

An Early Look at XQuery

Andrew Eisenberg
IBM, Westford, MA 01886

andrew.eisenberg@us.ibm.com

Jim Melton
Oracle Corp., Sandy, UT 84093

jim.melton@acm.org

Introduction
XQuery is a query language for real and virtual XML
documents and collections of these documents. Its
development began in the second half of 1999. With
roughly 3 years of work completed, it’s high time
that we provided an initial description of this
language, and a sense of where it is in its
development cycle.

XQuery is being developed within W3C.
Every consortium of this type has its own rules and
its own ways of getting its work done. W3C provides
visibility to the public by making available drafts of
the specifications that it has under development at
relatively frequent intervals. Mailing lists are
established for each specification to allow the public
to provide feedback on these drafts. Unfortunately,
the W3C process does not allow us to publicly
discuss the internal workings of the XML Query WG,
including schedules, proposals that are being
considered, and discussions that have taken place.

Even so, with the amount of material that is
contained in the most recent public drafts of these
specifications, we have more than enough to discuss.

W3C Process
In Dec. 1998, W3C held QL’98, the W3C Query
Languages Workshop. Interest in this area was great
enough that the XML Query WG was formed in
August 1999. The group published XML Query
Requirements in Jan. of 2000, and has updated it
several times since then (most recently in Feb. 2001
[1]).

Within the W3C Process, specifications
progress through several stages of maturity:

! Working Draft (WD)
! Last Call Working Draft
! Candidate Recommendation (CR)
! Proposed Recommendation (PR)
! Recommendation (REC)

The XQuery specifications that we will be
discussing are all Working Drafts. As we said, we are
not able to comment on when XQuery will move
forward to these more advanced stages.

At the time that a specification reaches CR,
a call for implementations goes out. In order to
become a PR, the group must be able to demonstrate
that each feature has been implemented, preferably
by two interoperable implementations.

The Set of XQuery Documents
The XML Query WG has produced the following
documents:

! XML Query Requirements [1]
! XQuery Use Cases [4]
! XQuery 1.0: An XML Query Language [2]
! XML Syntax for XQuery 1.0 (XQueryX) [8]

The XML Query WG has worked jointly with the
XSL WG and produced the following documents:

! XQuery 1.0 and XPath 2.0 Data Model [5]
! XQuery 1.0 and XPath 2.0 Formal Semantics [6]
! XQuery 1.0 and XPath 2.0 Functions and

Operators 1.0 [7]

Taken as a whole, these specifications define XQuery
and XQueryX.

We’ve already discussed the Requirements
document, the first document that the XML Query
WG produced.

The Use Cases document provides a number
of specific usage scenarios for XQuery. Each use
case is focused on a specific application area, and
contains a DTD or XML Schema, example input
data, and a number of queries. Each query is
presented with a prose description, an XQuery
expression, and the expected output from the query.

The Data Model specification defines the
data model on which queries will operate and return
as a result. This data model is an extension of the
XML Infoset and the Post-Schema-Validation Infoset
(PSVI).

The XQuery Requirements document calls
for both a human-readable query syntax and an XML
query syntax. The XQuery specification defines the
human-readable syntax and provides a high level
description of its semantics. It contains numerous
examples of this language. The XQueryX
specification defines the XML syntax for a query.

The Formal Semantics specification defines
the semantics of XQuery in much greater detail than
is contained in the XQuery specification.

XQuery and XPath
XPath 2.0 has as one of its requirements the
manipulation of XML Schema-based content. XPath
1.0, you’ll remember, created its own model
consisting of nodes, strings, numbers, and boolean
values. The XML Query WG and the XSL WG have
been working together so that XPath 2.0 can use the
same Data Model, Formal Semantics, and Functions
and Operators specifications as XQuery.

XQuery is largely a superset of XPath 2.0.
However, XQuery does not support all of the XPath
2.0 axes:

Supported by
XQuery and XPath

Supported by
XPath only

child ancestor
descendent-or-self (//) following-sibling
parent (..) preceding-sibling
attribute (@) following
self preceding
descendent namespace
 ancestor-or-self

XQuery is not defined by referring to XPath
2.0; the two specifications each stand alone. The
XQuery specification contains the syntax and
semantics of the parts of XPath that it supports. This
has required that the editors of the two specifications
work together very closely. In order to ensure
consistency, they maintain a common source from
which the two documents are generated.

