An Early Look at XQuery

Andrew Eisenberg
IBM, Westford, MA 01886
andrew.ei senberg@us.ibm.com

Introduction

XQuery isaquery language for real and virtual XML
documents and collections of these documents. Its
development began in the second half of 1999. With
roughly 3 years of work completed, it’s high time
that we provided an initial description of this
language, and a sense of whereitisinits
development cycle.

XQuery is being developed within W3C.
Every consortium of this type hasits own rules and
its own ways of getting its work done. W3C provides
visibility to the public by making available drafts of
the specifications that it has under development at
relatively frequent intervals. Mailing lists are
established for each specification to allow the public
to provide feedback on these drafts. Unfortunately,
the W3C process does not allow usto publicly
discuss the internal workings of the XML Query WG,
including schedules, proposals that are being
considered, and discussions that have taken place.

Even so, with the amount of material that is
contained in the most recent public drafts of these
specifications, we have more than enough to discuss.

W3C Process

In Dec. 1998, W3C held QL' 98, the W3C Query
Languages Workshop. Interest in this area was great
enough that the XML Query WG was formed in
August 1999. The group published XML Query
Requirementsin Jan. of 2000, and has updated it
several times since then (most recently in Feb. 2001

[1D).
Within the W3C Process, specifications
progress through several stages of maturity:

Working Draft (WD)

Last Call Working Draft
Candidate Recommendation (CR)
Proposed Recommendation (PR)
Recommendation (REC)

The XQuery specifications that we will be
discussing are all Working Drafts. Aswe said, we are
not able to comment on when XQuery will move
forward to these more advanced stages.

Jim Melton
Oracle Corp., Sandy, UT 84093
jim.melton@acm.org

At the time that a specification reaches CR,
acall for implementations goes out. In order to
become a PR, the group must be able to demonstrate
that each feature has been implemented, preferably
by two interoperable implementations.

The Set of XQuery Documents

The XML Query WG has produced the following
documents:

XML Query Requirements [1]

XQuery Use Cases [4]

XQuery 1.0: An XML Query Language [2]
XML Syntax for XQuery 1.0 (XQueryX) [8]

The XML Query WG has worked jointly with the
XSL WG and produced the following documents:

=  XQuery 1.0 and XPath 2.0 Data Model [5]

=  XQuery 1.0 and XPath 2.0 Formal Semantics[6]

= XQuery 1.0 and XPath 2.0 Functions and
Operators 1.0 [7]

Taken as awhole, these specifications define XQuery
and XQueryX.

WEe' ve already discussed the Requirements
document, the first document that the XML Query
WG produced.

The Use Cases document provides a number
of specific usage scenarios for XQuery. Each use
case is focused on a specific application area, and
containsaDTD or XML Schema, example input
data, and a number of queries. Each query is
presented with a prose description, an XQuery
expression, and the expected output from the query.

The DataModel specification defines the
data model on which queries will operate and return
as aresult. This data model is an extension of the
XML Infoset and the Post-Schema-Validation I nfoset
(PSVI).

The XQuery Requirements document calls
for both a human-readable query syntax and an XML
guery syntax. The XQuery specification defines the
human-readable syntax and provides a high level
description of its semantics. It contains numerous
examples of thislanguage. The X QueryX
specification defines the XML syntax for a query.



The Formal Semantics specification defines
the semantics of XQuery in much greater detail than
is contained in the XQuery specification.

XQuery and XPath

XPath 2.0 has as one of its requirements the
manipulation of XML Schema-based content. X Path
1.0, you'll remember, created its own model
consisting of nodes, strings, numbers, and boolean
values. The XML Query WG and the XSL WG have
been working together so that XPath 2.0 can use the
same Data Model, Formal Semantics, and Functions
and Operators specifications as XQuery.

