W3C

Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language

W3C Recommendation 26 June 2007

This version:
http://www.w3.org/TR/2007/REC-wsdl20-20070626
Latest version:
http://www.w3.org/TR/wsdl20
Previous version:
http://www.w3.org/TR/2007/PR-wsdl20-20070523
Editors:
Roberto Chinnici, Sun Microsystems
Jean-Jacques Moreau, Canon
Arthur Ryman, IBM
Sanjiva Weerawarana, WSO2

Please refer to the errata for this document, which may include some normative corrections.

This document is also available in these non-normative formats: XHTML with Z Notation, PDF, PostScript, XML, and plain text.

See also translations.


Abstract

This document describes the Web Services Description Language Version 2.0 (WSDL 2.0), an XML language for describing Web services. This specification defines the core language which can be used to describe Web services based on an abstract model of what the service offers. It also defines the conformance criteria for documents in this language.

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

This is the W3C Recommendation of Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language for review by W3C Members and other interested parties. It has been produced by the Web Services Description Working Group, which is part of the W3C Web Services Activity.

Please send comments about this document to the public public-ws-desc-comments@w3.org mailing list (public archive).

The Working Group released a test suite along with an implementation report. A diff-marked version against the previous version of this document is available.

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

This document is governed by the 24 January 2002 CPP as amended by the W3C Patent Policy Transition Procedure. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents

1. Introduction
    1.1 Service Description
    1.2 The Meaning of a Service Description
    1.3 Document Conformance
    1.4 Notational Conventions
        1.4.1 RFC 2119 Keywords
        1.4.2 RFC 3986 Namespaces
        1.4.3 XML Schema anyURI
        1.4.4 Prefixes and Namespaces Used in This Specification
        1.4.5 Terms Used in This Specification
        1.4.6 XML Information Set Properties
        1.4.7 WSDL 2.0 Component Model Properties
        1.4.8 Z Notation
        1.4.9 BNF Pseudo-Schemas
        1.4.10 Assertions
2. Component Model
    2.1 Description
        2.1.1 The Description Component
        2.1.2 XML Representation of Description Component
            2.1.2.1 targetNamespace attribute information item
        2.1.3 Mapping Description's XML Representation to Component Properties
    2.2 Interface
        2.2.1 The Interface Component
        2.2.2 XML Representation of Interface Component
            2.2.2.1 name attribute information item with interface [owner element]
            2.2.2.2 extends attribute information item
            2.2.2.3 styleDefault attribute information item
        2.2.3 Mapping Interface's XML Representation to Component Properties
    2.3 Interface Fault
        2.3.1 The Interface Fault Component
        2.3.2 XML Representation of Interface Fault Component
            2.3.2.1 name attribute information item with fault [owner element]
            2.3.2.2 element attribute information item with fault [owner element]
        2.3.3 Mapping Interface Fault's XML Representation to Component Properties
    2.4 Interface Operation
        2.4.1 The Interface Operation Component
            2.4.1.1 Message Exchange Pattern
            2.4.1.2 Operation Style
        2.4.2 XML Representation of Interface Operation Component
            2.4.2.1 name attribute information item with operation [owner element]
            2.4.2.2 pattern attribute information item with operation [owner element]
            2.4.2.3 style attribute information item with operation [owner element]
        2.4.3 Mapping Interface Operation's XML Representation to Component Properties
    2.5 Interface Message Reference
        2.5.1 The Interface Message Reference Component
        2.5.2 XML Representation of Interface Message Reference Component
            2.5.2.1 messageLabel attribute information item with input or output [owner element]
            2.5.2.2 element attribute information item with input or output [owner element]
        2.5.3 Mapping Interface Message Reference's XML Representation to Component Properties
    2.6 Interface Fault Reference
        2.6.1 The Interface Fault Reference Component
        2.6.2 XML Representation of Interface Fault Reference
            2.6.2.1 ref attribute information item with infault, or outfault [owner element]
            2.6.2.2 messageLabel attribute information item with infault, or outfault [owner element]
        2.6.3 Mapping Interface Fault Reference's XML Representation to Component Properties
    2.7 Binding
        2.7.1 The Binding Component
        2.7.2 XML Representation of Binding Component
            2.7.2.1 name attribute information item with binding [owner element]
            2.7.2.2 interface attribute information item with binding [owner element]
            2.7.2.3 type attribute information item with binding [owner element]
            2.7.2.4 Binding extension elements
        2.7.3 Mapping Binding's XML Representation to Component Properties
    2.8 Binding Fault
        2.8.1 The Binding Fault Component
        2.8.2 XML Representation of Binding Fault Component
            2.8.2.1 ref attribute information item with fault [owner element]
            2.8.2.2 Binding Fault extension elements
        2.8.3 Mapping Binding Fault's XML Representation to Component Properties
    2.9 Binding Operation
        2.9.1 The Binding Operation Component
        2.9.2 XML Representation of Binding Operation Component
            2.9.2.1 ref attribute information item with operation [owner element]
            2.9.2.2 Binding Operation extension elements
        2.9.3 Mapping Binding Operation's XML Representation to Component Properties
    2.10 Binding Message Reference
        2.10.1 The Binding Message Reference Component
        2.10.2 XML Representation of Binding Message Reference Component
            2.10.2.1 messageLabel attribute information item with input or output [owner element]
            2.10.2.2 Binding Message Reference extension elements
        2.10.3 Mapping Binding Message Reference's XML Representation to Component Properties
    2.11 Binding Fault Reference
        2.11.1 The Binding Fault Reference Component
        2.11.2 XML Representation of Binding Fault Reference Component
            2.11.2.1 ref attribute information item with infault or outfault [owner element]
            2.11.2.2 messageLabel attribute information item with infault or outfault [owner element]
            2.11.2.3 Binding Fault Reference extension elements
        2.11.3 Mapping Binding Fault Reference's XML Representation to Component Properties
    2.12 Service
        2.12.1 The Service Component
        2.12.2 XML Representation of Service Component
            2.12.2.1 name attribute information item with service [owner element]
            2.12.2.2 interface attribute information item with service [owner element]
        2.12.3 Mapping Service's XML Representation to Component Properties
    2.13 Endpoint
        2.13.1 The Endpoint Component
        2.13.2 XML Representation of Endpoint Component
            2.13.2.1 name attribute information item with endpoint [owner element]
            2.13.2.2 binding attribute information item with endpoint [owner element]
            2.13.2.3 address attribute information item with endpoint [owner element]
            2.13.2.4 Endpoint extension elements
        2.13.3 Mapping Endpoint's XML Representation to Component Properties
    2.14 XML Schema 1.0 Simple Types Used in the Component Model
    2.15 Equivalence of Components
    2.16 Symbol Spaces
    2.17 QName resolution
    2.18 Comparing URIs and IRIs
3. Types
    3.1 Using W3C XML Schema Definition Language
        3.1.1 Importing XML Schema
            3.1.1.1 namespace attribute information item
            3.1.1.2 schemaLocation attribute information item
        3.1.2 Inlining XML Schema
        3.1.3 References to Element Declarations and Type Definitions
    3.2 Using Other Schema Languages
    3.3 Describing Messages that Refer to Services and Endpoints
        3.3.1 wsdlx:interface attribute information item
        3.3.2 wsdlx:binding attribute information item
        3.3.3 wsdlx:interface and wsdlx:binding Consistency
        3.3.4 Use of wsdlx:interface and wsdlx:binding with xs:anyURI
4. Modularizing WSDL 2.0 descriptions
    4.1 Including Descriptions
        4.1.1 location attribute information item with include [owner element]
    4.2 Importing Descriptions
        4.2.1 namespace attribute information item
        4.2.2 location attribute information item with import [owner element]
    4.3 Extensions
5. Documentation
6. Language Extensibility
    6.1 Element-based Extensibility
        6.1.1 Mandatory extensions
        6.1.2 required attribute information item
    6.2 Attribute-based Extensibility
    6.3 Extensibility Semantics
7. Locating WSDL 2.0 Documents
    7.1 wsdli:wsdlLocation attribute information item
8. Conformance
    8.1 XML Information Set Conformance
9. XML Syntax Summary (Non-Normative)
10. References
    10.1 Normative References
    10.2 Informative References