With these preliminaries out of the way, the
rest of this article will discuss the Data Model,
XQuery, XQueryX, and Functions and Operators in
greater depth. The Formal Semantics specification is
discussed only briefly.

The XQuery 1.0 and XPath 2.0
Data Model
The XQuery/XPath Data Model is an abstract data
model. It is based on both the Infoset and PSVI,
extended to cover sequences of both nodes and
atomic values.

The documents that XQuery can operate on,
Schema-validated documents, DTD-validated
documents, and simply well-formed documents, all
produce instances of this data model. Collections of
documents produce instances of the data model as
well (sequences of document nodes).

XQuery is a functional language, with each
expression operating on instances of the data model

and producing an instance of the data model. As you
would expect, XQuery is closed with respect to its
data model.

A data model instance consists of a
sequence of zero or more items. An item is either a
node or an atomic value, but not another sequence.
An item is indistinguishable from a sequence
containing just that one item. A node is one of several
types of nodes; document, element, attribute, text,
namespace, processing instruction, and comment.

Elements nodes, attribute nodes, and atomic
values are all labeled with their type name, expressed
as an expanded QName (target namespace URI and
local name). A type name identifies either an XML
Schema built-in type or a named type in an XML
Schema. XML Schema anonymous types are
identified by either xs:anyType or
xs:anySimpleType.

An atomic value is either a value in the
value space of an XML Schema atomic type that has
been labeled with its atomic type, or it is a string
labeled with xs:anySimpleType. An atomic type
can be an XML Schema primitive type, or a type that
has been derived from a primitive type only by
restriction. XML Schema defines 19 primitive types,
such as xs:string and xs:decimal, and built-in
derived types such as xs:integer and
xs:NMTOKEN. xs:anySimpleType is used to
represent the value that is the typed value of a node
whose type is unknown. The atomic values taken
from a well-formed or DTD-valid XML document
will have a type of xs:anySimpleType.

Nodes have identity, with the identity of a
node established at the time that the node is created.
Document order is defined on all of the nodes of a
document. The document node is first, with element
nodes, comment nodes, and processing instruction
nodes ordered based on their location in the XML
document. Element nodes are ordered prior to their
children nodes. The namespace nodes of an element
immediately follow the element node, and the
attribute nodes of an element immediately following
the namespace nodes of that element. The relative
order of these namespace nodes and attribute nodes is
implementation-dependent. The order of multiple
documents is implementation-dependent and stable.

XQuery
XQuery, as we’ve just said, operates on instances of
its data model and produces instances of its data
model. The documents that are used to create the data
model instance may be physical or virtual documents.
A virtual document might be created by an
application, or it might be derived from a database.

XQuery defines the transformation from a
data model instance to an infoset, but it does not
define how to transform it all the way back to a
serial, character-oriented, representation.

XQuery is a functional language.
Expressions do not have side-effects and can be
freely composed. XQuery is also a language with a
strong notion of typing.

Query Processing
An XQuery expression is processed in two phases;
the analysis phase and the evaluation phase.

The analysis phase depends on the static
context and the query itself. The static context
contains scoped namespaces (and default
namespaces), schema definitions, variable
definitions, functions, and collations.

During the analysis phase, each expression
is given a static type. If an operand to an expression
contains an inappropriate static type, then a static
type error is raised.

The evaluation phase depends upon the
evaluation context. This contains the focus, dynamic
variables, current date and time, and the input
sequence. The focus contains:

context item item currently being processed
context position position of the context item in the

sequence of items being
processed

context size number of items in the sequence
being processed

Focuses can be nested. This occurs in an
expression such as $d/employee/phone. The
outermost focus is the sequence of items in $d. For
each of these items an inner focus of employee
elements is created.

The input sequence is a sequence of nodes
that can be accessed by the xf:input function. The
value of the input sequence is provided in some
implementation-dependent way.

In addition to the input function, an
XQuery can use the xf:document and
xf:collection functions. These functions accept a
URI and produce document nodes and sequences of
document nodes (and possibly other node types).
xf:document('employees.xml')

//employee[@id='444378']

→
<employee id='444378'>

...
</employee>

The result of every expression has a
dynamic type, which may be the same as the static

type of the expression, or it may be a more specific
type.

