
HLA Component Based Environment for Distributed
Multiscale Simulations

Katarzyna Rycerz1,2, Marian Bubak1,2, Peter M.A. Sloot3, Vladimir Getov4

{kzajac,bubak}@agh.edu.pl
{sloot}@science.uva.nl
{V.S.Getov}@wmin.ac.uk

1Institute of Computer Science AGH, al. Mickiewicza 30, 30-059
Kraków, Poland

2Academic Computer Centre – CYFRONET, Nawojki 11,
30-950 Kraḱow, Poland

3Faculty of Sciences, Section Computational Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

4School of Computer Science University of Westminster
Watford Rd, Northwick Park Harrow HA1 3TP, U.K.

CoreGRID Technical Report
Number TR-0137
April 22, 2008

Institute on Grid Systems, Tools,
and Environments

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

HLA Component Based Environment for Distributed Multiscale
Simulations

Katarzyna Rycerz1,2, Marian Bubak1,2, Peter M.A. Sloot3, Vladimir Getov4

{kzajac,bubak}@agh.edu.pl
{sloot}@science.uva.nl
{V.S.Getov}@wmin.ac.uk

1Institute of Computer Science AGH, al. Mickiewicza 30, 30-059
Kraków, Poland

2Academic Computer Centre – CYFRONET, Nawojki 11,
30-950 Kraków, Poland

3Faculty of Sciences, Section Computational Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

4School of Computer Science University of Westminster
Watford Rd, Northwick Park Harrow HA1 3TP, U.K.

CoreGRID TR-0137

April 22, 2008

Abstract

In this paper we present the Grid environment that supports application building basing on a High Level Archi-
tecture (HLA) component model. The proposed model is particularly suitable for distributed multiscale simulations.
Original HLA partly supports interoperability and composability of simulation models, where connections between
modules (federates) in a simulation system (federation) are defined and set by federates themselves. On the contrary,
in the proposed component model the particular behavior of component and it’s connections are defined and set by
an external module (e.g. builder) on the user request which is more flexible and increases reusability of components.
We are also proposing to integrate our HLA component solution with the Grid which will allow users working on
distributed simulations to more easily exchange the modelsalready created. The focus of this paper is on design of
the HLA component. We show how to insert simulation logic into a component and make possible to steer from
outside its connections with other components. Its functionality is shown on the example of multiscale simulation of
a stellar system.
Keywords: Components, Grid computing, HLA, distributed simulation

1 Introduction

Environments supporting application building from existing software components on the Grid are an interesting topic
of research. In this paper we would like to propose such environment oriented towards distributed simulations consist-
ing of modules of different time and space scale (multiscale). The paper describes a High Level Architecture (HLA)
component model that defines software modules comprising application to be build.

We have choosen HLA [5] as it is a standard for large scale distributed interactive simulations and offers many
advanced features specific for such applications (like time, data and ownership management). It also offers the ability
of plugging and unplugging various simulation models (alsowith different internal types of time management) to/from

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1

a complex simulation system. Additionally, HLA introducesa uniform way of description of events and objects
being exchanged between federates. Also, HLA separates communication runtime infrastructure (RTI) from actual
simulation. All these features can be used to create HLA-based component model, where components are independent
simulation modules that can be dynamically joined into a coherent whole. The difference between the component
view proposed in this paper and an original HLA approach is that the behavior of component and it’s connections
are defined and set by an external module on the user request. In original HLA, the connections between federates
in a federation are defined and set by federates themselves. The proposed approach is more flexible and increases
reusability of components as it separates component developers from the users wanting to set up particular distributed
simulation system from existing components. It also differs from other popular component models (e.g. CCA [1]), as
the federates are not using direct connections. Instead, all federates within a federation are connected together using a
tuple space, which they can use for subscribing and publishing events and data objects. The federates can also make
use of advanced time management, which is particularly useful for multiscale simulations.