Appendices

A. The application/wsdl+xml Media Type
    A.1 Registration
    A.2 Fragment Identifiers
        A.2.1 The Description Component
        A.2.2 The Element Declaration Component
        A.2.3 The Type Definition Component
        A.2.4 The Interface Component
        A.2.5 The Interface Fault Component
        A.2.6 The Interface Operation Component
        A.2.7 The Interface Message Reference Component
        A.2.8 The Interface Fault Reference Component
        A.2.9 The Binding Component
        A.2.10 The Binding Fault Component
        A.2.11 The Binding Operation Component
        A.2.12 The Binding Message Reference Component
        A.2.13 The Binding Fault Reference Component
        A.2.14 The Service Component
        A.2.15 The Endpoint Component
        A.2.16 Extension Components
    A.3 Security considerations
B. Acknowledgements (Non-Normative)
C. IRI-References for WSDL 2.0 Components (Non-Normative)
    C.1 WSDL 2.0 IRIs
    C.2 Canonical Form for WSDL 2.0 Component Designators
    C.3 Example
D. Component Summary (Non-Normative)
E. Assertion Summary (Non-Normative)


1. Introduction

Web Services Description Language Version 2.0 (WSDL 2.0) provides a model and an XML format for describing Web services. WSDL 2.0 enables one to separate the description of the abstract functionality offered by a service from concrete details of a service description such as “how” and “where” that functionality is offered.

This specification defines a language for describing the abstract functionality of a service as well as a framework for describing the concrete details of a service description. It also defines the conformance criteria for documents in this language.

The companion specification, Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts [WSDL 2.0 Adjuncts] describes extensions for message exchange patterns, operation safety, operation styles and binding extensions (for SOAP [SOAP 1.2 Part 1: Messaging Framework (Second Edition)] and HTTP [IETF RFC 2616]).

1.1 Service Description

WSDL 2.0 describes a Web service in two fundamental stages: one abstract and one concrete. Within each stage, the description uses a number of constructs to promote reusability of the description and to separate independent design concerns.

At an abstract level, WSDL 2.0 describes a Web service in terms of the messages it sends and receives; messages are described independent of a specific wire format using a type system, typically XML Schema.

An operation associates a message exchange pattern with one or more messages. A message exchange pattern identifies the sequence and cardinality of messages sent and/or received as well as who they are logically sent to and/or received from. An interface groups together operations without any commitment to transport or wire format.

At a concrete level, a binding specifies transport and wire format details for one or more interfaces. An endpoint associates a network address with a binding. And finally, a service groups together endpoints that implement a common interface.

1.2 The Meaning of a Service Description

A WSDL 2.0 service description indicates how potential clients are intended to interact with the described service. It represents an assertion that the described service fully implements and conforms to what the WSDL 2.0 document describes. For example, as further explained in section 6.1.1 Mandatory extensions, if the WSDL 2.0 document specifies a particular optional extension, the functionality implied by that extension is only optional to the client. It must be supported by the Web service.

A WSDL 2.0 interface describes potential interactions with a Web service, not required interactions. The declaration of an operation in a WSDL 2.0 interface is not an assertion that the interaction described by the operation must occur. Rather it is an assertion that if such an interaction is (somehow) initiated, then the declared operation describes how that interaction is intended to occur.

1.3 Document Conformance

An element information item (as defined in [XML Information Set]) whose namespace name is "http://www.w3.org/ns/wsdl" and whose local part is description conforms to this specification if it is valid according to the XML Schema for that element as defined by this specification (http://www.w3.org/2007/06/wsdl/wsdl20.xsd) and additionally adheres to all the constraints contained in this specification and conforms to the specifications of any extensions contained in it. Such a conformant element information item constitutes a WSDL 2.0 document.

