongly so. A model, depending on
parameters, temperature, pressure, or magnetic
field, appears as a point in the space of the dy-
namical transformation. A critical point appears as
the parameters are varied and the corresponding
point traverses a stable manifold. Because the man-
ifold is stable and because it is the transformation
that determines the properties of the system, all
questions can be referred to the fixed point in it.
This is the explanation of universality.
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To establish such a theory for even the simplest
of planar models, percolation for example, is a
daunting mathematical challenge—in my view
central. For other planar models, it is not even
clearly understood what the dynamical system
might be; indeed on reflection it is clear that the
very definition of the dynamical transformation re-
lies on the property to be proved. So if there is a
theory to be created, its construction will entail a
delicate architecture of difficult theorems and sub-
tle definitions. My guess is that there may be a lot
to be learned from Wilson, who after all must have
been able at least to isolate the expanding direc-
tions sufficiently to permit effective calculations,
but this guess is not yet based on much knowledge
of his papers.

Quantum Field Theories. In quantum field theory
exactly the same dynamical structure of a finite-
dimensional unstable manifold and a stable man-
ifold of finite codimension plays a central role in
the construction, by renormalization, of theories
like quantum electrodynamics. Indeed it is some-
times possible to pass, by an analytic continuation
in an appropriate parameter, from statistical me-
chanics to quantum field theories, but a direct ap-
proach to them is often more intuitively appealing.

The field theory is a much more complex object
in which the algebra takes precedence over the
analysis, most analytic problems being, apparently,
so difficult that they are best left unacknowledged.
In statistical mechanics there is an underlying prob-
ability space, say (X, u). A related space—there is
a conditioning by time—appears in field theories.
It is enormous. In addition to functions on X, whose
expectations are the pertinent objects in statisti-
cal mechanics and which act on Lz(u), there are in
a field theory many other operators as well, to
monitor the symmetries or to implement creation
and annihilation of particles. So temporal evolution
in a field theory is more easily grasped directly than
as an analytic continuation of some stochastic
process. Seen most simply, it arises from a constant
creation and annihilation of particles, anti-particles
and fields, most created only to last for a very
short time and then to be destroyed again.

The difficulties of the theory lie in these
processes and its appeal to mathematicians in the
constructs necessary to surmount the difficulties.
The theory is usually prescribed by a Lagrangian,
L, which can perhaps be thought of as a prescrip-
tion for the probabilities with which the elemen-
tary processes of creation or annihilation occur,
when, for example, an electron and a photon col-
lide to produce an electron of different energy and
momentum or an electron and a positron collide,
annihilate each other, and produce a photon. The
distinction between an elementary process and a
compound process is to a large extent arbitrary. We
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do not observe the processes occurring, only their
outcome, so that what for one theory is purely
compound may for another, equivalent theory be
partly compound, partly elementary; for example,
two electrons exchanging a photon, and then emerg-
ing from this intimate encounter with changed mo-
menta could be elementary or it could be the com-
position of two electron-photon interactions, or
an electron could briefly separate into an electron
and a photon, that then fused into a single electron.
Infinities arise because the elementary processes
that enter into a compound process, being unob-
served, can occur at all energies and momenta; the
usual relation between energy, mass and momen-
tum is violated.

One way to attempt to surmount this difficulty
is to allow only elementary processes with mo-
menta and energy that are no larger than some pre-
scribed constant A . This provides numbers Ga(£)
that are finite, although perhaps inordinately large,
for every conceivable process, thus, otherwise in-
terpreted, for every conceivable scattering of an ar-
bitrary number of incoming particles, with what-
ever momenta and energy they are allowed, as a
collection of outgoing particles, although the dis-
tinction between ingoing and outgoing is to some
extent arbitrary. In the numbers Ga(£), referred to
as the amplitudes, the distinction between an ele-
mentary and a compound process is lost, except
of course for Go(£) which are just the amplitudes
prescribed by the Lagrangian itself. To obtain a true
theory, it is necessary to take A to infinity, but if
the numbers G (L) are to have finite limits, it may
be necessary to adjust simultaneously the para-
meters in the original Lagrangian, thus in the ini-
tial prescription, so that they go to infinity. Since
the initial prescription was made on the basis of
an arbitrary distinction between elementary and
compound process, this is not so paradoxical as it
at first appears.

The source of the success of this method is ul-
timately the same dynamic property as in statisti-
cal mechanics. For large A the transformation
L — £’ defined by requiring for all processes the
equality of the amplitudes GA(L) = Go(L') operates
in essence only on an unstable subspace of very
small dimension, other directions being strongly
contracted. Moreover, a finite set of amplitudes
Gi(L£), 1 <i < n, can be chosen as coordinates on
this space. Thus for large A, we can choose £ in
a fixed space of dimension n so that G’A(LA) has
any desired values for i =1,...,n. In the end, as
A — oo, the Lagrangian £, sails off backwards in
the stable directions, but the amplitudes lim g}\(ﬁ A)
and, more generally, because of the stability, all
lim GA(LA) remain finite and define the theory.
This is a crude geometric or dynamical description
of what is in reality a very elaborate process: renor-
malization as it appears, for instance, in quantum
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electrodynamics. Nevertheless the dynamics is
paramount.

