- Duration: 4:04
- Published: 2009-01-12
- Uploaded: 2010-12-18
- Author: djdous
these configurations will be saved for each time you visit this page using this browser
The process of precipitating snow is called snowfall. Snowfall tends to form within regions of upward motion of air around a type of low-pressure system known as an extratropical cyclone. Snow can fall poleward of their associated warm fronts and within their comma head precipitation patterns, which is called such due to its comma-like shape of the cloud and precipitation pattern around the poleward and west sides of extratropical cyclones. Where relatively warm water bodies are present, for example due to water evaporation from lakes, lake-effect snowfall becomes a concern downwind of the warm lakes within the cold cyclonic flow around the backside of extratropical cyclones. Lake-effect snowfall can be locally heavy. Thundersnow is possible within a cyclone's comma head and within lake effect precipitation bands. In mountainous areas, heavy snow is possible where upslope flow is maximized within windward sides of the terrain at elevation, if the atmosphere is cold enough.
Once on the ground, snow can be categorized as powdery when fluffy, granular when it begins the cycle of melting and refreezing, and eventually ice once it packs down, after multiple melting and refreezing cycles, into a dense mass called snow pack. When powdery, snow moves with the wind from the location where it originally landed, forming deposits called snowdrifts which may have a depth of several meters. After attaching to hillsides, blown snow can evolve into a snow slab, which is an avalanche hazard on steep slopes. The existence of a snowpack keeps temperatures colder than they would be otherwise, as the whiteness of the snow reflects most sunlight, and the absorbed heat goes into melting the snow rather than increasing its temperature. The water equivalent of snowfall is measured to monitor how much liquid is available to flood rivers from meltwater which will occur during the upcoming spring. Snow cover can protect crops from extreme cold. If snowfall stays on the ground for a series of years uninterrupted, the snowpack develops into a mass of ice called glacier. Fresh snow absorbs sound, lowering ambient noise over a landscape because the trapped air between snowflakes attenuates vibration. These acoustic qualities quickly minimize, and reverse once a layer of freezing rain falls on top of snow cover. Walking across snowfall produces a squeaking sound at low temperatures.
The energy balance of the snowpack itself is dictated by several heat exchange processes. The snowpack absorbs solar shortwave radiation that is partially blocked by cloud cover and reflected by snow surface. A long-wave heat exchange takes place between the snowpack and its surrounding environment that includes overlying air mass, tree cover and clouds. Heat exchange takes place by convection between the snowpack and the overlaying air mass, and it is governed by the temperature gradient and wind speed. Moisture exchange between the snowpack and the overlying air mass is accompanied with latent heat transfer that is influenced by vapor pressure gradient and air wind. Rain on snow can add significant amounts of thermal energy to the snowpack. A generally insignificant heat exchange takes place by conduction between the snowpack and the ground. The small temperature change from before to after a snowfall is a result of the heat transfer between the snowpack and the air.
The term snow storm can describe a heavy snowfall while a blizzard involves snow and wind, obscuring visibility. Snow shower is a term for an intermittent snowfall, while flurry is used for very light, brief snowfalls. Snow can fall more than a meter at a time during a single storm in flat areas, and meters at a time in rugged terrain, such as mountains. When snow falls in significant quantities, travel by foot, car, airplane and other means becomes highly restricted, but other methods of mobility become possible: the use of snowmobiles, snowshoes and skis. When heavy snow occurs early in the fall, significant damage occurs to trees still in leaf. Areas with significant snow each year can store the winter snow within an ice house, which can be used to cool structures during the following summer. A variation on snow has been observed on Venus, though composed of metallic compounds and occurring at a substantially higher temperature.
Within the cold sector, poleward and west of the cyclone center, small scale or mesoscale bands of heavy snow can occur within a cyclone's comma head pattern. The cyclone's comma head pattern is a comma-shaped area of clouds and precipitation found around mature extratropical cyclones. These snow bands typically have a width of to . These bands in the comma head are associated with areas of frontogenesis, or zones of strengthening temperature contrast.