In this paper we propose to build the Grid environment that will support HLA component model. We are using
Grid technology [7, 16], as it is oriented towards joining geographically distributed communities of scientists working
on similar problems - this will allow users working on distributed simulations to more easily exchange the models
already created. Therefore, the attempt to integrate HLA with new possibilities given by both Grid and component
technologies is a promising approach. As a Grid platform hosting HLA components we have chosen H2O environment
[7].

In this paper we focus on the design of HLA component itself. We show how to insert simulation logic into a
component and how to make it possible to steer its connections with other components from outside. The functionality
of the system is shown on the example of multiscale simulation of a dense stellar system.

The approach described in this paper is directed to the usersthat want to create new multiscale simulation systems
from existing components or join their own new component to the multiscale system. For the users that have they
own HLA application and want to run it almost unaltered efficiently using the Grid, we suggested using our previous
work [13], where we have focused on execution management of existing legacy HLA applications and the best usage
of available Grid resources, which can be achieved by using provided migration and monitoring services.

This paper is organized as follows: in Section 2 we outline related work, in Section 3 we describe the HLA compo-
nent model. Section 4 presents the idea of the Grid support system for such model and the design and implementation
of a HLA component - the element of the designed system responsible for storing simulation logic and enabling steer-
ing its connections from outside of it. Section 5 presents experiment with example multiscale simulation of a dense
stellar system. Summary and future plans are described in Section 6.

2 Related Work

Building application from existing software modules is a wide range topic. This issue includes defining interoperable
and reusable pieces of software – services and component technologies. The most popular services standards include
Web Services [15] and its extension with stateful resources[16]. Among component standards worth to be mentioned
are: Common Component Architecture (CCA)[1] (with its implementations like XCAT[6] or MOCCA [8]), Fractal
[2] and its extension - Grid Component Model [10] (with its implementation ProActive [12]). However, none of this
models provides advanced features for distributed multiscale simulations. In particular they do not support advanced
time management mechanism, which in our model is achieved byintegrating mechanism provided by HLA with
component solutions. An important approach to using services and component technology to distributed simulations
is described in [3]. However, the proposed solution is addressed in general to distributed simulations, without special
focus on multiscale simulations systems. Another worth to be mentioned component framework for simulations [11]
is specifically designed for partial differential equations.

3 HLA Component Model

As already mentioned in the previous Section, one of the important features of HLA is the ability of plugging and
unplugging pieces of functionality to/from a complex application. In that sense it is possible to create a HLA–based
component model. Unlike popular component models (e.g. CCA[1]), the federates are not using direct connections
(e.g. in CCA one component is connected with other component, when itsuses portis connected with partner’s
provides port). Instead, all federates within federation are connected together using tuple space, which takes care

CoreGRID TR-0137 2

User Interface

Component
HLA

Component
HLA HLA

Component Component
Manager
Federation

Process
FederateFederate

Process Process
Federate

Builder
Description Repository

HLA ComponentsModel Description
Assembler

HLA RTI Communication

(e.g. RTIExec)

coordination
RTI

process

.

Figure 1: Grid system supporting HLA–based component model.

of sending the appropriate data from the publisher to the subscriber. HLA also includes advanced time management
mechanism that allows to connect federates with different internal time management together. It is possible for feder-
ates to dynamically subscribe/unsubscribe and publish/unpublish their data as well as dynamically change their use of
time management. Additionally, these decisions can not only be taken by the actual federate itself, but also by other
federate that can steer subscription/publication mechanism of others.

All these features allow to think about a HLA component as about an entity that can be joined to a set of other
components (the set represents a federation) and interact with them by publish/subscribe mechanism of exchanging
data and using HLA time management if necessary. If needed, each component can also be executed independently
of others. The presented model will be especially useful forthe applications that would benefit from HLA (mainly
distributed simulations). Because of advanced HLA time management facility that enables to join components of
different internal time management and scale, it would be particularly useful for multiscale simulations, on which we
would like to focus.