The definition of the WSDL 2.0 language is based on the XML Information Set [XML Information Set] but also imposes many semantic constraints over and above structural conformance to this XML Infoset. In order to precisely describe these constraints, and as an aid in precisely defining the meaning of each WSDL 2.0 document, the WSDL 2.0 specification defines a component model 2. Component Model as an additional layer of abstraction above the XML Infoset. Constraints and meaning are defined in terms of this component model, and the definition of each component includes a mapping that specifies how values in the component model are derived from corresponding items in the XML Infoset.

An XML 1.0 document that is valid with respect to the WSDL 2.0 XML Schema and that maps to a valid WSDL 2.0 Component Model is conformant to the WSDL 2.0 specification.

1.4 Notational Conventions

All parts of this specification are normative, with the EXCEPTION of notes, pseudo-schemas, examples, and sections explicitly marked as “Non-Normative”.

1.4.1 RFC 2119 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119 [IETF RFC 2119].

1.4.2 RFC 3986 Namespaces

Namespace names of the general form:

  • "http://example.org/..." and

  • "http://example.com/..."

represent application or context-dependent URIs [IETF RFC 3986].

1.4.3 XML Schema anyURI

This specification uses the XML Schema type xs:anyURI (see [XML Schema: Datatypes]). It is defined so that xs:anyURI values are essentially IRIs (see [IETF RFC 3987]). The conversion from xs:anyURI values to an actual URI is via an escaping procedure defined by (see [XLink 1.0]), which is identical in most respects to IRI Section 3.1 (see [IETF RFC 3987]).

For interoperability, WSDL authors are advised to avoid the US-ASCII characters: "<", ">", '"', space, "{", "}", "|", "\", "^", and "`", which are allowed by the xs:anyURI type, but disallowed in IRIs.

1.4.4 Prefixes and Namespaces Used in This Specification

This specification uses predefined namespace prefixes throughout; they are given in the following list. Note that the choice of any namespace prefix is arbitrary and not semantically significant (see [XML Namespaces]).

Table 1-1. Prefixes and Namespaces used in this specification
Prefix Namespace Notes
wsdl "http://www.w3.org/ns/wsdl" Defined by this specification.
wsdli "http://www.w3.org/ns/wsdl-instance" Defined by this specification 7.1 wsdli:wsdlLocation attribute information item.
wsdlx "http://www.w3.org/ns/wsdl-extensions" Defined by this specification 3.3 Describing Messages that Refer to Services and Endpoints.
wrpc "http://www.w3.org/ns/wsdl/rpc" Defined by WSDL 2.0: Adjuncts [WSDL 2.0 Adjuncts].
wsoap "http://www.w3.org/ns/wsdl/soap" Defined by WSDL 2.0: Adjuncts [WSDL 2.0 Adjuncts].
whttp "http://www.w3.org/ns/wsdl/http" Defined by WSDL 2.0: Adjuncts [WSDL 2.0 Adjuncts].
xs "http://www.w3.org/2001/XMLSchema" Defined in the W3C XML Schema specification [XML Schema: Structures], [XML Schema: Datatypes].
xsi "http://www.w3.org/2001/XMLSchema-instance" Defined in the W3C XML Schema specification [XML Schema: Structures], [XML Schema: Datatypes].

1.4.5 Terms Used in This Specification

This section describes the terms and concepts introduced in Part 1 of the WSDL Version 2.0 specification (this document).

Actual Value

As in [XML Schema: Structures], the expression "actual value" is used to refer to the member of the value space of the simple type definition associated with an attribute information item which corresponds to its normalized value. This will often be a string, but may also be an integer, a boolean, an IRI-reference, etc.

Inlined Schema

An XML schema that is defined in the wsdl:types element information item of a WSDL 2.0 description. For example, an XML Schema defined in an xs:schema element information item 3.1.2 Inlining XML Schema.

1.4.6 XML Information Set Properties

This specification refers to properties in the XML Information Set [XML Information Set]. Such properties are denoted by square brackets, e.g. [children], [attributes].

1.4.7 WSDL 2.0 Component Model Properties

This specification defines and refers to properties in the WSDL 2.0 Component Model 2. Component Model. Such properties are denoted by curly brackets, e.g. {name}, {interfaces}.

This specification uses a consistent naming convention for component model properties that refer to components. If a property refers to a required or optional component, then the property name is the same as the component name. If a property refers to a set of components, then the property name is the pluralized form of the component name.

1.4.8 Z Notation

Z Notation [Z Notation Reference Manual] was used in the development of this specification. Z Notation is a formal specification language that is based on standard mathematical notation. The Z Notation for this specification has been verified using the Fuzz 2000 type-checker [Fuzz 2000].

Since Z Notation is not widely known, it is not included the normative version of this specification. However, it is included in a non-normative version which allows to dynamically hide and show the Z Notation. Browsers correctly display the mathematical Unicode characters, provided that the required fonts are installed. Mathematical fonts for Mozilla Firefox can be downloaded from the Mozilla Web site.

The Z Notation was used to improve the quality of the normative text that defines the Component Model, and to help ensure that the test suite covered all important rules implied by the Component Model. However, the Z Notation is non-normative, so any conflict between it and the normative text is an error in the Z Notation. Readers and implementers may nevertheless find the Z Notation useful in cases where the normative text is unclear.

There are two elements of Z Notation syntax that conflict with the notational conventions described in the preceding sections. In Z Notation, square brackets are used to introduce basic sets, e.g. [ID], which conflicts with the use of square brackets to denote XML Information Set properties 1.4.6 XML Information Set Properties. Also, in Z Notation, curly brackets are used to denote set display and set comprehension, e.g. {1, 2, 3}, which conflicts with the use of curly brackets to denote WSDL 2.0 Component Model properties 1.4.7 WSDL 2.0 Component Model Properties. However, the intended meaning of square and curly brackets should be clear from their context and this minor notational conflict should not cause any confusion.

1.4.9 BNF Pseudo-Schemas

Pseudo-schemas are provided for each component, before the description of the component. They use BNF-style conventions for attributes and elements: "?" denotes optionality (i.e. zero or one occurrences), "*" denotes zero or more occurrences, "+" one or more occurrences, "[" and "]" are used to form groups, and "|" represents choice. Attributes are conventionally assigned a value which corresponds to their type, as defined in the normative schema. Elements with simple content are conventionally assigned a value which corresponds to the type of their content, as defined in the normative schema. Pseudo schemas do not include extension points for brevity.

