
Hard Sync Without Aliasing

Eli Brandt
School of Computer Science, Carnegie Mellon University

email: eli@cs.cmu.edu

Abstract

“Hard sync”, a form of oscillator synchronization, is a tech-
nique which synthesizes a characteristic rich family of sounds.
We describe how to perform it by integrating a bandlimited
impulse pattern, avoiding the unpleasant aliasing heard in a
naive digital rendering. The synthesis is refined by using a
minimum-phase bandlimited step function, which eliminates
lookahead and integration. This idea also gives simple band-
limited syntheses of other discontinuous waveforms.

1 What is hard sync?

Oscillator synchronization involves two oscillators, a mas-
ter and a slave, with frequenciesf0 andf1. We will consider
sawtooth oscillators. Inhard sync, whenever the master cy-
cles around, it resets the phase of the slave oscillator. The
fundamental frequency of the slave’s output, is thus equal to
f0. Figure 1 shows this for a master wavelength of 10 and a
slave wavelength of 3. We treat the signal as unipolar, 0 to 1,
for simplicity.

0 5 10 15 20
0

1

Figure 1: two cycles of hard-sync signaly(t)

The interesting regime is wheref1 is higher thanf0, but
not (for very long) a multiple of it. Generally, the spec-
trum has formants at multiples off1—the technique is related
to VOSIM (Kaegi and Tempelaars 1978) and FOF (Rodet
1984)—but the sound’s richness comes from the complex evo-
lution of harmonic amplitudes asf1 is swept.

Varieties other than hard sync, and oscillators other than
sawtooth, will be mentioned below.

2 Digital aliasing

The naive way to synthesize hard sync digitally is to run
a simple digital oscillator atf1, and reset its phase according

to f0. This is equivalent to sampling from the ideal hard-
sync signaly(t). That signal, however, is not bandlimited,
and sampling it directly means aliasing. Just as with saw-
tooth or other simple oscillators, this is heard as roughness,
sub-fundamental tones, and inharmonicity. Figure 2 shows
the aliased spectrum that results, compared with the correct
spectrum (from a waveform calculated as in Section 4.1), for
f0 = 3/128 andf1 = 8/128.

0 0.1 0.2 0.3 0.4 0.5
−100

−80

−60

−40

−20

0

frequency (relative)

po
w

er
 (

dB
)

correct
naive

Figure 2: Spectra of correct and of naive hard sync

3 Hard sync in terms of impulse trains

We construct our hard-sync signal from impulse trains
(whose bandlimited synthesis is a solved problem), follow-
ing Stilson and Smith (1996). Later, in Section 6.1, we will
construct hard sync from step functions.

The derivative ofy(t) in Figure 1 is the impulse pattern
y′(t) in Figure 3, with an appropriate DC offset. We treat
y(t) as unipolar, 0 to 1, for simplicity.

0 5 10 15 20
−0.33

0
0.33
0.67

1

Figure 3: two cycles of hard-sync impulse patterny′(t)

In general, for frequenciesf0 and f1 (normalized 0–1
from DC tofs),

y′(t) =

(
n01∑
i=1

p(t− iT1)

)
+ r01p(t)− d

where T0 = 1/f0

T1 = 1/f1

n01 = bT0/T1c
r01 = T0/T1 − n01

p(t) =
∞∑

i=−∞
δ(t− i/f0)

δ(t) is the Dirac delta function

and d = f1 is a DC offset correction.

To get a hard-sync signalyb(t) that is bandlimited tofb
(fb ≤ fNyq = 1/2), we integrate the bandlimited derivative
y′b(t).

y′b(t) =

(
n01∑
i=1

pb(t− iT1)

)
+ r01pb(t)− d

where pb(t) =
∞∑

i=−∞
sinc(t− i/f0)

sincx = (sinπx)/πx
and d = f1 is a DC offset correction.

So we have reduced the problem to the synthesis ofpb(t),
a bandlimited impulse train.

4 Synthesizing impulse trains

This section summarizes the work of Stilson and Smith
(1996), and applies it to the problem of hard-sync synthesis.

4.1 Exact syntheses

The signalpb(t) can be calculated exactly. Additive syn-
thesis from cosines is straighforward, and will be efficient for
sufficiently highf0. For lowerf0, a better exact synthesis is

pb(t) =
M

P
sincM

M

P
t

where P = 1/f1

M = bbP c

and sincM t =
sinπx

M sin(πx/M)

Some care must be taken here with the0/0 case.