Element, attribute, and text nodes have both
a string value and a typed value that are returned by
the xf:string and xf:data functions,
respectively. The string value of an element is the
concatenated values of each of the text nodes
contained in the element in document order. The
typed value of a node is a sequence of atomic values.
The typed value of an element of type xs:anyType
is the same as its string value. If the element is of a
type that allows complex content, then the xf:data
function raises an error.

input:
<employee id='661008'>

<name>Albert Jones</name>
<position>Accountant</position>
<HSYears>4</HSYears>
<Veteran status='true'/>

</employee>

string(input()//employee[@id='661008'])

→
'Albert JonesAccountant4' (xs:anySimpleType)

data(input()
//employee[@id='661008']/HSYears
)

→
4 (xs:integer)

In this example we’re assuming that the
HSYears element was defined to be of type
xs:integer, which allowed data to return the
integer value of 4. If this element had been obtained
from a document without an XML Schema, then data
would have returned the value '4' (a character string
value) with a type of xs:anySimpleType.

XQuery Prolog and Body
An XQuery consists of a prolog section, followed by
body section that consists of a sequence expression.
Either of these sections can be left out.

 The prolog allows namespace declarations,
a declaration of whitespace handling, and a
declaration of the default collation, and it allows
XML Schemas to be imported. Following these
declarations, it can contain functions definitions. The
following is an example of an XQuery prolog:

declare xmlspace = preserve

import schema
namespace
myco="http://www.myco.com/personnel"
at "http://www.myco.com/personnel.xsd"

declare namespace
xhtml = "http://www.w3.org/1999/xhtml"

define function compensation
(element myco:employee $emp)

returns xs:decimal
{

$emp/salary + $emp/bonus
}

Expressions
XQuery defines a number of different types of
expressions.

expression type expression syntax
sequence expr, expr, ...

literal e.g. 7, 'XQuery', "literal"

variable e.g. $x, $po:backOrders

constructor see below
numeric +, -, *, div, idiv, mod

value comparison eq, ne, lt, le, gt, ge

general comparison =, !=, <, <=, >, >=

node comparison is, isnot

order comparison <<, >>

logical and, or

conditional if expr
then expr
else expr

range expr to expr

quantified some/every $var in expr
satisfies expr

set union, intersect, except

typeswitch typeswitch expr
case type $var

return expr
default $var

return expr

instance of expr instance of type

validate validate { expr }
validate schemaContext {
expr }

cast cast as type (expr)

treat treat as type (expr)

path e.g.
$emp/phone[@type='home']

FLWR for type $var in expr, ...
let $var := expr, ...
where expr
return expr

function QName (expr, ...)

Value comparison expressions (such as eq)
compare single atomic values. General comparison
expressions (such as =) compare two sequences of
values, and provide existential semantics (return true
if the comparison is true for some value in the first
sequence and some value in the second sequence).

Order comparison determines whether one
node appears earlier than or later than another node in
document order.

A range expression produces a sequence of
integers, starting at the value of its first argument and
ending at its second argument.

(1 to 4) → (1, 2, 3, 4)

Many of these expressions accept the empty
sequence, written as (), as an argument. Many of
them return an empty sequence when they are given
an empty sequence as an argument.

4.2e5 + () → ()

Nodes and node sequences may be used
where atomic values are expected. For a sequence of
one node, the typed value of the node will be used. A
sequence of more than one value will raise an error.
In the example below, plus (+) is being applied to
two nodes of type xs:integer.

input:
<employee id='575090'>

<HSYears>4</HSYears>
<CollegeYears>6</CollegeYears>
<veteran discharge='honorable'/>

</employee>

count(input()
//employee
[HSYears + CollegeYears ge 8]
)

→
1

Nodes and node sequences may be used
where a Boolean value is expected. If a node contains
a single value of type xs:boolean, then this value is
used. If the node sequence is empty, then false is
returned. If the node sequence contains at least one
node, then true is returned.
if (input()

//employee[@id eq '575090']/veteran)
then 'served'
else 'did not serve'

→
'served'

Types
Some of the expressions that we listed above are
specified with a type designator. Rather than going
through BNF, we’ll just look a number of examples:
xs:integer? a sequence of zero or one

integer
element+ a sequence of one or

more elements
node* a sequence of zero or

more nodes
item+ one or more items
attribute an attribute (single) of

any name and type
element myco:address an element with name

myco:address
element of type
myco:addrType

an element of any name,
with type
myco:addressType

element zip in type
myco:addrType/zipplus

an element named zip,
with the type of the zip
element that occurs
within an zipplus
element in the
myco:addrType
complex type

