New worlds to conquer0
greg posted in exoplanet detection on November 25th, 2006
Image Source.
The California Carnegie planet search team posted a data-rich paper on astro-ph this week. The new article is scheduled to appear in the February 2007 issue of the Astrophysical Journal. Eugenio, exercising his usual diligence, has added the new velocity tables to both the downloadable systemic console and the systemic back-end stellar catalog.
The highlight of the paper is a new two-planet system orbiting HIP 14810, a metal-rich solar-mass star lying 53 parsecs away. The inner planet in the system has a period of 6.66 days, and tips the scales with least 3.84 Jupiter Masses. The outer planet is less massive (Msin(i)=0.76 Mjup), and goes around the star every 95.3 days.
The secular interaction between the two planets compels them to trade angular momentum back and forth. As a result, the inner planet cycles between an eccentricity of 0.02 and 0.15 on a relatively short 5000-year timescale. It’s currently in the high-eccentricity phase of its orbit. The large radial velocity signal-to-noise for the planet means that its eccentricity can be measured quite precisely (have a look at it with the console). The fact that the orbit is clearly non-circular would be strong evidence for the presence of planet c, even if there weren’t enough data to detect c directly. If planet b was the only significant planet in the system, its orbit would have circularized via tidal dissipation on a timescale that is less than the age of the star.
Short-period planets with masses greater than three Jupiter masses are intrinsically rare. Tau Boo b (with a mass of at least 3.9 Jupiter masses and an orbital period of 3.3 days) is the only other object with roughly similar properties. By contrast, 32 planets with periods of less than a week and minimum masses less than Jupiter’s mass are currently known.
In my opinion, the two most robust statistical correlations that have emerged from the first decade of extrasolar planet detection are (1) the planet-metallicity connection and the (2) dearth of high-mass short-period planets. The planet-metallicity correlation makes perfect sense. It’s the natural, expected outcome of the core-accretion process and the fact that Jovian-mass (as opposed to Neptunian-mass) planet formation is a threshold phenomenon. The paucity of high-mass short-period planets, on the other hand, is both weird and completely unexplained. It’s telling us something about the process of planetary formation and migration. We just don’t know what it is.