<!-- sample pseudo-schema -->
<defined_element
      required_attribute_of_type_string="xs:string"
      optional_attribute_of_type_int="xs:int"? >
  <required_element />
  <optional_element />?
  <one_or_more_of_these_elements />+
  [ <choice_1 /> | <choice_2 /> ]*
</defined_element>

1.4.10 Assertions

Assertions about WSDL 2.0 documents and components that are not enforced by the normative XML schema for WSDL 2.0 are marked by a dagger symbol (†) at the end of a sentence. Each assertion has been assigned a unique identifier that consists of a descriptive textual prefix and a unique numeric suffix. The numeric suffixes are assigned sequentially and never reused so there may be gaps in the sequence. The assertion identifiers MAY be used by implementations of this specification for any purpose, e.g. error reporting.

The assertions and their identifiers are summarized in section E. Assertion Summary.

2. Component Model

This section describes the conceptual model of WSDL 2.0 as a set of components with attached properties, which collectively describe a Web service. This model is called the Component Model of WSDL 2.0. A valid WSDL 2.0 component model is a set of WSDL 2.0 components and properties that satisfy all the requirements given in this specification as indicated by keywords whose interpretation is defined by RFC 2119 [IETF RFC 2119].

Components are typed collections of properties that correspond to different aspects of Web services. Each subsection herein describes a different type of component, its defined properties, and its representation as an XML Infoset [XML Information Set].

Properties are unordered and unique with respect to the component they are associated with. Individual properties' definitions may constrain their content (e.g., to a typed value, another component, or a set of typed values or components), and components may require the presence of a property to be considered conformant. Such properties are marked as REQUIRED, whereas those that are not required to be present are marked as OPTIONAL. By convention, when specifying the mapping rules from the XML Infoset representation of a component to the component itself, an optional property that is absent in the component in question is described as being “empty”. Unless otherwise specified, when a property is identified as being a collection (a set or a list), its value may be a 0-element (empty) collection. In order to simplify the presentation of the rules that deal with sets of components, for all OPTIONAL properties whose type is a set, the absence of such a property from a component MUST be treated as semantically equivalent to the presence of a property with the same name and whose value is the empty set. In other words, every OPTIONAL set-valued property MUST be assumed to have the empty set as its default value, to be used in case the property is absent.

Component definitions are serializable in XML 1.0 format but are independent of any particular serialization of the component model. Component definitions use a subset (see 2.14 XML Schema 1.0 Simple Types Used in the Component Model) of the simple types defined by the XML Schema 1.0 specification [XML Schema: Datatypes].

In addition to the direct XML Infoset representation described here, the component model allows components external to the Infoset through the mechanisms described in 4. Modularizing WSDL 2.0 descriptions.

A component model can be extracted from a given XML Infoset which conforms to the XML Schema for WSDL 2.0 by recursively mapping Information Items to their identified components, starting with the wsdl:description element information item. This includes the application of the mechanisms described in 4. Modularizing WSDL 2.0 descriptions.

This document does not specify a means of producing an XML Infoset representation from a component model instance. In particular, there are in general many valid ways to modularize a given component model instance into one or more XML Infosets.

2.1 Description

2.1.1 The Description Component

At a high level, the Description component is just a container for two categories of components: WSDL 2.0 components and type system components.

WSDL 2.0 components are interfaces, bindings and services. Type system components are element declarations and type definitions.

Type system components describe the constraints on a message's content. By default, these constraints are expressed in terms of the [XML Information Set], i.e. they define the [local name], [namespace name], [children] and [attributes] properties of an element information item. Type systems based upon other data models are generally accommodated by extensions to WSDL 2.0; see 6. Language Extensibility. In the case where they define information equivalent to that of a XML Schema global element declaration, they can be treated as if they were such a declaration.

This specification does not define the behavior of a WSDL 2.0 document that uses multiple schema languages for describing type system components simultaneously.

An Element Declaration component defines the name and content model of an element information item such as that defined by an XML Schema global element declaration. It has a {name} property that is the QName of the element information item and a {system} property that is the namespace IRI of the extension element information items for the type system, e.g. the namespace of XML Schema.

A Type Definition component defines the content model of an element information item such as that defined by an XML Schema global type definition. It has a {name} property that is the QName of the type and a {system} property that is the namespace IRI of the extension element information items for the type system, e.g. the namespace of XML Schema.

Interface, Binding, Service, Element Declaration, and Type Definition components are directly contained in the Description component and are referred to as top-level components. The top-level WSDL 2.0 components contain other components, e.g. Interface Operation and Endpoint, which are referred to as nested components. Nested components may contain other nested components. The component that contains a nested component is referred to as the parent of the nested component. Nested components have a {parent} property that is a reference to their parent component.

The properties of the Description component are as follows:

The set of top-level components contained in the Description component associated with an initial WSDL 2.0 document consists of the components defined in the initial document, plus the components associated with the WSDL 2.0 documents that the initial document includes, plus the components defined by other WSDL 2.0 documents in the namespaces that the initial document imports. The component model makes no distinction between the components that are defined in the initial document versus those that are defined in the included documents or imported namespaces. However, any WSDL 2.0 document that contains component definitions that refer by QName to WSDL 2.0 components that belong to a different namespace MUST contain a wsdl:import element information item for that namespace (see 4.2 Importing Descriptions ). Furthermore, all QName references, whether to the same or to different namespaces must resolve to components (see 2.17 QName resolution ).

When using the XML Schema language to describe type system components, the inclusion of Element Declaration components and Type Definition components in a Description component is governed by the rules in 3.1 Using W3C XML Schema Definition Language.

In addition to WSDL 2.0 components and type system components, additional extension components MAY be added via extensibility 6. Language Extensibility. Further, additional properties to WSDL 2.0 and type system components MAY also be added via extensibility.

