- Duration: 1:50
- Published: 2007-10-05
- Uploaded: 2010-11-21
- Author: EternalMateWebsite
Plants are living organisms belonging to the kingdom Plantae. They include familiar organisms such as trees, herbs, bushes, grasses, vines, ferns, mosses, and green algae. The scientific study of plants, known as botany, has identified about 350,000 extant species of plants, defined as seed plants, bryophytes, ferns and fern allies. As of 2004, some 287,655 species had been identified, of which 258,650 are flowering and 18,000 bryophytes (see table below). Green plants, sometimes called Viridiplantae, obtain most of their energy from sunlight via a process called photosynthesis.
Outside of formal scientific contexts, the term "plant" implies an association with certain traits, such as multicellularity, cellulose, and photosynthesis. Many of the classification controversies involve organisms that are rarely encountered and are of minimal apparent economic significance, but are crucial in developing an understanding of the evolution of modern flora.
Most algae are no longer classified within the Kingdom Plantae. The sister group to the combined embryophytes and charophytes is the other group of green algae, Chlorophyta, and this more inclusive group is collectively referred to as the green plants or Viridiplantae. The Kingdom Plantae is often taken to mean this monophyletic grouping. With a few exceptions among the green algae, all such forms have cell walls containing cellulose, have chloroplasts containing chlorophylls a and b, and store food in the form of starch. They undergo closed mitosis without centrioles, and typically have mitochondria with flat cristae.
The chloroplasts of green plants are surrounded by two membranes, suggesting they originated directly from endosymbiotic cyanobacteria. The same is true of two additional groups of algae: the Rhodophyta (red algae) and Glaucophyta. All three groups together are generally believed to have a common origin, and so are classified together in the taxon Archaeplastida. In contrast, most other algae (e.g. heterokonts, haptophytes, dinoflagellates, and euglenids) have chloroplasts with three or four surrounding membranes. They are not close relatives of the green plants, presumably acquiring chloroplasts separately from ingested or symbiotic green and red algae.
The classification of fungi has been controversial until quite recently in the history of biology. Linnaeus' original classification placed the fungi within the Plantae, since they were unquestionably not animalian; this being the only other alternative. With later developments in microbiology, in the 19th century Ernst Haeckel felt that a third kingdom was required to classify newly discovered micro-organisms. The introduction of the new kingdom Protista as an alternative to Animalia, led to uncertainty as to whether fungi truly were best placed in the Plantae or whether they ought to be reclassified as protists. Haeckel himself found it difficult to decide and it was not until 1969 that a solution was found whereby Robert Whittaker proposed the creation of the kingdom Fungi. Molecular evidence has since shown that the concestor (last common ancestor) of the Fungi was probably more similar to that of the Animalia than of any other kingdom, including the Plantae.
Whittaker's original reclassification was based on the fundamental difference in nutrition between the Fungi and the Plantae. Unlike plants, which are generally autotrophic multicellular phototrophs which gain carbon through photosynthesis, fungi are generally heterotrophic uni- or multi-cellular saprotrophs, obtaining carbon by breaking down and absorbing surrounding materials. In addition, the substructure of multicellular fungi takes the form of many chitinous microscopic strands called hyphae, which may be further subdivided into cells or may form a syncytium containing many eukaryotic nuclei. Fruiting bodies, of which mushrooms are most familiar example, are the reproductive structures of fungi.