XQuery islargely a superset of XPath 2.0.
However, XQuery does not support all of the XPath
2.0 axes:

Supported by Supported by
XQuery and XPath XPath only
child ancestor
descendent-or-self (//)  following-sibling
parent (..) preceding-sibling
attribute (@) following
self preceding
descendent namespace
ancestor-or-sel f

XQuery isnot defined by referring to XPath
2.0; the two specifications each stand alone. The
XQuery specification contains the syntax and
semantics of the parts of XPath that it supports. This
has required that the editors of the two specifications
work together very closely. In order to ensure
consistency, they maintain a common source from
which the two documents are generated.

With these preliminaries out of the way, the
rest of this article will discuss the Data Model,
XQuery, XQueryX, and Functions and Operatorsin
greater depth. The Formal Semantics specificationis
discussed only briefly.

The XQuery 1.0 and XPath 2.0
Data Model

The XQuery/XPath Data Modél is an abstract data
model. It is based on both the Infoset and PSVI,
extended to cover sequences of both nodes and
atomic values.

The documents that X Query can operate on,
Schema-validated documents, DTD-validated
documents, and simply well-formed documents, all
produce instances of this data model. Collections of
documents produce instances of the data model as
well (sequences of document nodes).

XQuery isafunctional language, with each
expression operating on instances of the data model

and producing an instance of the data model. Asyou
would expect, XQuery is closed with respect to its
data model.

A data model instance consists of a
sequence of zero or more items. An item is either a
node or an atomic value, but not another sequence.
An item isindistinguishable from a sequence
containing just that one item. A node is one of several
types of nodes; document, element, attribute, text,
namespace, processing instruction, and comment.

Elements nodes, attribute nodes, and atomic
vaues are al labeled with their type name, expressed
as an expanded QName (target namespace URI and
local name). A type name identifies either an XML
Schema built-in type or a named typein an XML
Schema. XML Schema anonymous types are
identified by either xs: anyType or
xs: anySi npl eType.

An atomic value is either avalue in the
value space of an XML Schema atomic type that has
been labeled with its atomic type, or it isastring
labeled with xs: anySi npl eType. An atomic type
can be an XML Schema primitive type, or atype that
has been derived from a primitive type only by
restriction. XML Schema defines 19 primitive types,
such asxs: string and xs: deci mal , and built-in
derived typessuch asxs: i nt eger and
Xxs: NMITOKEN. xs: anySi npl eType isused to
represent the value that is the typed value of a node
whose type is unknown. The atomic values taken
from awell-formed or DTD-valid XML document
will have atype of xs: anySi npl eType.

Nodes have identity, with the identity of a
node established at the time that the node is created.
Document order is defined on al of the nodes of a
document. The document node is first, with element
nodes, comment nodes, and processing instruction
nodes ordered based on their location in the XML
document. Element nodes are ordered prior to their
children nodes. The namespace nodes of an element
immediately follow the element node, and the
attribute nodes of an element immediately following
the namespace nodes of that element. The relative
order of these namespace nodes and attribute nodesis
implementation-dependent. The order of multiple
documents is implementation-dependent and stable.

XQuery

XQuery, aswe've just said, operates on instances of
its data model and produces instances of its data
model. The documents that are used to create the data
model instance may be physical or virtual documents.
A virtual document might be created by an
application, or it might be derived from a database.



XQuery defines the transformation from a
data model instance to an infoset, but it does not
define how to transform it al the way back to a
serial, character-oriented, representation.

XQuery isafunctional language.
Expressions do not have side-effects and can be
freely composed. XQuery is aso alanguage with a
strong notion of typing.

Query Processing
An XQuery expression is processed in two phases;
the analysis phase and the evaluation phase.

The analysis phase depends on the static
context and the query itself. The static context
contains scoped namespaces (and default
namespaces), schema definitions, variable
definitions, functions, and collations.

During the analysis phase, each expression
isgiven a dtatic type. If an operand to an expression
contains an inappropriate static type, then a static
type error israised.

The evaluation phase depends upon the
evaluation context. This contains the focus, dynamic
variables, current date and time, and the input
sequence. The focus contains:

context item item currently being processed

context position  position of the context item in the
sequence of items being
processed

number of itemsin the sequence
being processed

Focuses can be nested. This occursin an
expression such as $d/ enpl oyee/ phone. The
outermost focus is the sequence of itemsin $d. For
each of these items an inner focus of enpl oyee
elementsis created.