2.1.2 XML Representation of Description Component

<description
      targetNamespace="xs:anyURI" >
  <documentation />*
  [ <import /> | <include /> ]*
  <types />?
  [ <interface /> | <binding /> | <service /> ]*
</description>

WSDL 2.0 descriptions are represented in XML by one or more WSDL 2.0 Information Sets (Infosets), that is one or more description element information items. A WSDL 2.0 Infoset contains representations for a collection of WSDL 2.0 components that share a common target namespace and zero or more wsdl:import element information items 4.2 Importing Descriptions that correspond to a collection with components from multiple target namespaces.

The components directly defined or included within a Description component are said to belong to the same target namespace. The target namespace therefore groups a set of related component definitions and represents an unambiguous name for the intended semantics of the collection of components. The value of the targetNamespace attribute information item SHOULD be dereferencable. It SHOULD resolve to a human or machine processable document that directly or indirectly defines the intended semantics of those components. It MAY resolve to a WSDL 2.0 document that provides service description information for that namespace.

If a WSDL 2.0 document is split into multiple WSDL 2.0 documents (which may be combined as needed via 4.1 Including Descriptions), then the targetNamespace attribute information item SHOULD resolve to a master WSDL 2.0 document that includes all the WSDL 2.0 documents needed for that service description. This approach enables the WSDL 2.0 component designator fragment identifiers to be properly resolved.

Components that belong to imported namespaces have different target namespace values than that of the importing WSDL 2.0 document. Thus importing is the mechanism to use components from one namespace in the definition of components from another namespace.

Note that each WSDL 2.0 document or type system component of the same kind must be uniquely identified by its qualified name. That is, if two distinct components of the same kind (Interface, Binding, etc.) are in the same target namespace, then their QNames MUST be unique. However, different kinds of components (e.g., an Interface component and a Binding component) MAY have the same QName. Thus, QNames of components must be unique within the space of those components in a given target namespace.

The description element information item has the following Infoset properties:

  • A [local name] of description.

  • A [namespace name] of "http://www.w3.org/ns/wsdl".

  • One or more attribute information items amongst its [attributes] as follows:

  • Zero or more element information items amongst its [children], in order as follows:

    1. Zero or more documentation element information items (see 5. Documentation).

    2. Zero or more element information items from among the following, in any order:

      • Zero or more include element information items (see 4.1 Including Descriptions)

      • Zero or more import element information items (see 4.2 Importing Descriptions)

      • Zero or more namespace-qualified element information items whose [namespace name] is NOT "http://www.w3.org/ns/wsdl".

    3. An OPTIONAL types element information item (see 3. Types).

    4. Zero or more element information items from among the following, in any order:

2.1.2.1 targetNamespace attribute information item

The targetNamespace attribute information item defines the namespace affiliation of top-level components defined in this description element information item. Interface, Binding and Service are top-level components.

The targetNamespace attribute information item has the following Infoset properties:

  • A [local name] of targetNamespace

  • A [namespace name] which has no value

The type of the targetNamespace attribute information item is xs:anyURI. Its value MUST be an absolute IRI (see [IETF RFC 3987]) and should be dereferencable.

2.1.3 Mapping Description's XML Representation to Component Properties

The mapping from the XML Representation of the description element information item (see 2.1.2 XML Representation of Description Component) to the properties of the Description component is described in Table 2-1.

Table 2-1. Mapping from XML Representation to Description Component Properties
Property Value
{interfaces} The set of Interface components corresponding to all the interface element information items in the [children] of the description element information item, if any, plus any included (via wsdl:include) or imported (via wsdl:import) Interface components (see 4. Modularizing WSDL 2.0 descriptions).
{bindings} The set of Binding components corresponding to all the binding element information items in the [children] of the description element information item, if any, plus any included (via wsdl:include) or imported (via wsdl:import) Binding components (see 4. Modularizing WSDL 2.0 descriptions).
{services} The set of Service components corresponding to all the service element information items in the [children] of the description element information item, if any, plus any included (via wsdl:include) or imported (via wsdl:import) Service components (see 4. Modularizing WSDL 2.0 descriptions).
{element declarations} The set of Element Declaration components corresponding to all the element declarations defined as descendants of the types element information item, if any, plus any included (via xs:include) or imported (via xs:import) Element Declaration components. At a minimum this will include all the global element declarations defined by XML Schema element element information items. It MAY also include any declarations from some other type system which describes the [local name], [namespace name], [attributes] and [children] properties of an element information item. Each XML Schema element declaration MUST have a unique QName.
{type definitions} The set of Type Definition components corresponding to all the type definitions defined as descendants of the types element information item, if any, plus any included (via xs:include) or imported (via xs:import) Type Definition components. In addition, the built-in datatypes defined by XML Schema Part 2: Datatypes Second Edition [XML Schema: Datatypes], namely the nineteen primitive datatypes xs:string, xs:boolean, xs:decimal, xs:float, xs:double, xs:duration, xs:dateTime, xs:time, xs:date, xs:gYearMonth, xs:gYear, xs:gMonthDay, xs:gDay, xs:gMonth, xs:hexBinary, xs:base64Binary, xs:anyURI, xs:QName, xs:NOTATION, and the twenty-five derived datatypes xs:normalizedString, xs:token, xs:language, xs:NMTOKEN, xs:NMTOKENS, xs:Name, xs:NCName, xs:ID, xs:IDREF, xs:IDREFS, xs:ENTITY, xs:ENTITIES, xs:integer, xs:nonPositiveInteger, xs:negativeInteger, xs:long, xs:int, xs:short, xs:byte, xs:nonNegativeInteger, xs:unsignedLong, xs:unsignedInt, xs:unsignedShort, xs:unsignedByte, xs:positiveInteger. The set MAY also include any definitions from some other type system which describes the [attributes] and [children] properties of an element information item. Each XML Schema type definition MUST have a unique QName.

2.2 Interface

2.2.1 The Interface Component

An Interface component describes sequences of messages that a service sends and/or receives. It does this by grouping related messages into operations. An operation is a sequence of input and output messages, and an interface is a set of operations.