{| class="wikitable" border="1" style="float:left; margin-left:1em;" |+Diversity of living plant divisions |- ! style="background:lightgreen" align="center" | Informal group ! style="background:lightgreen" align="center" | Division name ! style="background:lightgreen" align="center" | Common name ! style="background:lightgreen" align="center" | No. of living species |- | rowspan=2 style="background:lightgray" valign="top" | Green algae | Chlorophyta | align="left" | green algae (chlorophytes) | align="right" | 3,800 |- | Charophyta | align="left" | green algae (desmids & charophytes) | align="right" | 4,000 - 6,000 |- | rowspan=3 style="background:lightgray" valign="top" | Bryophytes | Marchantiophyta | align="left" | liverworts | align="right" | 6,000 - 8,000 |- | Anthocerotophyta | align="left" | hornworts | align="right" | 100 - 200 |- | Bryophyta | align="left" | mosses | align="right" | 12,000 |- | rowspan=2 style="background:lightgray" valign="top" | Pteridophytes | Lycopodiophyta | align="left" | club mosses | align="right" | 1,200 |- | Pteridophyta | align="left" | ferns, whisk ferns & horsetails | align="right" | 11,000 |- | Ginkgophyta | align="left" | ginkgo | align="right" | 1 |- | Pinophyta | align="left" | conifers | align="right" | 630 |} The naming of plants is governed by the International Code of Botanical Nomenclature and International Code of Nomenclature for Cultivated Plants (see cultivated plant taxonomy).
|label2=Pteridophyta |2= }} }} |label2=Lycophytina |2= }} |2=Rhyniophyta †}} }} |2=Aglaophyton †|3=Horneophytopsida †}} }} |2=Bryophyta (mosses) |3=Anthocerotophyta (hornworts) }} }} |2=Marchantiophyta (liverworts) }} }} |2=Charophyta }} }} |3= |2=Ulvophyceae }} }} }} }}
All of these plants have eukaryotic cells with cell walls composed of cellulose, and most obtain their energy through photosynthesis, using light and carbon dioxide to synthesize food. About three hundred plant species do not photosynthesize but are parasites on other species of photosynthetic plants. Plants are distinguished from green algae, which represent a mode of photosynthetic life similar to the kind modern plants are believed to have evolved from, by having specialized reproductive organs protected by non-reproductive tissues.
Bryophytes first appeared during the early Paleozoic. They can only survive where moisture is available for significant periods, although some species are desiccation tolerant. Most species of bryophyte remain small throughout their life-cycle. This involves an alternation between two generations: a haploid stage, called the gametophyte, and a diploid stage, called the sporophyte. The sporophyte is short-lived and remains dependent on its parent gametophyte.
Vascular plants first appeared during the Silurian period, and by the Devonian had diversified and spread into many different land environments. They have a number of adaptations that allowed them to overcome the limitations of the bryophytes. These include a cuticle resistant to desiccation, and vascular tissues which transport water throughout the organism. In most the sporophyte acts as a separate individual, while the gametophyte remains small.
The first primitive seed plants, Pteridosperms (seed ferns) and Cordaites, both groups now extinct, appeared in the late Devonian and diversified through the Carboniferous, with further evolution through the Permian and Triassic periods. In these the gametophyte stage is completely reduced, and the sporophyte begins life inside an enclosure called a seed, which develops while on the parent plant, and with fertilisation by means of pollen grains. Whereas other vascular plants, such as ferns, reproduce by means of spores and so need moisture to develop, some seed plants can survive and reproduce in extremely arid conditions.
Early seed plants are referred to as gymnosperms (naked seeds), as the seed embryo is not enclosed in a protective structure at pollination, with the pollen landing directly on the embryo. Four surviving groups remain widespread now, particularly the conifers, which are dominant trees in several biomes. The angiosperms, comprising the flowering plants, were the last major group of plants to appear, emerging from within the gymnosperms during the Jurassic and diversifying rapidly during the Cretaceous. These differ in that the seed embryo (angiosperm) is enclosed, so the pollen has to grow a tube to penetrate the protective seed coat; they are the predominant group of flora in most biomes today.
Plant fossils include roots, wood, leaves, seeds, fruit, pollen, spores, phytoliths, and amber (the fossilized resin produced by some plants). Fossil land plants are recorded in terrestrial, lacustrine, fluvial and nearshore marine sediments. Pollen, spores and algae (dinoflagellates and acritarchs) are used for dating sedimentary rock sequences. The remains of fossil plants are not as common as fossil animals, although plant fossils are locally abundant in many regions worldwide.
The earliest fossils clearly assignable to Kingdom Plantae are fossil green algae from the Cambrian. These fossils resemble calcified multicellular members of the Dasycladales. Earlier Precambrian fossils are known which resemble single-cell green algae, but definitive identity with that group of algae is uncertain.