The dynamics looks even more doubtful than in
statistical mechanics because there is now a whole
family of transformations, one for each A. That can
be remedied. If y is smaller than A, then it is rel-
atively easy to find £, such that G,(L£,) = GA(LA).
The pertinent map is

Ry: (LA =Ly, v=E

A
These maps form a semigroup in v, which is always
less than 1. The presence of the second parame-
ter is disagreeable but seems to be tolerable. There
is now much more to be moved by the maps: the
Hilbert space and all the attendant operators. It is
not yet clear to me how this is done, but it is a
process with which physicists appear to be at their
ease. In addition, in the standard model of parti-
cle physics as well as in many of the geometric ap-
plications that appeal to mathematicians (see the
lectures of Witten in the collection of surveys Quan-
tum fields and strings: a course for mathemati-
cians, two volumes that are indispensable when first
trying to understand quantum field theory as a
mathematical subject) it is gauge theories that
occur and the renormalization and the dynamics
have to respect the gauge invariance.

It appears—I have not understood the matter—
that just as the heat equation can be used to es-
tablish various index theorems or fixed-point the-
orems by comparing traces near t =0 and near
t = oo where they have quite different analytic ex-
pressions, so does, by a comparison of calcula-
tions at low and high energies, the dynamics of
quantum field theory, which moves from one to the
other, allow the comparison of quite different topo-
logical invariants: the Donaldson invariants and the
Seiberg-Witten invariants. My impression, but it is
only an impression, is that a number of the appli-
cations to topology or to algebraic geometry involve
similar devices. If so, that is perhaps one reason,
but not the sole reason, for attempting to estab-
lish analytic foundations for the procedure.

String Theory. In string theory, there are even
more ingredients to the dynamics. Grossly over-
simplifying, one can say that the particles are re-
placed by the states of a field theory on an inter-
val, thus by the modes of vibration of a string in a
space M of dimension D, at first arbitrary. This is
only the beginning! There is even at this stage a
good deal of implicit structure that reveals the
special role of D = 10 and D = 26: conformal field
theory and supersymmetry above all. Moreover,
the Feynman diagram is thickened; rather than a
graph with vertices and edges, it becomes a surface
with marked points. Finally the Lagrangian, which
could be thought of as simply a finite collection of
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numbers, one attached to each of the different
types of vertex, is now described by a minkowskian
metric of signature (1,D — 1) on the space M, so
that there appears to be an infinite number of free
parameters. It has, however, been pointed out to
me that the apparently free parameters are rather
dynamical variables. As in the general theory of rel-
ativity, this background metric tensor is to be
treated as a collection of fields, thus as a collec-
tion of dynamical variables, and, as a consequence,
it is subject to a quantization. So there are no ar-
bitrary parameters in the theory!

When discussing statistical mechanics, we em-
phasized the critical point, but the dynamical trans-
formation bears on other matters as well. It will re-
flect, in particular, the abrupt change from a gas
to a liquid at temperatures below the critical tem-
perature or the possibility of spontaneous mag-
netization: very small changes in the imposed mag-
netic field entail very large differences in the
induced magnetization, not merely in size but also
in direction. The dynamics is moving points apart
as v — 0. Analogues in field theory are multiple
vacua or, in string theory, the great variety of low-
energy (small v) limits. So the arbitrary parameters
appear to resurface!

Certainly, in string theory the analytic problems
that it is fair to regard as central mathematical, al-
though perhaps not physical, issues in statistical
mechanics recede—for the moment at least—into
the background. They are not entirely unrelated to
the problem of choosing among the vacua and
thus of constructing a single distinguished physi-
cal theory rather than a family of theories, a prob-
lem that also seems to be in abeyance at the mo-
ment. Such matters are far over my head. The
issues of most current appeal in mathematics, and
to a lesser extent in physics, are algebraic or geo-
metric, perhaps above all geometric: the transi-
tions from one family of low-energy theories to an-
other; or the possibility—another low-energy
phenomenon—that different spaces M and differ-
ent background metrics on them lead to the same
theory (mirror symmetry and other dualities).

About the Cover

This month’s cover accompanies Robert Lang-
lands’ review of the book “Euclid’s Windows”.
It is taken from the version of the first six
books of Euclid’s Elements produced in 1847
by the amateur (and, some say, crank) math-
ematician Oliver Byrne. This remarkable book
was published by the firm of William Picker-
ing and printed at the Chiswick Press; these
two companies were well known at that time
for working together to produce fine books.
The illustration shows in entirety Byrne’s
graphical proof of Proposition 32 of Book I,
which asserts that the angles in a triangle add
up to two right angles. Byrne’s Euclid is well
known to bibliophiles for its extraordinary
wood-engraved color illustrations, but per-
haps not so well known as it might be among
mathematicians. It is not always successful in
its aims of improving traditional exposition,
but the excerpt displayed here seems lucid as
well as attractive.

Little seems to be known about the exact
conditions under which the book was pro-
duced, but the amount of effort and expense
involved, presumably by both Byrne and the
publishers, suggests that in the nineteenth
century there was expected to be an audience
for Euclidean geometry quite different from
what we would now expect in our own culture.
Unfortunately, the book was not in fact a fi-
nancial success, although the reasons for this
are not clear.

Our thanks to Richard Landon, director of
the Thomas L. Fisher Rare Book Library at the
University of Toronto, for providing the image.

—BIill Casselman (covers@ams.org)
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