- Duration: 4:10
- Published: 2007-10-21
- Uploaded: 2010-11-21
- Author: joeyregan
Granite () is a common and widely occurring type of intrusive, felsic, igneous rock. Granites usually have a medium to coarse grained texture. Occasionally some individual crystals (phenocrysts) are larger than the groundmass in which case the texture is known as porphyritic. A granitic rock with a porphyritic texture is sometimes known as a porphyry. Granites can be pink to gray in color, depending on their chemistry and mineralogy. By definition, granite has a color index (i.e. the percentage of the rock made up of dark minerals) of less than 25%. Outcrops of granite tend to form tors, and rounded massifs. Granites sometimes occur in circular depressions surrounded by a range of hills, formed by the metamorphic aureole or hornfels. Granite is usually found in the continental plates of the Earths Crust.
Granite is nearly always massive (lacking internal structures), hard and tough, and therefore it has gained widespread use as a construction stone. The average density of granite is located between 2.65 and 2.75 g/cm3, its compressive strength usually lies above 200 MPa and its viscosity at standard temperature and pressure is 3-6 • 1019 Pa·s.
The word granite comes from the Latin granum, a grain, in reference to the coarse-grained structure of such a crystalline rock.
Granitoid is used as a descriptive field term for general, light colored, coarse-grained igneous rocks for which a more specific name requires petrographic examination.
Granite is classified according to the QAPF diagram for coarse grained plutonic rocks and is named according to the percentage of quartz, alkali feldspar (orthoclase, sanidine, or microcline) and plagioclase feldspar on the A-Q-P half of the diagram. True granite according to modern petrologic convention contains both plagioclase and alkali feldspars. When a granitoid is devoid or nearly devoid of plagioclase the rock is referred to as alkali granite. When a granitoid contains <10% orthoclase it is called tonalite; pyroxene and amphibole are common in tonalite. A granite containing both muscovite and biotite micas is called a binary or two-mica granite. Two-mica granites are typically high in potassium and low in plagioclase, and are usually S-type granites or A-type granites. The volcanic equivalent of plutonic granite is rhyolite. Granite has poor primary permeability but strong secondary permeability.
Granite has been intruded into the crust of the Earth during all geologic periods, although much of it is of Precambrian age. Granitic rock is widely distributed throughout the continental crust of the Earth and is the most abundant basement rock that underlies the relatively thin sedimentary veneer of the continents.
This process operates regardless of the origin of the parental magma to the granite, and regardless of its chemistry. However, the composition and origin of the magma which differentiates into granite, leaves certain geochemical and mineral evidence as to what the granite's parental rock was. The final mineralogy, texture and chemical composition of a granite is often distinctive as to its origin. For instance, a granite which is formed from melted sediments may have more alkali feldspar, whereas a granite derived from melted basalt may be richer in plagioclase feldspar. It is on this basis that the modern "alphabet" classification schemes are based.
M-type or mantle derived granite was proposed later, to cover those granites which were clearly sourced from crystallized mafic magmas, generally sourced from the mantle. These are rare, because it is difficult to turn basalt into granite via fractional crystallisation.
A-type or anorogenic granites are formed above volcanic "hot spot" activity and have peculiar mineralogy and geochemistry. These granites are formed by melting of the lower crust under conditions that are usually extremely dry. The rhyolites of the Yellowstone caldera are examples of volcanic equivalents of A-type granite.
The ascent and emplacement of large volumes of granite within the upper continental crust is a source of much debate amongst geologists. There is a lack of field evidence for any proposed mechanisms, so hypotheses are predominantly based upon experimental data. There are two major hypotheses for the ascent of magma through the crust:
Nowadays fracture propagation is the mechanism preferred by many geologists as it largely eliminates the major problems of moving a huge mass of magma through cold brittle crust. Magma rises instead in small channels along self-propagating dykes which form along new or pre-existing fault systems and networks of active shear zones (Clemens, 1998). As these narrow conduits open, the first magma to enter solidifies and provides a form of insulation for later magma.
Granitic magma must make room for itself or be intruded into other rocks in order to form an intrusion, and several mechanisms have been proposed to explain how large batholiths have been emplaced:
Most geologists today accept that a combination of these phenomena can be used to explain granite intrusions, and that not all granites can be explained entirely by one or another mechanism.
Some granites contain around 10 to 20 parts per million of uranium. By contrast, more mafic rocks such as tonalite, gabbro or diorite have 1 to 5 ppm uranium, and limestones and sedimentary rocks usually have equally low amounts. Many large granite plutons are the sources for palaeochannel-hosted or roll front uranium ore deposits, where the uranium washes into the sediments from the granite uplands and associated, often highly radioactive, pegmatites. Granite could be considered a potential natural radiological hazard as, for instance, villages located over granite may be susceptible to higher doses of radiation than other communities. Cellars and basements sunk into soils over granite can become a trap for radon gas, which is formed by the decay of uranium. Radon can also be introduced into houses by wells drilled into granite. Radon gas poses significant health concerns, and is the #2 cause of lung cancer in the US behind smoking. that approximately 5% of all granites will be of concern, with the caveat that only a tiny percentage of the tens of thousands of granite slabs have been tested. Various resources from national geological survey organizations are accessible online to assist in assessing the risk factors in granite country and design rules relating, in particular, to preventing accumulation of radon gas in enclosed basements and dwellings.
A study of granite countertops was done (initiated and paid for by the Marble Institute of America) in November 2008 by National Health and Engineering Inc of USA, and found that all of the 39 full size granite slabs that were measured for the study showed radiation levels well below the European Union safety standards (section 4.1.1.1 of the National Health and Engineering study) and radon emission levels well below the average outdoor radon concentrations in the US.
Other researchers and organizations do not agree with the Marble Institute's stated position on granite safety, including AARST (American Association of Radon Scientists and Technicians) and the CRCPD (Conference of Radiation Control Program Directors, an organization of state radiation protection officials). Both organizations have committees currently setting maximum allowed levels of radiation/radon as well as protocols for measuring radiation/radon from granite countertops. The European Union regulations will likely serve as the basis for new EPA based regulations for granite building materials in the U.S.
Many large Hindu temples in southern India, particularly those built by the 11th century king Rajaraja Chola I, were made of granite. There is a large amount of granite in these structures. They are comparable to the Great Pyramid of Giza.
In some areas granite is used for gravestones and memorials. Granite is a hard stone and requires skill to carve by hand. Modern methods of carving include using computer-controlled rotary bits and sandblasting over a rubber stencil. Leaving the letters, numbers and emblems exposed on the stone, the blaster can create virtually any kind of artwork or epitaph.
Granite rock climbing is so popular that many of the artificial rock climbing walls found in gyms and theme parks are made to look and feel like granite.
Category:Granitic rocks Category:Felsic rocks Category:Symbols of Wisconsin Category:Plutonic rocks Category:National symbols of Finland
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.