The oldest known fossils of embryophytes date from the Ordovician, though such fossils are fragmentary. By the Silurian, fossils of whole plants are preserved, including the lycophyte Baragwanathia longifolia. From the Devonian, detailed fossils of rhyniophytes have been found. Early fossils of these ancient plants show the individual cells within the plant tissue. The Devonian period also saw the evolution of what many believe to be the first modern tree, Archaeopteris. This fern-like tree combined a woody trunk with the fronds of a fern, but produced no seeds.
The Coal measures are a major source of Paleozoic plant fossils, with many groups of plants in existence at this time. The spoil heaps of coal mines are the best places to collect; coal itself is the remains of fossilised plants, though structural detail of the plant fossils is rarely visible in coal. In the Fossil Forest at Victoria Park in Glasgow, Scotland, the stumps of Lepidodendron trees are found in their original growth positions.
The fossilized remains of conifer and angiosperm roots, stems and branches may be locally abundant in lake and inshore sedimentary rocks from the Mesozoic and Cenozoic eras. Sequoia and its allies, magnolia, oak, and palms are often found.
Petrified wood is common in some parts of the world, and is most frequently found in arid or desert areas where it is more readily exposed by erosion. Petrified wood is often heavily silicified (the organic material replaced by silicon dioxide), and the impregnated tissue is often preserved in fine detail. Such specimens may be cut and polished using lapidary equipment. Fossil forests of petrified wood have been found in all continents.
Fossils of seed ferns such as Glossopteris are widely distributed throughout several continents of the Southern Hemisphere, a fact that gave support to Alfred Wegener's early ideas regarding Continental drift theory.
Plants usually rely on soil primarily for support and water (in quantitative terms), but also obtain compounds of nitrogen, phosphorus, and other crucial elemental nutrients. Epiphytic and lithophytic plants often depend on rainwater or other sources for nutrients and carnivorous plants supplement their nutrient requirements with insect prey that they capture. For the majority of plants to grow successfully they also require oxygen in the atmosphere and around their roots for respiration. However, some plants grow as submerged aquatics, using oxygen dissolved in the surrounding water, and a few specialized vascular plants, such as mangroves, can grow with their roots in anoxic conditions. is usually the primary site of photosynthesis in plants.]]
Growth is also determined by environmental factors, such as temperature, available water, available light, and available nutrients in the soil. Any change in the availability of these external conditions will be reflected in the plants growth.
Biotic factors are also capable of affecting plant growth. Plants compete with other plants for space, water, light and nutrients. Plants can be so crowded that no single individual produces normal growth. Optimal plant growth can be hampered by grazing animals, suboptimal soil composition, lack of mycorrhizal fungi, and attacks by insects or plant diseases, including those caused by bacteria, fungi, viruses, and nematodes.
Approximately 630 plants are carnivorous, such as the Venus Flytrap (Dionaea muscipula) and sundew (Drosera species). They trap small animals and digest them to obtain mineral nutrients, especially nitrogen and phosphorus.
The study of plant uses by people is termed economic botany or ethnobotany; some consider economic botany to focus on modern cultivated plants, while ethnobotany focuses on indigenous plants cultivated and used by native peoples. Human cultivation of plants is part of agriculture, which is the basis of human civilization. Plant agriculture is subdivided into agronomy, horticulture and forestry.
Plants may cause harm to people and animals. Plants that produce windblown pollen invoke allergic reactions in people who suffer from hay fever. A wide variety of plants are poisonous to people and/or animals. Several plants cause skin irritations when touched, such as poison ivy. Certain plants contain psychotropic chemicals, which are extracted and ingested or smoked, including tobacco, cannabis (marijuana), cocaine and opium. Smoking causes damage to health or even death, while some drugs may also be harmful or fatal to people . Both illegal and legal drugs derived from plants may have negative effects on the economy, affecting worker productivity and law enforcement costs. Some plants cause allergic reactions in people and animals when ingested, while other plants cause food intolerances that negatively affect health.
;Species estimates and counts:
;Botanical and vegetation databases
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.