A type designator might be used as follows:
input()
//employee
[address
instance of element myco:USAddress)
]

Constructors
The construction of new XML content is central to
XQuery. XQuery contains constructors for elements,
attributes, CDATA sections, processing instructions,
and comments using a syntax that is largely the same
as XML itself. Element content and attribute values
can contain enclosed expressions, denoted by {}’s,
that contain expressions that will be evaluated. This
allows the following:
{-- demonstrate enclosed expressions --}
let $x := 5
return

<let x="{$x}">
<!-- assignment -->
$x := {$x}

</let>

→
<let x="5">

<!-- assignment -->
$x := 5

</let>

An element may contain a namespace
declaration. These namespaces will be added to the
in-scope namespaces for the scope of the element.
<myco:employee xmlns:myco="..."

xmlns:sk="...">
<myco:skills>

<sk:skill> ... </sk:skill>
...

<myco:skills>
</myco:employee>

The names of elements and attributes can be
computed as well, but doing so requires a different
syntax. The following function uses the element
provided in an argument to construct a new element.
The first child element of the supplied element is
determined and its name is used for the name of the
new element; the value of its first attribute is used for
the new element’s content:
define function first (element $f)

returns element
{

let $firstChild := $f/*[1]
return

element { xf:name($firstChild) }
{ xf:data($firstChild/@*[1]) }

}

first(<employee id='998359'>
<status='retired'>
<name>Alan Greene</name>

</employee>)

→
<status>retired</status>

A constructed element has its own identity.
The nodes that are used to construct this element are
copied, so that every node in the constructed element
has a new identity. The type of a constructed element
is xs:anyType … all of the type information of its
contents is discarded. Even if an attribute such as
xsi:type='myco:USAddressType' is specified,
the type of the constructed element will still be
xs:anyType until it has been validated.

Validation
The validate expression applies schema validation to
its argument (of type element*). Its argument is
converted into an infoset, discarding any type
annotations that it might have contained. The result
of validation is a new element (with new contents)
with type annotations. If validation is not successful,
then a dynamic type error is raised.

Type annotations can be applied to a
constructed element using the validate expression:

validate (<myco:employee id='440612'>
<name>Augustus Child</name>
...

</myco:employee>
)

In this case, the “myco” schema must
contain a globally defined element employee. The
name element in the constructed element has type
xs:anyType, while in the validate result it might
have type myco:nameType. Validation can also be
specified for locally defined elements:
validate in myco:employee/contact

(<phone>666-555-1212</phone>)

FLWR Expression
The FLWR (for, let, where, return) expression
provides for iteration over the items in one or more
sequences. It is as central to XQuery as SELECT is to
SQL.

The “for” clause binds variables to the
items in its sequences, generating a Cartesian product
among the bound variables. The “let” clause binds a
variable to a value. The “where” clause filters the
elements of the Cartesian product, leaving those that
remain to contribute to the result of the FLWR.
Finally, the “return” clause creates a sequence,
concatenating the values produced by the evaluation
of its expression.

The best that we can do in this limited space
is to provide some examples of this type of
expression.

! Return within a single element the names of the
employees that have more than 8 years of
education:

<educated>
{ for $e in document('employees.xml')

//employee
where $e/HSYears + $e/CollegeYears gt 8
return $emp/name

}
</educated>

→
<educated>

<name>Albert Jones</name>
<name>Joe Cody</name>

</educated>

! Return as a sequence of strings the names of the
employees that have more than 8 years of
education:

for $e in document('employees.xml')
//employee

where $e/HSYears + $e/CollegeYears gt 8
return data($emp/name)

→

Albert Jones
Joe Cody

! Produce an element structure with employees
contained within their departments:

let $dept := document('depts.xml')
let $emp := document('employees.xml')
for $d in $dept//department
return

<department name='{$d/name}'>
{ for $e in $emp//employee
where $e/dept eq $d/name
return

<employee>
{ $e/name }

</employee>
}

</department>

→
<department name='accounting'>

<employee>
<name>Albert Jones</name>

</employee>
.
.
.

</department>
.
.
.