The input sequence is a sequence of nodes
that can be accessed by the xf : i nput function. The
value of the input sequenceis provided in some
implementati on-dependent way.

In addition to thei nput function, an
XQuery can use the xf : docunent and
xf : col | ecti on functions. These functions accept a
URI and produce document nodes and sequences of
document nodes (and possibly other node types).

context size

xf: docunent (' enpl oyees. xm ')
/1 enpl oyee[ @ d=' 444378' ]

N
<enpl oyee id='444378' >

</ eﬁbi oyee>

The result of every expression has a
dynamic type, which may be the same as the static

type of the expression, or it may be a more specific
type.

Element, attribute, and text nodes have both
astring value and a typed value that are returned by
thexf : stri ng and xf : dat a functions,
respectively. The string value of an element isthe
concatenated values of each of the text nodes
contained in the element in document order. The
typed value of anodeis a sequence of atomic values.
The typed value of an element of type xs: anyType
isthe same asits string value. If the element is of a
type that allows complex content, then the xf : dat a
function raises an error.

input:

<enpl oyee i d='661008" >
<nanme>Al bert Jones</ nanme>
<posi ti on>Account ant </ posi ti on>
<HSYear s>4</ HSYear s>
<Veteran status='true'/>
</ enpl oyee>

string(input()//enployee[ @d='661008"])
—

"Al bert JonesAccountant4' (xs:anySi npl eType)

dat a(i nput ()
/1 enpl oyee[ @ d=' 661008' ]/ HSYear s
)

—

4 (xs:integer)

In this example we're assuming that the
HSYear s element was defined to be of type
xs: i nt eger, which allowed data to return the
integer value of 4. If this element had been obtained
from a document without an XML Schema, then data
would have returned the value '4' (a character string
value) with atype of xs: anySi npl eType.

XQuery Prolog and Body

An XQuery consists of a prolog section, followed by
body section that consists of a sequence expression.
Either of these sections can be left out.

The prolog allows namespace declarations,
a declaration of whitespace handling, and a
declaration of the default collation, and it allows
XML Schemas to be imported. Following these
declarations, it can contain functions definitions. The
following is an example of an XQuery prolog:



decl are xnl space = preserve

import schema
nanespace
myco="http://ww. nyco. coni per sonnel "
at "http://ww. nmyco. conl personnel . xsd"

decl are nanespace
xhtm = "http://ww. w3. org/ 1999/ xhtm "

define function conpensation
(el ement nyco: enpl oyee $enp)
returns xs:deci nal

$enp/ sal ary + $enp/ bonus
}

Expressions

XQuery defines a number of different types of
expressions.

expression type expression syntax

sequence expr, expr,

literal eg. 7, 'XQery', "literal"
variable e.g. $x, $po: backOrders
constructor see below

numeric +, -, *, div, idiv, nod

value comparison eq, ne, It, le, gt, ge
general comparison = !'= < <5, >, >=
node comparison i's, isnot

order comparison <<, >>

logical and, or
conditional if expr
then expr
el se expr
range expr to expr
quantified some/ every $var in expr
satisfies expr
set uni on, intersect, except
typeswitch typeswi tch expr

case type $var
return expr

default $var
return expr

instance of expr instance of type
validate validate { expr }
val i dat e schemaCont ext {
expr }
cast cast as type (expr)
treat treat as type (expr)
path eg.
$enp/ phone[ @ ype=' hone' ]
FLWR for type $var in expr,
let $var := expr,

wher e expr
return expr

function QName (expr, ...)

V& ue comparison expressions (such as eq)
compare single atomic values. General comparison
expressions (such as =) compare two sequences of
values, and provide existential semantics (return true
if the comparison istrue for some valuein the first
sequence and some val ue in the second segquence).

Order comparison determines whether one
node appears earlier than or later than another nodein
document order.

A range expression produces a sequence of
integers, starting at the value of its first argument and
ending at its second argument.