The difference between a component view proposed in this paper and an original HLA approach is that the partic-
ular behavior of component and it’s connections are defined and set by an external module on the user request. This
enables the user to create federations from federates developed by others without changing their implementation. The
particular federation, in which a federate is going to take part, does not need to be defined by a federate developer, but
can be created later – from outside – in the process of settingup distributed simulation system. Therefore the presented
approach increases reusability and composability of simulations.

4 Grid system supporting HLA components

In this paper we would like to propose a solution that would support the HLA component model on the Grid. The
user will be able to decide how components will interact witheach other (e.g. by setting up appropriate subscrip-
tion/publication and time management mechanism). The useralso will be able to plug/unplug components and change
nature of their interactions during simulation runtime. Fig.1 shows the proposed support for HLA component model
(CompoHLA). Apart from the actual HLA communication level,there is a Grid level consisting of following elements:
Builder – sets up a simulation system on behalf of the user. It uses Federation Management Component to create
federation and instructs HLA Components to join it. It also can instruct chosen components to set appropriate time
management mechanism and subscribe or publish chosen data objects or events.
HLA Component Description Repository – stores description of components - including informationabout data

CoreGRID TR-0137 3

code with

compoHLA library

start/stop

join/resign

set time policy
H2O pluglet

publish

subscribe

simulation logic

.

Figure 2: Relationship between component’s developer code(simulation logic), HLA RTI implementation and com-
poHLA library.

objects and interactions that the component can exchange with others (which is called Simulation Object Model), the
type of time management that makes sense for this component and additional information that may be useful for the
user that wants to set up multiscale system (e.g. units of produced data, scale of simulation time, if rollback is possible,
how subscription for particular data affects simulation, average execution time etc.).
Model Description Assembler - produces Federation Object Model needed to start federation from given Simulation
Object Models of components that will comprise simulation system.
Federation Manager Component - manages whole federation on the component level and sets upconnection with
coordination process for federations.
HLA Components – wrap actual functionality of federates into components (described later in this section)

The relations between system elements is shown in the Fig.1.A user can use the HLA Components Description
Repository and the Model Description Assembler to build a federation description and pass it to the Builder that sets
up the federation from appropriate HLA Components. The userthan can dynamically change nature of connections
between components using the Builder.
HLA Component in CompoHLA. As described in Section 3, a HLA component should be able to bejoined to/resigned
from federation as well as be able to react on user requests tosubscribe/publish appropriate data and use time manage-
ment mechanism if necessary. In this paper, we present HLA component prototype that is designed as entity that can
be requested to join the federation and then to resign from itduring component lifetime. Independently from being
joined/disjoined each component can be started and stoppedduring its lifetime. In [14] we described how the user
can change interactions (subscription/publication and time management) between components during lifetime. As a
Grid framework we have chosen the H2O [7] platform as it is lightweight and enables for dynamic remote deploy-
ment. A HLA component is implemented as a H2O pluglet having requests to start, stop, join, resign (described in
this paper) and requests to change publications, subscriptions as well as type of time management (described in [14]).
The component developer has to provide a simulation logic code which is connected with a pluglet by interfacing the
compoHLA library as shown in the Fig.2.

The more detailed relations in the form of a simplified class diagram between HLA RTI, the compoHLA li-
brary and a developer code (simulation logic) are shown in the Fig.3. The CompoHLA library introduces two
classes with abstract methods that should be overridden by component developer. One is aCompoHLASimulator
class, from which the developer has to inherit and point to the main function starting a simulation. There is also a
CompoHLADataObject class that has to be inherited for each data object that is going to be published by the feder-
ate and be visible outside for an external user (who is going to chose this component to be connected to his simulation
system). The developer has to specify how the actual simulation data fits into HLA data objects that could possibly be
exchanged with other federates.