! Produce a structure with employee names and
the names of their departments provided in
attributes:

let $dept := document('depts.xml')
let $emp := document('employees.xml')
for $e in $emp//employee,

$d in $dept//department
where $e/dept eq $d/name
return

<employee name='{data($e/name)}'
dept='{data($d/dept)}'/>

→
<employee name='Albert Jones'

dept='accounting'/>
<employee name='Gloria French'

dept='accounting'/>
<employee name='Clark Hill'

dept='security'/>

XQuery Updates
You may have noticed that we have not discussed the
ability to modify XML documents through the use of
the XQuery language. The XML Query WG has not
published any documents that provide facilities to
update any XML elements in an existing document,
to insert new elements into such a document, or to
delete elements from such a document.

This omission has been discussed on the
public XQuery mailing lists and is recognized to be a

deficiency. It is possible that this omission will be
corrected, either in a future version of XQuery or
perhaps in a separate document.

XQuery Conformance
Basic XQuery is the minimal level of conformance
that can be claimed for XQuery. Basic XQuery
encompasses all of the XQuery functionality, with
the following restrictions:

! the Query prolog must not import XML Schemas

! instances of the XQuery data model that are built
from a PSVI will map atomic data types to their
nearest XML Schema built-in data type. Nodes
with complex data types will be given the type
xs:anyType.

! static type errors do not have to be raised during
the analysis phase

A conforming XQuery implementation may
support the Schema Import Feature, which removes
the first of these restrictions. It may support the Static
Typing Feature, which removes the remaining
restrictions.

XQueryX
XQueryX defines an XML representation of XQuery.
It defines an element structure that mirrors the
abstract syntax of XQuery. Let’s look at a simple
XQuery and the corresponding XQueryX
representation:
for $b in document("bib.xml")//book
return $b/title

→
<q:query xmlns:q

="http://www.w3.org/2001/06/xqueryx">
<q:flwr>
<q:forAssignment variable="$b">
<q:step axis="SLASHSLASH">
<q:function name="document">
<q:constant datatype="CHARSTRING">

bib.xml
</q:constant>

</q:function>
<q:identifier>book</q:identifier>

</q:step>
</q:forAssignment>
<q:return>
<q:step axis="CHILD">
<q:variable>$b</q:variable>
<q:identifier>title</q:identifier>

</q:step>
</q:return>

</q:flwr>
</q:query>

While XQueryX is harder for a human to
read and write than XQuery, it does have several

useful properties. It is easily generated by tools and
layered applications, it is easily embedded within
larger XML documents, and it allows “queries on
queries”.

XQuery 1.0 and XPath 2.0
Functions and Operators
The “F&O” specification defines a large number of
functions and operators. While these functions and
operators are being written to support XQuery,
XPath, and XSLT, they could also be used by other
XML specifications.

The “F&O” specification defines a number
of string functions, numeric functions, node
functions, date and time functions, aggregate
functions such as xf:avg, xf:min, and xf:max, and
the xf:document and xf:collection functions
for accessing the content of XML documents. It
defines what the allowable casts are, and what their
behavior is.

The operators are functions that have been
defined in a different namespace from the others and
are not intended for invocation directly by users.
They exist to define the semantics of operators such
as “+” in the XQuery and XPath specifications.

Functions, as you would expect, are defined
by providing their signature, a description of their
semantics, and some examples. The parameters and
the return types of functions use the XQuery/XPath
data model that we discussed earlier. Functions have
a local name, and are defined to be in the following
namespace (which will be updated in each draft):
http://www.w3.org/2002/08/xquery-functions

The method of invoking these functions is
left to the XQuery, XQueryX, and XPath
specifications.

For the most part, functions with the same
name have a different number of parameters and the
parameters in the “smaller” function and “larger”
function that occupy the same position have the same
data types. A small number of functions with the
same name and same number of parameters have
different data types, for the purpose of backward
compatibility with XPath 1.0 functions.

By way of example, let’s look at a specific
function:
xf:translate(string? $srcval,

string? $mapString,
string? $transString)
=> string?

This function constructs an xs:string result
by considering each character in $srcval in turn. If
the character is not found in $mapString, then it is
appended to the result. If the character is found in

$mapString, then the character in the corresponding
position in $transString is appended to the result.
This might be used as follows:
xf:translate("abcdabc", "abc", "AB")

→
"ABdAB"

Many of the string functions that are defined
have two variants, one with an xs:anyURI collation
parameter, and one without. If a collation argument is
supplied, then it is used to determine how two strings
compare. If the collation argument is not supplied,
then the default collation in the static context is used.
If that default does not exist, then Unicode codepoint
collation is used.