Southwest of extratropical cyclones, curved cyclonic flow bringing cold air across the relatively warm water bodies can lead to narrow lake-effect snow bands. Those bands bring strong localized snowfall which can be understood as follows: Large water bodies such as lakes efficiently store heat that results in significant temperature differences (larger than 13 °C or 23 °F) between the water surface and the air above. Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds (see satellite picture) which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both the water temperature and the large-scale environment. The stronger the temperature decrease with height, the deeper the clouds get, and the greater the precipitation rate becomes.
In mountainous areas, heavy snowfall accumulates when air is forced to ascend the mountains and squeeze out precipitation along their windward slopes, which in cold conditions, falls in the form of snow. Because of the ruggedness of terrain, forecasting the location of heavy snowfall remains a significant challenge.
Once a droplet has frozen, it grows in the supersaturated environment, which is one where air is saturated with respect to ice when the temperature is below the freezing point. The droplet then grows by diffusion of water molecules in the air (vapor) onto the ice crystal surface where they are collected. Because water droplets are so much more numerous than the ice crystals due to their sheer abundance, the crystals are able to grow to hundreds of micrometers or millimeters in size at the expense of the water droplets by a process known as the Wegner-Bergeron-Findeison process. The corresponding depletion of water vapor causes the ice crystals grow at the droplets' expense. These large crystals are an efficient source of precipitation, since they fall through the atmosphere due to their mass, and may collide and stick together in clusters, or aggregates. These aggregates are snowflakes, and are usually the type of ice particle that falls to the ground. Guinness World Records list the world’s largest snowflakes as those of January 1887 at Fort Keogh, Montana; allegedly one measured wide. Although the ice is clear, scattering of light by the crystal facets and hollows/imperfections mean that the crystals often appear white in color due to diffuse reflection of the whole spectrum of light by the small ice particles.
The shape of the snowflake is determined broadly by the temperature and humidity at which it is formed. If a crystal has started forming in a column growth regime, at around , and then falls into the warmer plate-like regime, then plate or dendritic crystals sprout at the end of the column, producing so called "capped columns." Initial attempts to find identical snowflakes by photographing thousands their images under a microscope from 1885 onward by Wilson Alwyn Bentley found the wide variety of snowflakes we know about today. It is more likely that two snowflakes could become virtually identical if their environments were similar enough. Matching snow crystals were discovered in Wisconsin in 1988. The crystals were not flakes in the usual sense but rather hollow hexagonal prisms.
Snowfall's intensity is determined by visibility. When the visibility is over , snow is considered light. Moderate snow describes snowfall with visibility restrictions between 0.5 and 1 km. Heavy snowfall describes conditions when visibility is less than 0.5 km. Steady snows of significant intensity are often referred to as "snowstorms". When snow is of variable intensity and short duration, it is described as a "snow shower". The term snow flurry is used to describe the lightest form of a snow shower.
A blizzard is a weather condition involving snow which has varying definitions in different parts of the world. In the United States, a blizzard is occurring when two conditions are met for a period of three hours or more: A sustained wind or frequent gusts to , and sufficient snow in the air to reduce visibility to less than . In Canada and the United Kingdom, the criteria are similar. While heavy snowfall often occurs during blizzard conditions, falling snow is not a requirement, as blowing snow can create a ground blizzard.
Once the snow is on the ground, it will settle under its own weight (largely due to differential evaporation) until its density is approximately 30% of water. Increases in density above this initial compression occur primarily by melting and refreezing, caused by temperatures above freezing or by direct solar radiation. In colder climates, snow lies on the ground all winter. By late spring, snow densities typically reach a maximum of 50% of water. When the snow does not all melt in the summer it evolves into firn, where individual granules become more spherical in nature, evolving into a glacier as the ice flows downhill.