4.2 Windowed-sinc approximation

A bandlimited impulse is a sinc function, time-scaled so
as to have one zero-crossing per sample period. (Bandlimit-
ing to belowfNyq means dilation, and concomitant scaling-
down.) Stilson and Smith truncate and apply a window func-
tion to this signal, store it in a table, and use it to gener-
ate bandlimited impulse trains (BLITs): subsample the table
whenever an impulse is desired. We reapply the technique,
bypassing the BLITpb(t) and generating our impulse pattern
y′(t) directly.

The windowed-sinc table is oversampled by a factor of
Ω. Generate each impulse by subsampling the table—by a
factor ofΩ, if the bandlimit isfNyq; that is, stepping through
it Ω places at a time. Linear interpolation is adequate ifΩ is
large enough. If a pulse is to be centered between samples,
shifted past the last sample byα, then start stepping from
placeΩ(1− α).

Master and slave phases are updated as in the straight-
forward (aliased) version. The difference is in the output,
which is generated by placing an impulse center wherever the
slave phase resets. The placement must be predicted, looking
ahead half of an impulse length, which is troublesome when
frequencies are varying. One can either make control inputs
take effect with a delay, or assume they don’t vary too quickly
and predict as if they were constant over the span of the pre-
diction.

There are several parameters in building the windowed-
sinc table: the oversampling factorΩ, the number of zero
crossingsNz, and the window function.Ω should be large
enough that the linear interpolation doesn’t cause noise. The
window function determines the level of the stopband—the
level of aliasing—and also the shape of the transition from
passband to stopband. The value ofNz then determines the
width of the transition, andfb its position, so that enough high
frequencies are passed, but aliases are blocked.

Figure 4 reprises Figure 2, but uses the windowed-sinc
technique, withfb = 1, Ω = 64, Nz = 16, and a Blackman
window.

0 0.1 0.2 0.3 0.4 0.5
−100

−80

−60

−40

−20

0

frequency (relative)

po
w

er
 (

dB
)

correct
approx

Figure 4: Spectra of correct and of windowed-sinc hard sync

5 Performing the integration

This would be a good place to explain the DC offset cor-
rectiond. They′ signals need their DC component to be zero.
Each impulse has a sum of 1, so the appropriate downward
shift is the number of full-height impulses plus the height of
the single scaled-down one. This turns out, after some can-
cellation, to bef1:

f0(n01 + r01) =f0(n01 + T0/T1 − n01)
=f0(T0/T1)
=f0(f1/f0)
=f1

In fact, the windowed-sinc approximation generates an
impulse whose sum is only approximately equal to 1. The
deviation seems impossible to predict exactly (a table could
approximate it), soy′b has a slight offset. Nor is it obvious
how to get the DC offset correction exactly right whilef1 is
changing. In any case, there is roundoff error. From these
sources,y′b has an offset which is variable, but on the rough
order of10−6, or−120 dB.

As a consequence of all this, the integrator has to be leaky,
as a perfect integrator has infinite DC gain. A first-order leaky
integrator has finite DC gain, and if it is tuned to pass audio
(attenuating 20 Hz by 0.5 dB), that DC gain is substantial,
60 dB. This brings they′b offset up to a persistent−60 dB,
enough to be bothersome.

A second-order leaky integrator has a DC gain of zero.
It can be constructed by cascading a leaky integrator with a
one-pole highpass:

H(z) =
π

1− cz−1

k(1− z−1)
1− cz−1

where k = (1 + c)/2
and c = 0.9992 for −0.5 dB at 20 Hz (fs = 44.1 kHz)

The initial conditions for the integration are

yb(0) = 1− r01

6 A more elegant synthesis

So far we have paralleled Stilson and Smith, developing
syntheses for hard sync homologous to theirs for sawtooth.
Now, the windowed-sinc approximation can be refined in two
ways: rendering the integration step unnecessary, and elimi-
nating the lookahead to the impulse center. These refinements
translate back to the synthesis of bandlimited sawtooth and
other waveforms.

6.1 Hard sync in terms of steps

The integration is complicated by the DC offset iny′b,
which requires us to tune parameters on the integrator, and
which still leaks through transiently, as at startup. Why not
eliminate the entire integration stage? Simply pre-integrate
the windowed sinc to get what we might call a BLEP (aband-
limited step function), whose final value we can ensure is 1.
Now instead of placing impulses, place BLEPs.

Integrating by taking a running sum is not strictly correct,
but the deviation is at high frequencies, falling to 0.25 dB at
-2 octaves. The table being integrated here is typically over-
sampled several octaves more than that.