An interface can optionally extend one or more other interfaces. To avoid circular definitions, an interface MUST NOT appear in the set of interfaces it extends, either directly or indirectly. The set of operations available in an interface includes all the operations defined by the interfaces it extends directly or indirectly, together with any operations it directly defines. The operations directly defined on an interface are referred to as the declared operations of the interface. In the process, operation components that are equivalent per 2.15 Equivalence of Components are treated as one single component. The interface extension mechanism behaves in a similar way for all other components that can be defined inside an interface, namely Interface Fault components.

Interfaces are named constructs and can be referred to by QName (see 2.17 QName resolution). For instance, Binding components refer to interfaces in this way.

The properties of the Interface component are as follows:

For each Interface component in the {interfaces} property of a Description component, the {name} property MUST be unique.

2.2.2 XML Representation of Interface Component

<description>
  <interface
        name="xs:NCName" 
        extends="list of xs:QName"?
        styleDefault="list of xs:anyURI"? >
    <documentation />*
    [ <fault /> | <operation /> ]*
  </interface>
</description>

The XML representation for an Interface component is an element information item with the following Infoset properties:

2.2.2.1 name attribute information item with interface [owner element]

The name attribute information item together with the targetNamespace attribute information item of the [parent] description element information item forms the QName of the interface.

The name attribute information item has the following Infoset properties:

  • A [local name] of name

  • A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.2.2.2 extends attribute information item

The extends attribute information item lists the interfaces that this interface derives from.

The extends attribute information item has the following Infoset properties:

  • A [local name] of extends

  • A [namespace name] which has no value

The type of the extends attribute information item is a whitespace-separated list of xs:QName.

The list of xs:QName in an extends attribute information item MUST NOT contain duplicates.

2.2.2.3 styleDefault attribute information item

The styleDefault attribute information item indicates the default style (see 2.4.1.2 Operation Style) used to construct the {element declaration} properties of {interface message references} of all operations contained within the [owner element] interface.

The styleDefault attribute information item has the following Infoset properties:

  • A [local name] of styleDefault.

  • A [namespace name] which has no value.

The type of the styleDefault attribute information item is list of xs:anyURI. Its value, if present, MUST contain absolute IRIs (see [IETF RFC 3987]).

2.2.3 Mapping Interface's XML Representation to Component Properties

The mapping from the XML Representation of the interface element information item (see 2.2.2 XML Representation of Interface Component) to the properties of the Interface component is as described in Table 2-2.

Table 2-2. Mapping from XML Representation to Interface Component Properties
Property Value
{name} The QName whose local name is actual value of the name attribute information item and whose namespace name is the actual value of the targetNamespace attribute information item of the [parent] description element information item
{extended interfaces} The set of Interface components resolved to by the values in the extends attribute information item, if any (see 2.17 QName resolution).
{interface faults} The set of Interface Fault components corresponding to the fault element information items in [children], if any.
{interface operations} The set of Interface Operation components corresponding to the operation element information items in [children], if any.

Recall that, per 2.2.1 The Interface Component, the Interface components in the {extended interfaces} property of a given Interface component MUST NOT contain that Interface component in any of their {extended interfaces} properties, that is to say, recursive extension of interfaces is disallowed.

2.3 Interface Fault

2.3.1 The Interface Fault Component

A fault is an event that occurs during the execution of a message exchange that disrupts the normal flow of messages.

A fault is typically raised when a party is unable to communicate an error condition inside the normal message flow, or a party wishes to terminate a message exchange. A fault message may be used to communicate out of band information such as the reason for the error, the origin of the fault, as well as other informal diagnostics such as a program stack trace.

An Interface Fault component describes a fault that MAY occur during invocation of an operation of the interface. The Interface Fault component declares an abstract fault by naming it and indicating the contents of the fault message. When and how the fault message flows is indicated by the Interface Operation component.

The Interface Fault component provides a clear mechanism to name and describe the set of faults an interface may generate. This allows operations to easily identify the individual faults they may generate by name. This mechanism allows the ready identification of the same fault occurring across multiple operations and referenced in multiple bindings as well as reducing duplication of description for an individual fault.

Faults other than the ones described in the Interface component may also be generated at run-time, i.e. faults are an open set. The Interface component describes faults that have application level semantics, i.e. that the client or service is expected to handle, and potentially recover from, as part of the application processing logic. For example, an Interface component that accepts a credit card number may describe faults that indicate the credit card number is invalid, has been reported stolen, or has expired. The Interface component does not describe general system faults such as network failures, out of memory conditions, out of disk space conditions, invalid message formats, etc., although these faults may be generated as part of the message exchange. Such general system faults can reasonably be expected to occur in any message exchange and explicitly describing them in an Interface component is therefore uninformative.

The properties of the Interface Fault component are as follows:

  • {name} REQUIRED. An xs:QName.

  • {message content model} REQUIRED. An xs:token with one of the values #any, #none, #other, or #element. A value of #any indicates that the fault content is any single element. A value of #none indicates there is no fault content. A value of #other indicates that the fault content is described by some other extension property that references a declaration in a non-XML extension type system. A value of #element indicates that the fault consists of a single element described by the global element declaration referenced by the {element declaration} property. This property is used only when the fault is described using an XML-based data model.

  • {element declaration} OPTIONAL. A reference to an Element Declaration component in the {element declarations} property of the Description component. This element represents the content or “payload” of the fault. When the {message content model} property has the value #any or #none the {element declaration} property MUST be empty.

  • {parent} REQUIRED. The Interface component that contains this component in its {interface faults} property.

For each Interface Fault component in the {interface faults} property of an Interface component, the {name} property must be unique. Note that this constraint is enforced by the normative WSDL 2.0 XML schema.

Interface Fault components are uniquely identified by the QName of the enclosing Interface component and QName of the Interface Fault component itself.

Note:

Despite having a {name} property, Interface Fault components cannot be identified solely by their QName. Indeed, two Interface components whose {name} property value has the same namespace name, but different local names, can contain Interface Fault components with the same {name} property value. Thus, the {name} property of Interface Fault component is not sufficient to form the unique identity of an Interface Fault component. A method for uniquely identifying components is defined in A.2 Fragment Identifiers. See A.2.5 The Interface Fault Component for the definition of the fragment identifier for the Interface Fault component.