Another type of gauge used to measure the liquid equivalent of snowfall is the weighing precipitation gauge. The wedge and tipping bucket gauges will have problems with snow measurement. Attempts to compensate for snow/ice by warming the tipping bucket meet with limited success, since snow may sublimate if the gauge is kept much above the freezing temperature. Weighing gauges with antifreeze should do fine with snow, but again, the funnel needs to be removed before the event begins. At some automatic weather stations an ultrasonic snow depth sensor may be used to augment the precipitation gauge.
Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. Measurements are made manually at marked locations known as snow courses, and remotely using special scales called snow pillows. Snow stakes and simple rulers can be used to determine the depth of the snow pack, though they will not evaluate either its density or liquid equivalent.
When a snow measurement is made, various networks exist across the United States and elsewhere where rainfall measurements can be submitted through the Internet, such as CoCoRAHS or GLOBE. If a network is not available in the area where one lives, the nearest local weather office will likely be interested in the measurement.
The world record for the highest seasonal total snowfall was measured in the United States at Mount Baker Ski Area, outside of the town Bellingham, Washington during the 1998–1999 season. Mount Baker received of snow, thus surpassing the previous record holder, Mount Rainier, Washington, which during the 1971–1972 season received of snow.
The combined effects can lead to a "snow day" on which gatherings such as school, work, or church are officially canceled. In areas that normally have very little or no snow, a snow day may occur when there is only light accumulation or even the threat of snowfall, since those areas are unprepared to handle any amount of snow. In some areas, such as some states in the United States, schools are given a yearly quota of snow days (or "calamity days"). Once the quota is exceeded, the snow days must be made up. In other states, all snow days must be made up. For example, schools may extend the remaining school days later into the afternoon, shorten spring break, or delay the start of summer vacation.
Accumulated snow is removed to make travel easier and safer, and to decrease the long-term impact of a heavy snowfall. This process utilizes shovels, snowplows and is often assisted by sprinkling salt or other chloride-based chemicals, which reduce the melting temperature of snow. In areas with abundant snowfall, such as Northern Japan, people harvest snow and store it surrounded by insulation in ice houses. This allowed the ice to be used in summer for refrigeration or medical uses, which is one method of conserving electrical usage. causeed by the 2009 Blizzard]]
One of the recognizable recreational uses of snow is in building snowmen. A snowman is created by making a man shaped figure out of snow - often using a large, shaped snowball for the body and a smaller snowball for the head which is often decorated with simple household items - traditionally including a carrot for a nose, and coal for eyes, nose and mouth; occasionally including old clothes such as a top hat or scarf.
Snow can be used to make snow cones, also known as snowballs, which are usually eaten in the summer months. Flat areas of snow can be used to make snow angels, a popular past-time for children.
Snow can be used to alter the format of outdoor games such as Capture the flag, or for snowball fights. The world's biggest snowcastle, the SnowCastle of Kemi, is built in Kemi, Finland every winter. Since 1928 Michigan Technological University in Houghton, Michigan has held an annual Winter Carnival in mid-February, during which a large Snow Sculpture Contest takes place between various clubs, fraternities, and organizations in the community and the university. Each year there is a central theme, and prizes are awarded based on creativity. Snowball softball tournaments are held in snowy areas, usually using a bright orange softball for visibility, and burlap sacks filled with snow for the bases.
While there is little or no water on Venus, there is a phenomenon which is quite similar to snow. The Magellan probe imaged a highly reflective substance at the tops of Venus's highest mountain peaks which bore a strong resemblance to terrestrial snow. This substance arguably formed from a similar process to snow, albeit at a far higher temperature. Too volatile to condense on the surface, it rose in gas form to cooler higher elevations, where it then fell as precipitation. The identity of this substance is not known with certainty, but speculation has ranged from elemental tellurium to lead sulfide (galena).
Category:Snow Category:Precipitation Category:Forms of water
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.