(1to4) — (1, 2, 3, 4)

Many of these expressions accept the empty
seguence, written as () , as an argument. Many of
them return an empty sequence when they are given
an empty sequence as an argument.

4.2¢5 + () — ()

Nodes and node sequences may be used
where atomic values are expected. For a sequence of
one node, the typed value of the node will be used. A
seguence of more than one value will raise an error.
In the example below, plus (+) is being applied to
two nodes of type xs: i nt eger.

input:

<enpl oyee id='575090" >
<HSYear s>4</ HSYear s>
<Col | egeYear s>6</ Col | egeYear s>
<veteran di scharge='honorable'/>
</ enpl oyee>

count (i nput ()
/| enpl oyee
[ HSYears + Col | egeYears ge 8]
)

=

Nodes and node sequences may be used
where a Boolean value is expected. If anode contains
asinglevalue of type xs: bool ean, thenthisvalueis
used. If the node sequence is empty, thenf al se is
returned. If the node sequence contains at least one
node, then t r ue is returned.
if (input()

/Il enpl oyee[ @d eq ' 575090' ]/ vet er an)

then 'served'
el se 'did not serve'

—

'served'



Types

Some of the expressions that we listed above are
specified with atype designator. Rather than going
through BNF, we'll just look a number of examples:

xs:integer? asequence of zero or one

integer

el ement + a sequence of one or
more el ements

node* asequence of zero or
more nodes

item- one or more items

attribute an attribute (single) of

any name and type
el ement nyco: addr ess an element with name
nyco: addr ess
an element of any name,
with type
nyco: addr essType
an element named zi p,
with the type of the zi p
element that occurs
withinan zi ppl us

element in the
nyco: addr Type

complex type
A type designator might be used as follows:

el enent of type
nmyco: addr Type

element zip in type
myco: addr Type/ zi ppl us

i nput ()
/| enpl oyee
[ address
instance of el enent myco: USAddr ess)

]

Constructors

The construction of new XML content is central to
XQuery. XQuery contains constructors for elements,
attributes, CDATA sections, processing instructions,
and comments using a syntax that is largely the same
as XML itself. Element content and attribute values
can contain enclosed expressions, denoted by {}'s,
that contain expressions that will be evaluated. This
allowsthe following:
{-- denonstrate encl osed expressions --}
let $x := 5
return
<let x="{$x}">
<!-- assignment -->
$x 1= {$x}

</let>

—

<let x="5">
<!-- assignnment -->
$x :=5

</let>

An element may contain a namespace
declaration. These namespaces will be added to the
in-scope namespaces for the scope of the element.

<nyco: enpl oyee xm ns: myco="..."

xm ns: sk="...">
<myco: skill s>
<sk:skill> ... </sk:skill>

<myco: skill s>

</ myco: enpl oyee>
The names of elements and attributes can be

computed as well, but doing so requires a different
syntax. The following function uses the element
provided in an argument to construct a new element.
Thefirst child element of the supplied element is
determined and its name is used for the name of the
new element; the value of its first attribute is used for
the new element’ s content:

define function first (elenment $f)
returns el ement

let $firstChild := $f/*[1]
return
el enent { xf:nanme($firstChild) }
{ xf:data($firstChild/ @[1]) }
}
first(<enpl oyee id='998359' >
<status='retired >
<nane>Al an G eene</ nanme>
</ enpl oyee>)

—

<status>retired</status>

A constructed element has its own identity.
The nodes that are used to construct this element are
copied, so that every node in the constructed element
has a new identity. The type of a constructed element
isxs: anyType ... al of the type information of its
contents is discarded. Even if an attribute such as
Xsi : type=' nyco: USAddr essType' is specified,
the type of the constructed element will still be
xs: anyType until it has been validated.

Validation

The validate expression applies schema validation to
its argument (of type el enent *). Itsargument is
converted into an infoset, discarding any type
annotations that it might have contained. The result
of vaidation is a new element (with new contents)
with type annotations. If validation is not successful,
then adynamic type error is raised.