The simulation developer can also call methods of aCompoHLAFederate class which, in turn, uses HLA a
RTIambassador class (main class providing HLA services). The methods include getting info about federate time
and requests of time advance as well as checking if stop request came (in order to perform final operations before the
simulation exit).

Also, a developer has to overrideFederateAmbassador class callbacks (there are used by RTI to communicate
with a developer code e.g. when receiving data from other federates) as in an original RTI federate. The use of
the compoHLA library does not free the developer from understanding HLA time management and data exchange
mechanisms, but simplifies use of them and allows a HLA component to be steered from outside (by external requests

CoreGRID TR-0137 4

RTIambassadorFederateAmbassador

Ambassador Implementation

CompoHLA Federate

CompoHLA Simulator

Simulator Implementation

CompoHLADataObject

DataObject Implementation

HLA RTI

CompoHLA Library

Simulation Logic

calls
calls

.

Figure 3: Simplified class diagram illustrating relations between crucial classes of HLA RTI, compoHLA library and
component developer code (simulation logic).

as described above).

5 Experiments with MUSE

For the purposes of this research we have used simulation modules of different time scale taken from Multiscale
Multiphysics Scientific Environment (MUSE)[9] for simulating dense stellar systems like globular clusters and galactic
nuclei. The original MUSE consists of the Python scheduler and three simulation modules of different time scale:
stellar evolution (in macro scale), stellar dynamics (nbody simulation - in meso scale) and hydro dynamics (simulation
of collisions - in micro scale). Also, there are plans to add additional modules. For the purposes of this paper, we have
chosen to make components from two MUSE modules: evolution (macro scale) and dynamics (meso scale) that run
concurrently. The simulation system has to make sure that dynamics will get update from evolution before it actually
passes the appropriate point in time. The HLA time management mechanism [5] ofregulatingfederate (evolution)
that controls time flow inconstrainedfederate (dynamics) could be there very useful [5]. The advantage of HLA
Component model is that it should allow this mechanism to be accessible to the external user that would like to set up
the simulation system from existing dynamics and evolutioncomponents created by someone else.
Performance Results. We have created two prototype HLA components for dynamics and evolution simulations
and measured execution time of requests to them. In our implementation we have used H2O v2.1 and HLA Certi
implementation v3.2.4. Experiments were done on Dutch GridDAS3 [4]. The RTI control process was run on Grid
node at the Amsterdam Free University the dynamics component at University of Amsterdam, the evolution component
at Delft, and the client was run at Leiden University. The bandwidth between Grid sites is 10Gbps.

We have tested following scenario: start dynamics – start evolution – join dynamics to federation – join evolution
to federation – resign dynamics – resign evolution – stop dynamics – stop evolution. Tab.1 shows results of this

CoreGRID TR-0137 5

Request avr time, sec σ

start dynamics 0.008 0.001
start evolution 0.009 0.001
join dynamics 0.181 0.003
join evolution 0.52 0.08
resign dynamics 0.006 0.0004
resign evolution 0.007 0.0003
stop dynamics 0.3 0.2
stop evolution 0.2 0.2

Table 1: Time of HLA Component request execution for evolution and dynamics components taken from MUSE [9]

experiment (average of 10 runs). In general, execution timeof all requests are small. Thestart, stop andresign
requests are similar for both modules. However, as we can see, realization ofjoin request by second component
is longer then by first component. This can be explained by thefact that joining to the federation that already have
some members requires to make connections to these members.These overhead depends on the HLA implementation,
not the design of the HLA component. Also performance ofstop request requires explanation. The request does
not stop the simulation immediately, but sends requests to the simulation and waits for it to check if that request
came (we would like to give the control to the component developer and let him to save the results of a simulation, if
necessary). Therefore, the execution time ofstop request can vary depending on this waiting time. This is illustrated
by quite largeσ. To summarize, execution times of all requests are promising and show that component layer does not
introduce much overhead, but we have to have in mind factors independent on the HLA Component design (overhead
of particular HLA implementation and the frequency of checking if thestop request came in the component developer
code).