In cases where, due to an interface extending one or more other interfaces, two or more Interface Fault components have the same value for their {name} property, then the component models of those Interface Fault components MUST be equivalent (see 2.15 Equivalence of Components). If the Interface Fault components are equivalent then they are considered to collapse into a single component. Within the same Interface component, if two Interface Fault components are not equivalent then their {name} properties MUST NOT be equal.

Note that, due to the above rules, if two interfaces that have the same value for the namespace name of their {name} property also have one or more faults that have the same value for their {name} property, then those two interfaces cannot both form part of the derivation chain of a derived interface unless those faults are the same fault.

For the above reason, it is considered good practice to ensure, where necessary, that the local name of the {name} property of Interface Fault components within a namespace SHOULD be unique, thus allowing such derivation to occur without inadvertent error.

If a type system NOT based on the XML Infoset [XML Information Set] is in use (as considered in 3.2 Using Other Schema Languages) then additional properties would need to be added to the Interface Fault component (along with extension attributes to its XML representation) to allow associating such message types with the message reference.

2.3.2 XML Representation of Interface Fault Component

<description>
  <interface>
    <fault
          name="xs:NCName" 
          element="union of xs:QName, xs:token"? >
      <documentation />*
    </fault>
  </interface>
</description>

The XML representation for an Interface Fault component is an element information item with the following Infoset properties:

  • A [local name] of fault

  • A [namespace name] of "http://www.w3.org/ns/wsdl"

  • One or more attribute information items amongst its [attributes] as follows:

  • Zero or more element information item amongst its [children], in order, as follows:

    1. Zero or more documentation element information items (see 5. Documentation).

    2. Zero or more namespace-qualified element information item s whose [namespace name] is NOT " http://www.w3.org/ns/wsdl " .

2.3.2.1 name attribute information item with fault [owner element]

The name attribute information item identifies a given fault element information item inside a given interface element information item.

The name attribute information item has the following Infoset properties:

  • A [local name] of name

  • A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.3.2.2 element attribute information item with fault [owner element]

The element attribute information item refers, by QName, to an Element Declaration component.

The element attribute information item has the following Infoset properties:

  • A [local name] of element.

  • A [namespace name] which has no value.

The type of the element attribute information item is a union of xs:QName and xs:token where the allowed token values are #any, #none, or #other.

2.3.3 Mapping Interface Fault's XML Representation to Component Properties

The mapping from the XML Representation of the fault element information item (see 2.3.2 XML Representation of Interface Fault Component) to the properties of the Interface Fault component is as described in Table 2-3.

Table 2-3. Mapping from XML Representation to Interface Fault Component Properties
Property Value
{name} The QName whose local name is the actual value of the name attribute information item. and whose namespace name is the actual value of the targetNamespace attribute information item of the [parent] description element information item of the [parent] interface element information item.
{message content model} If the element attribute information item is present and its value is a QName, then #element; otherwise the actual value of the element attribute information item, if any; otherwise #other.
{element declaration} If the element attribute information item is present and its value is a QName, then the Element Declaration component from the {element declarations} property of the Description component resolved to by the value of the element attribute information item (see 2.17 QName resolution); otherwise empty. If the element attribute information item has a value, then it MUST resolve to an Element Declaration component from the {element declarations} property of the Description component.
{parent} The Interface component corresponding to the interface element information item in [parent].

2.4 Interface Operation

2.4.1 The Interface Operation Component

An Interface Operation component describes an operation that a given interface supports. An operation is an interaction with the service consisting of a set of (ordinary and fault) messages exchanged between the service and the other parties involved in the interaction. The sequencing and cardinality of the messages involved in a particular interaction is governed by the message exchange pattern used by the operation (see {message exchange pattern} property).

A message exchange pattern defines placeholders for messages, the participants in the pattern (i.e., the sources and sinks of the messages), and the cardinality and sequencing of messages exchanged by the participants. The message placeholders are associated with specific message types by the operation that uses the pattern by means of message and fault references (see {interface message references} and {interface fault references} properties). The service whose operation is using the pattern becomes one of the participants of the pattern. This specification does not define a machine understandable language for defining message exchange patterns, nor does it define any specific patterns. The companion specification, [WSDL 2.0 Adjuncts] defines a set of such patterns and defines identifying IRIs any of which MAY be used as the value of the {message exchange pattern} property.

The properties of the Interface Operation component are as follows:

For each Interface Operation component in the {interface operations} property of an Interface component, the {name} property MUST be unique. Note that this constraint is enforced by the normative WSDL 2.0 XML schema.

Interface Operation components are uniquely identified by the QName of the enclosing Interface component and QName of the Interface Operation component itself.

Note:

Despite having a {name} property, Interface Operation components cannot be identified solely by their QName. Indeed, two Interface components whose {name} property value has the same namespace name, but different local names, can contain Interface Operation components with the same {name} property value. Thus, the {name} property of Interface Operation components is not sufficient to form the unique identity of an Interface Operation component. A method for uniquely identifying components is defined in A.2 Fragment Identifiers . See A.2.6 The Interface Operation Component for the definition of the fragment identifier for the Interface Operation component.

In cases where, due to an interface extending one or more other interfaces, two or more Interface Operation components have the same value for their {name} property, then the component models of those Interface Operation components MUST be equivalent (see 2.15 Equivalence of Components). If the Interface Operation components are equivalent then they are considered to collapse into a single component. Within the same Interface component, if two Interface Operation components are not equivalent then their {name} properties MUST NOT be equal.

Note that, due to the above rules, if two interfaces that have the same value for the namespace name of their {name} property also have one or more operations that have the same value for their {name} property, then those two interfaces cannot both form part of the derivation chain of a derived interface unless those operations are the same operation.

For the above reason, it is considered good practice to ensure, where necessary, that the {name} property of Interface Operation components within a namespace SHOULD be unique, thus allowing such derivation to occur without inadvertent error.

More than one Interface Fault Reference component in the {interface fault references} property of an Interface Operation component may refer to the same message label. In that case, the listed fault types define alternative fault messages. This allows one to indicate that there is more than one type of fault that is related to that message.