This specification defines two subtypes of
the XML Schema xs:duration data type,
xf:yearMonthDuration and
xf:dayTimeDuration. As their names imply, they
contain only the year and month components and the
day through seconds components of the
xs:duration data type, respectively. The
restrictions on these subtypes give them the desirable
property of full ordering. The “F&O” specifications
provide a number of functions on these new subtypes,
but provide only equals and cast to and from string
for xs:duration. It is possible that these two
subtypes will be added to a future version of XML
Schema.

Formal Semantics
The Formal Semantic specification defines the
normalization of a query, which expresses some
XQuery constructs in terms of simpler XQuery
constructs (the XQuery Core language). The static
type of every expression in the core language is
rigorously defined (via inference rules and
judgements), as are the values produced by the
dynamic evaluation of these expressions.

Many people find Formal Semantics
difficult to read because of its mathematical notation
and its firm focus on formality. However, in order to
properly express the semantics of a complex
language such as XQuery, such formality is
mandatory. Feel free to read it if you wish, but you
don’t need to do so in order to program using
XQuery.

Future Work
It is frustrating not to be able to say more about how
we expect this work to progress. Having tried to give
you a sense of the features and syntax of the XQuery
language, we’ll leave you with the reminder that this

work has not yet reached W3C’s Last Call Working
Draft status. It is possible that quite a bit of what we
have described will change. In fact, by the time you
read this, new drafts of these specifications may
already have been published. A quick look at the
W3C Technical Reports page will let you know if
this is the case.

References
[1] XML Query Requirements, Don Chamberlin,

Peter Fankhauser, Massimo Marchiori, Jonathan
Robie, Feb. 15, 2001,
http://www.w3.org/TR/xmlquery-req.

[2] XQuery 1.0: An XML Query Language, Don
Chamberlin, Mary F. Fernández, Daniela
Florescu, Jonathan Robie, Jérôme Siméon, Scott
Boag, Aug. 16, 2002,
http://www.w3.org/TR/xquery/.

[3] XML Path Language (XPath) 2.0, Anders
Berglund, Scott Boag, Don Chamberlin, Mary F.
Fernández, Michael Kay, Jonathan Robie,
Jérôme Siméon, Aug. 16, 2002,
http://www.w3.org/TR/xpath20/.

[4] XML Query Use Cases, Don Chamberlin,
Daniela Florescu, Peter Fankhauser, Massimo
Marchiori, Jonathan Robie, Aug. 16, 2002,
http://www.w3.org/TR/xmlquery-use-cases.

[5] XQuery 1.0 and XPath 2.0 Data Model, Mary
Fernández, Jonathan Marsh, Marton Nagy, Aug.
16, 2000,
http://www.w3.org/TR/query-datamodel/.

[6] XQuery 1.0 Formal Semantics, Denise Draper,
Peter Fankhauser, Mary Fernández, Ashok
Malhotra, Kristoffer Rose, Michael Rys, Jérôme
Siméon, Philip Wadler, Aug. 16, 2002,
http://www.w3.org/TR/query-semantics/.

[7] XQuery 1.0 and XPath 2.0 Functions and
Operators Version 1.0, Ashok Malhotra, Norman
Walsh, Jim Melton, Jonathan Robie, Aug. 16,
2002, http://www.w3.org/TR/xquery-operators/.

[8] XML Syntax for XQuery 1.0 (XQueryX), Ashok
Malhotra, Jonathan Robie, Michael Rys, June 11,
2001, http://www.w3.org/TR/xqueryx.

Web References
W3C http://www.w3.org

XML Query WG

http://www.w3.org/XML/Query

QL'98 - The Query Languages Workshop

http://www.w3.org/TandS/QL/QL98/

http://www.w3.org/TR/xmlquery-req
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/query-datamodel/
http://www.w3.org/TR/query-semantics/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xqueryx
http://www.w3.org/
http://www.w3.org/XML/Query
http://www.w3.org/TandS/QL/QL98/

	An Early Look at XQuery
	Introduction
	W3C Process
	The Set of XQuery Documents
	XQuery and XPath

	The XQuery 1.0 and XPath 2.0 Data Model
	XQuery
	Query Processing
	XQuery Prolog and Body
	Expressions
	Types
	Constructors
	Validation
	FLWR Expression
	XQuery Updates
	XQuery Conformance

	XQueryX
	XQuery 1.0 and XPath 2.0 Functions and Operators
	Formal Semantics
	Future Work
	References
	Web References