Type annotations can be applied to a
constructed element using the validate expression:



val i date (<nyco: enpl oyee id='440612"' >
<nane>August us Chi | d</ nane>

</ rTyco enpl oyee>

In this case, the “myco” schema must
contain a globally defined element enpl oyee. The
nane element in the constructed element hastype
xs: anyType, while in the validate result it might
have type nyco: nameType. Validation can also be
specified for locally defined elements:

val i date i n nyco: enpl oyee/ cont act
(<phone>666- 555- 1212</ phone>)

FLWR Expression

The FLWR (for, let, where, return) expression
provides for iteration over the itemsin one or more
sequences. Itis as central to XQuery as SELECT isto
SQL.

The“f or " clause binds variables to the
itemsin its sequences, generating a Cartesian product
among the bound variables. The“l et ” clause bindsa
variable to avalue. The “wher e” clause filtersthe
elements of the Cartesian product, leaving those that
remain to contribute to the result of the FLWR.
Finally, the“r et ur n” clause creates a sequence,
concatenating the val ues produced by the evaluation
of its expression.

The best that we can do in this limited space
isto provide some examples of this type of
expression.

»  Return within asingle element the names of the
employees that have more than 8 years of
education:

<educat ed>
{ for $e in docunent('enpl oyees. xm ")
/I enpl oyee
where $e/ HSYears + $e/ Col | egeYears gt 8
return $enp/ nane

</ educat ed>

—

<educat ed>
<nane>Al bert Jones</ nanme>
<nane>Joe Cody</ nane>

</ educat ed>

= Return as a sequence of strings the names of the
employees that have more than 8 years of
education:
for $e in docunent (' enpl oyees. xnm ")
/| enpl oyee

where $e/ HSYears + $e/ Col | egeYears gt 8
return data($enp/ nane)

—

Al bert Jones
Joe Cody

»  Produce an element structure with employees
contained within their departments:

| et $dept := docunent (' depts.xm")
l et $enp : = docunent (' enpl oyees. xm ")
for $d in $dept//departnment
return
<depart nment nane='{$d/ nane}' >
{ for $e in $enp//enpl oyee
where $e/ dept eq $d/ name
return
<enpl oyee>
{ $e/nane }
</ enpl oyee>

</ depart nment >

—

<depart ment name='accounting' >
<enpl oyee>
<nane>Al bert Jones</ nanme>
</ enpl oyee>

</ depart ment >

*  Produce a structure with employee names and
the names of their departments provided in
attributes:

| et $dept := docurent('depts.xnm")
l et $enp : = docunent (' enpl oyees. xm ")
for $e in $enp//enpl oyee,
$d in $dept//departnent

where $e/ dept eq $d/ name
return

<enpl oyee nane='{dat a($e/ nane)}'

dept =' {dat a($d/ dept)}' />

—

<enpl oyee nane=' Al bert Jones'
dept =" accounting' />

<enpl oyee nanme='d ori a French'
dept =" accounting' />

<enpl oyee name='Clark HiIl"'
dept =' security' />

XQuery Updates

Y ou may have noticed that we have not discussed the
ability to modify XML documents through the use of
the XQuery language. The XML Query WG has not
published any documents that provide facilitiesto
update any XML elementsin an existing document,
to insert new elementsinto such a document, or to
delete elements from such a document.

This omission has been discussed on the
public XQuery mailing lists and is recognized to be a



deficiency. It is possible that this omission will be
corrected, either in afuture version of XQuery or
perhaps in a separate document.

XQuery Conformance

Basic XQuery isthe minimal level of conformance
that can be claimed for XQuery. Basic XQuery
encompasses all of the XQuery functionality, with
the following restrictions:

= the Query prolog must not import XML Schemas

= instances of the X Query data model that are built
froma PSVI will map atomic data types to their
nearest XML Schema built-in data type. Nodes
with complex data types will be given the type
xs:anyType.