6.2 Minimum-phase impulses

Also, the windowed-sinc approximation is complicated
by having to look ahead to place impulse centers. This look-
ahead comes about because the windowed sinc is symmetric,
placing the bulk of its energy in the middle. This problem
goes away if we consider the windowed sinc as an FIR filter,
construct a minimum-phase filter with the same amplitude re-
sponse, and use that instead.

Z-domain (polynomial) methods have some difficulty cal-
culating a minimum-phase filter as long as this one, but work-
ing in the cepstral domain (Oppenheim and Schafer 1975)
is robust and fast. The MATLAB function rceps (The Math-
Works 2001) performs the desired operation, which in essence
is to zero the upper half of the cepstrum.

Figure 5 shows the original linear-phase sinc pulse (with
parameters as in Figure 4), and Figure 6 shows the minimum-
phase pulse.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

Figure 5: windowed-sinc pulse.

0 0.5 1 1.5 2
−0.5

0

0.5

1

Figure 6: minimum-phase windowed-sinc pulse.

6.3 Minimum-phase steps

These improvements can be combined, for no lookahead
and no integration stage, by integrating the minimum-phase
bandlimited impulse to form a minimum-phase bandlimited
step (a MinBLEP), shown in Figure 7.

0 0.5 1 1.5 2
0

0.5

1

1.5

Figure 7: minimum-phase bandlimited step.

The MinBLEP solves directly the quite general problem
of how to introduce a bandlimited discontinuity into a wave-
form: don’t just jump to the new level, mix in a MinBLEP
instead.

This is sufficient only if the first and higher derivatives
are essentially continuous across the point of discontinuity, a
property we nameC1 continuity. Square wave, sawtooth, and
hard-synced square and sawtooth have this property, so their
aliased digital syntheses can be corrected simply by replacing
steps with MinBLEPs.

Hard-synced triangle, on the other hand, does not haveC1
continuity, but does haveC2. It could be synthesized from
MinBLEPs and minimum-phase bandlimited ramps (which
we will refrain from naming).

Hard-synced sine, finally, has noCn continuity. This ap-
proach cannot synthesize it exactly, but only approximate it;
aliasing will fall off by 6dB/oct per derivative whose discon-
tinuity is made bandlimited.

7 Efficiency

The per-sample cost of the MinBLEP approximation is
roughly proportional tof1, this being (as worked out in Sec-
tion 5) the number of windowed-sinc impulses called for per
sample. If an impulse is 32 samples long andf1 is 1/32, the
cost is one table lookup and some bookkeeping overhead (in-
cluding a branch). The number of table lookups scales with
f1.

It is true that users of hard sync do often sweepf1 higher
than 1/32 (1.4 kHz at a sampling rate of 44.1 kHz). Very
highf1 is problematic for real-time implementation. The ex-
act syntheses also take time linear inf1, so they don’t help.
Finding an approximation that takes time sublinear inf1 is an
open problem.

8 Extensions

So far only hard sync has been addressed. In soft sync,
the slave oscillator’s phase is reset only if its current value
lies within some window around zero. This is cumbersome
to synthesize from BLITs, as its period of repetition can be
arbitrarily long. However, the windowed-sinc or MinBLEP
approximation of hard sync could be adapted to do this, even
with variable hardness, by examining the slave phase at the
end of each master cycle.

Further afield, the slave frequency can vary over the course
of each master cycle. (The Korg Mono/Poly analog synthe-
sizer allows this, for example.) Or the slave phase need not be
reset to zero; it could be multiplied by a value between zero
and one (or greater than one), or processed in other ways.

9 Conclusion

Anyone who has worked with analog synthesizers will re-
member the sound of hard sync. Digital synthesizers com-
monly omit hard sync, or render it with aliasing; this paper
describes ways to synthesize it correctly. One of the tech-
niques described, the minimum-phase bandlimited step, ap-
plies beyond hard sync, to all of the basic ‘analog’ waveforms
having discontinuities, and further.

References
Kaegi, W. and S. Tempelaars (1978). VOSIM—a new sound

synthesis system.Journal of the Audio Engineering Soci-
ety 26(6), 418–426.

Oppenheim, A. V. and R. W. Schafer (1975).Digital Signal Pro-
cessing. Prentice-Hall.

Rodet, X. (1984). Time-domain formant wave-function synthe-
sis.Computer Music Journal 8(3), 9–14.

Stilson, T. and J. Smith (1996). Alias-free digital synthesis of
classic analog waveforms. InProc. International Computer
Music Conference. International Computer Music Associa-
tion.

The MathWorks (2001). rceps (Signal Processing Toolbox).
Online at http://www.mathworks.com/access/
helpdesk/help/toolbox/signal/rceps.shtml .