6 Summary and Future Plans

In this paper we have presented the idea of a HLA component model, which enables the user to dynamically com-
pose/decompose distributed simulations from multiscale elements residing on the Grid. We have also shown the
architecture of the system supporting such model and build preliminary prototype of a HLA component that stores
simulation logic and makes possible to steer from outside its connections with other components. This approach dif-
fers from that in original HLA, where all decisions about actual connections are made by federates themselves. The
functionality of the prototype is shown on the example of multiscale simulation of a dense stellar system – MUSE
environment [9]. The results of the experiment show that that component layer does not introduce much overhead. In
the future we plan to fully design and implement other modules of the presented support system.
Acknowledgments: The authors wish to thank Maciej Malawski for discussions oncomponent models and Simon
Portegies Zwart for valuable discussions on MUSE. This research was also partly funded EU IST Project CoreGRID
and the Polish State Committee for Scientific Research SPUB-M.

References

[1] R. Armstrong, G. Kumfert, L. C. McInnes, S. Parker, B. Allan, M. Sottile, T. Epperly, and T. Dahlgren. The CCA
component model for high-performance scientific computing. Concurr. Comput. : Pract. Exper., 18(2):215–229,
2006.

[2] E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive and dynamic software composition with sharing. In
Proceedings of Seventh International Workshop on Component-Oriented Programming, June 2002.

[3] X. Chen, W. Cai, S. J. Turner, Y. Wang: SOAr-DSGrid: Service-Oriented Architecture for Distributed Simulation
on the Grid. Principles of Advanced and Distributed Simulation (PADS) 2006: 65-73

[4] The Distributed ASCI Supercomputer 3 web pagehttp://www.cs.vu.nl/das3

CoreGRID TR-0137 6

[5] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA), 2004. http://
standards.ieee.org/catalog/olis/compsim.html.

[6] S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components as OGSA Services. InProc. Int.
Workshop on High-Level Parallel Progr. Models and Supportive Environments (HIPS), pp. 90–97, Santa Fe,
NM, USA, 2004.

[7] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V. S. Sunderam. Towards Self-Organizing Distributed Computing
Frameworks: The H2O Approach.Parallel Processing Letters, 13(2):273–290, 2003.

[8] M. Malawski, D. Kurzyniec, and V. S. Sunderam. MOCCA - Towards a Distributed CCA Framework for Meta-
computing. In19th International Parallel and Distributed Processing Symposium (IPDPS 2005), CD-ROM /
Abstracts Proceedings, 4-8 April 2005, Denver, CA, USA, 2005.

[9] MUSE Web pagehttp://muse.li/

[10] OASIS team: Proposals for a Grid Component Model CoreGRID project Technical report, 2004.http:
//www.coregrid.net

[11] S.G. Parker. A Component-Based Architecture for Parallel Multi-physics PDE Sim ulation. Future Generation
Computer Systems, 22(1-2):204–216, 2006.

[12] ProActive project homepage.http://www-sop.inria.fr/oasis/ProActive/.

[13] K. Rycerz, M. Bubak, P.M.A. Sloot, V. Getov: Problem Solving Environment for Distributed Interactive Sim-
ulations in: S. Gorlatch, M. Bubak, and T. Priol (Eds). Achievements in European Reseach on Grid Systems.
CoreGRID Integration Workshop 2006 Springer, 2008, pp 55 - 66.

[14] K.Rycerz, M. Bubak, P.M.A. Sloot Dynamic Interactionsin HLA Component Model for Multiscale Simulations.
Proccedings of International Conference on ComputationalScience, ICCS 2008. (to appear)

[15] Web Services.http://www.w3.org/2002/ws/.

[16] Web Services Resource Framework.http://www.globus.org/wsrf.

CoreGRID TR-0137 7