= gatic type errors do not have to be raised during
the analysis phase

A conforming XQuery implementation may
support the Schema Import Feature, which removes
the first of these restrictions. It may support the Static
Typing Feature, which removes the remaining
restrictions.

XQueryX

XQueryX definesan XML representation of XQuery.
It defines an element structure that mirrors the
abstract syntax of XQuery. Let'slook at asimple
XQuery and the corresponding XQueryX
representation:

for $b in docunment("bib.xm")//book
return $b/title

—

<g: query xm ns: g
="http://ww. w3. or g/ 2001/ 06/ xquer yx" >
<qg: flw>
<q: f or Assi gnnent vari abl e="$b" >
<Qg: step axi s="SLASHSLASH' >
<g: functi on nanme="docunent" >
<g: const ant dat at ype="CHARSTRI NG' >
bi b. xm
</ q: const ant >
</ qg: function>
<g:identifier>book</qg:identifier>
</ q: step>
</ q: f or Assi gnment >
<q: return>
<Qg: step axi s="CH LD'>
<q: vari abl e>$b</ q: vari abl e>
<g:identifier>title</qg:identifier>
</ g: step>
</g:return>
</qg:flw>
</ g: query>

While XQueryX is harder for ahumanto
read and write than XQuery, it does have several

useful properties. It is easily generated by tools and
layered applications, it is easily embedded within
larger XML documents, and it allows “queries on
gueries’.

XQuery 1.0 and XPath 2.0
Functions and Operators

The“F&O” specification defines alarge number of
functions and operators. While these functions and
operators are being written to support X Query,
XPath, and XSLT, they could also be used by other
XML specifications.

The “F&QO” specification defines a number
of string functions, numeric functions, node
functions, date and time functions, aggregate
functions such asxf : avg, xf : m n, and xf : max, and
thexf : document and xf : col | ect i on functions
for accessing the content of XML documents. It
defines what the allowable casts are, and what their
behavior is.

The operators are functions that have been
defined in a different namespace from the others and
are not intended for invocation directly by users.
They exist to define the semantics of operators such
as“+" in the XQuery and XPath specifications.

Functions, as you would expect, are defined
by providing their signature, a description of their
semantics, and some examples. The parameters and
the return types of functions use the X Query/XPath
data model that we discussed earlier. Functions have
alocal name, and are defined to be in the following
namespace (which will be updated in each draft):

http://ww. w3. or g/ 2002/ 08/ xquer y-functi ons

The method of invoking these functionsis
left to the XQuery, XQueryX, and XPath
specifications.

For the most part, functions with the same
name have a different number of parameters and the
parameters in the “smaller” function and “larger”
function that occupy the same position have the same
data types. A small number of functions with the
same name and same number of parameters have
different data types, for the purpose of backward
compatibility with XPath 1.0 functions.

By way of example, let’slook at a specific
function:
xf:transl ate(string? $srcval

string? $mapString
string? $transString)
=> string?

This function constructs an xs.string result
by considering each character in $sr cval inturn. If
the character is not found in $mapSt ri ng, thenitis
appended to the result. If the character isfound in



$mapSt ri ng, then the character in the corresponding
positionin $t ransSt ri ng is appended to the result.
This might be used as follows:

xf:transl ate("abcdabc", "abc", "AB")

—

" ABdAB"

Many of the string functions that are defined
have two variants, one with an xs: anyURI collation
parameter, and one without. If a collation argument is
supplied, then it is used to determine how two strings
compare. If the collation argument is not supplied,
then the default collation in the static context is used.
If that default does not exist, then Unicode codepoint
collation is used.

This specification defines two subtypes of
the XML Schemaxs: dur at i on datatype,
xf : year Mont hDur ati on and
xf : dayTi meDur at i on. Astheir namesimply, they
contain only the year and month components and the
day through seconds components of the
xs: dur at i on datatype, respectively. The
restrictions on these subtypes give them the desirable
property of full ordering. The “F&O” specifications
provide a number of functions on these new subtypes,
but provide only equals and cast to and from string
for xs: dur ati on. It is possible that these two
subtypes will be added to a future version of XML
Schema.

Formal Semantics

The Formal Semantic specification defines the
normalization of a query, which expresses some
XQuery constructsin terms of simpler XQuery
constructs (the XQuery Core language). The static
type of every expression in the core language is
rigorously defined (viainference rules and
judgements), as are the values produced by the
dynamic evaluation of these expressions.

Many people find Formal Semantics
difficult to read because of its mathematical notation
and its firm focus on formality. However, in order to
properly express the semantics of a complex
language such as XQuery, such formality is
mandatory. Feel freeto read it if you wish, but you
don’t need to do so in order to program using
XQuery.

Future Work

It isfrustrating not to be able to say more about how
we expect this work to progress. Having tried to give
you a sense of the features and syntax of the XQuery
language, we'll leave you with the reminder that this

work has not yet reached W3C's Last Call Working
Draft status. It is possible that quite a bit of what we
have described will change. In fact, by the time you
read this, new drafts of these specifications may
already have been published. A quick look at the
W3C Technical Reports page will let you know if
thisisthe case.

References

[1] XML Query Requirements, Don Chamberlin,
Peter Fankhauser, Massimo Marchiori, Jonathan
Robie, Feb. 15, 2001,
http://www.w3.org/TR/xmlquery-reqg.

[2] XQuery 1.0: An XML Query Language, Don
Chamberlin, Mary F. Fernandez, Daniela
Florescu, Jonathan Robie, Jéréme Siméon, Scott
Boag, Aug. 16, 2002,
http://www.w3.org/TR/xquery/.

[3] XML Path Language (XPath) 2.0, Anders
Berglund, Scott Boag, Don Chamberlin, Mary F.
Fernandez, Michael Kay, Jonathan Robie,
Jérdme Siméon, Aug. 16, 2002,
http://www.w3.0rg/TR/xpath20/.

[4] XML Query Use Cases, Don Chamberlin,
Daniela Florescu, Peter Fankhauser, Massimo
Marchiori, Jonathan Robie, Aug. 16, 2002,
http://www.w3.0rg/TR/xmlquery-use-cases.

[5] XQuery 1.0 and XPath 2.0 Data Model, Mary
Fernandez, Jonathan Marsh, Marton Nagy, Aug.
16, 2000,
http://www.w3.org/TR/query-datamodel/.

[6] XQuery 1.0 Formal Semantics, Denise Draper,
Peter Fankhauser, Mary Ferndndez, Ashok
Malhotra, Kristoffer Rose, Michael Rys, Jérome
Siméon, Philip Wadler, Aug. 16, 2002,
http://www.w3.0rg/TR/query-semantics.

[7] XQuery 1.0 and XPath 2.0 Functions and
Operators Version 1.0, Ashok Malhotra, Norman
Walsh, Jim Melton, Jonathan Robie, Aug. 16,
2002, http://www.w3.org/TR/xquery-operators/.

[8] XML Syntax for XQuery 1.0 (XQueryX), Ashok
Malhotra, Jonathan Robie, Michael Rys, June 11,
2001, http://www.w3.org/TR/xqueryx.

Web References
W3C  http://www.w3.0rg

XML Query WG
http://www.w3.org/ XM L/Query

QL'98 - The Query Languages Workshop
http://www.w3.org/TandS/QL /QL 98/



http://www.w3.org/TR/xmlquery-req
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/query-datamodel/
http://www.w3.org/TR/query-semantics/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xqueryx
http://www.w3.org/
http://www.w3.org/XML/Query
http://www.w3.org/TandS/QL/QL98/

	An Early Look at XQuery
	Introduction
	W3C Process
	The Set of XQuery Documents
	XQuery and XPath

	The XQuery 1.0 and XPath 2.0 Data Model
	XQuery
	Query Processing
	XQuery Prolog and Body
	Expressions
	Types
	Constructors
	Validation
	FLWR Expression
	XQuery Updates
	XQuery Conformance

	XQueryX
	XQuery 1.0 and XPath 2.0 Functions and Operators
	Formal Semantics
	Future Work
	References
	Web References