2.4.1.1 Message Exchange Pattern

This section describes some aspects of message exchange patterns in more detail. Refer to the Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts specification [WSDL 2.0 Adjuncts] for a complete discussion of the semantics of message exchange patterns in general, as well as the definitions of the message exchange patterns that are predefined by WSDL 2.0.

A placeholder message is a template for an actual message as described by an Interface Message Reference component. Although a placeholder message is not itself a component, it is useful to regard it as having both a {message label} and a {direction} property which define the values of the actual Interface Message Reference component that corresponds to it. A placeholder message is also associated with some node that exchanges the message with the service. Furthermore, a placeholder message may be designated as optional in the exchange.

A fault propagation ruleset specifies the relation between the Interface Fault Reference and Interface Message Reference components of an Interface Operation component. The Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts specification [WSDL 2.0 Adjuncts] defines three fault propagation rulesets which we will refer to as fault-replaces-message, message-triggers-fault, and no-faults. These three fault propagation rulesets are used by the predefined message exchange patterns defined in [WSDL 2.0 Adjuncts]. Other message exchange patterns can define additional fault propagation rulesets.

A message exchange pattern is a template for the exchange of one or more messages, and their associated faults, between the service and one or more other nodes as described by an Interface Operation component. The service and the other nodes are referred to as the participants in the exchange. More specifically, a message exchange pattern consists of a sequence of one or more placeholder messages. Each placeholder message within this sequence is uniquely identified by its {message label} property. A message exchange pattern is itself uniquely identified by an absolute IRI, which is used as the value of the {message exchange pattern} property of the Interface Operation component, and which specifies the fault propagation ruleset that its faults obey.

2.4.1.2 Operation Style

An operation style specifies additional information about an operation. For example, an operation style may define structural constraints on the element declarations of the interface message reference or interface fault components used by the operation. This additional information in no way affects the messages and faults exchanged with the service and it can therefore be safely ignored in that context. However, the additional information can be used for other purposes, for example, improved code generation. The {style} property of the Interface Operation component contains a set of zero or more IRIs that identify operation styles. An Interface Operation component MUST satisfy the specification defined by each operation style identified by its {style} property. If no Interface Operation component can simultaneously satisfy all of the styles, the document is invalid.

If the {style} property of an Interface Operation component does have a value, then that value (a set of IRIs) specifies the rules that were used to define the element declarations (or other properties that define the message and fault contents; see 3.2 Using Other Schema Languages) of the Interface Message Reference or Interface Fault components used by the operation. Although a given operation style has the ability to constrain all input and output messages and faults of an operation, it MAY choose to constrain any combination thereof, e.g. only the messages, or only the inputs.

Please refer to the Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts specification [WSDL 2.0 Adjuncts] for particular operation style definitions.

2.4.2 XML Representation of Interface Operation Component

<description>
  <interface>
    <operation
          name="xs:NCName" 
          pattern="xs:anyURI"?
          style="list of xs:anyURI"? >
      <documentation />*
      [ <input /> | <output /> | <infault /> | <outfault /> ]*
    </operation>
  </interface>
</description>

The XML representation for an Interface Operation component is an element information item with the following Infoset properties:

2.4.2.1 name attribute information item with operation [owner element]

The name attribute information item identifies a given operation element information item inside a given interface element information item.

The name attribute information item has the following Infoset properties:

  • A [local name] of name

  • A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.4.2.2 pattern attribute information item with operation [owner element]

The pattern attribute information item identifies the message exchange pattern a given operation uses.

The pattern attribute information item has the following Infoset properties:

  • A [local name] of pattern

  • A [namespace name] which has no value

The type of the pattern attribute information item is xs:anyURI. Note that its value must be an absolute IRI (see [IETF RFC 3987]).

2.4.2.3 style attribute information item with operation [owner element]

The style attribute information item indicates the rules that were used to construct the {element declaration} properties of the Interface Message Reference components which are members of the {interface message references} property of the [owner element] operation.

The style attribute information item has the following Infoset properties:

  • A [local name] of style

  • A [namespace name] which has no value

The type of the style attribute information item is list of xs:anyURI. Note that its value must be an absolute IRI (see [IETF RFC 3987]).

2.4.3 Mapping Interface Operation's XML Representation to Component Properties

The mapping from the XML Representation of the operation element information item (see 2.4.2 XML Representation of Interface Operation Component) to the properties of the Interface Operation component (see 2.4.1 The Interface Operation Component) is as described in Table 2-4.

Table 2-4. Mapping from XML Representation to Interface Operation Component Properties
Property Value
{name} The QName whose local name is the actual value of the name attribute information item and whose namespace name is the actual value of the targetNamespace attribute information item of the [parent] description element information item of the [parent] interface element information item.
{message exchange pattern} The actual value of the pattern attribute information item; otherwise 'http://www.w3.org/ns/wsdl/in-out'.
{interface message references} The set of message references corresponding to the input and output element information items in [children], if any.
{interface fault references} The set of interface fault references corresponding to the infault and outfault element information items in [children], if any.
{style} The set containing the IRIs in the actual value of the style attribute information item, if present; otherwise the set containing the IRIs in the actual value of the styleDefault attribute information item of the [parent] interface element information item, if present; otherwise empty.
{parent} The Interface component corresponding to the interface element information item in [parent].

2.5 Interface Message Reference

2.5.1 The Interface Message Reference Component

An Interface Message Reference component defines the content, or payload, of a message exchanged in an operation. By default, the message content is defined by an XML-based type system such as XML Schema. Other type systems may be used via the WSDL 2.0 type system extension mechanism.

A message exchange pattern defines a set of placeholder messages that participate in the pattern and assigns them unique message labels within the pattern (e.g. 'In', 'Out'). The purpose of an Interface Message Reference component is to associate an actual message element (XML element declaration or some other declaration (see 3.2 Using Other Schema Languages)) with a message in the pattern, as identified by its message label. Later, when the message exchange pattern is instantiated, messages corresponding to that particular label will follow the element assignment made by the Interface Message Reference component.

The properties of the Interface Message Reference component are as follows: