
NATURAL AXIOMS OF SET THEORY AND THE
CONTINUUM PROBLEM

JOAN BAGARIA

Abstract. As is well-known, Cantor’s continuum problem, namely,
what is the cardinality of R? is independent of the usual ZFC ax-
ioms of Set Theory. K. Gödel ([12], [13]) suggested that new natural
axioms should be found that would settle the problem and hinted at
large-cardinal axioms as such. However, shortly after the invention
of forcing, it was shown by Levy and Solovay [20] that the prob-
lem remains independent even if one adds to ZFC the usual large-
cardinal axioms, like the existence of measurable cardinals, or even
supercompact cardinals, provided, of course, that these axioms are
consistent. While numerous axioms have been proposed that settle
the problem–although not always in the same way–from the Axiom
of Constructibility to strong combinatorial axioms like the Proper
Forcing Axiom or Martin’s Maximum, none of them so far has been
recognized as a natural axiom and been accepted as an appropriate
solution to the continuum problem. In this paper we discuss some
heuristic principles, which might be regarded as Meta-Axioms of Set
Theory, that provide a criterion for assessing the naturalness of the
set-theoretic axioms. Under this criterion we then evaluate several
kinds of axioms, with a special emphasis on a class of recently intro-
duced set-theoretic principles for which we can reasonably argue that
they constitute very natural axioms of Set Theory and which settle
Cantor’s continuum problem.

1. Introduction

There must be a first step in recognizing axioms, [...] a
step which will make the axioms seem worth considering as
axioms rather than merely as conjectures or speculations.

W.N. Reinhardt ([27])
Cantor’s continuum problem, namely, what is the cardinality of R? has

been the central problem in the development of Set Theory. Since Cantor’s
formulation in 1878 of the Continuum Hypothesis (CH), which states that
every infinite subset of R is either countable or has the same cardinality
as R ([8]), very dramatic and unexpected advances have been made by Set
Theory towards the solution of the problem. As is well-known, neither CH
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nor its negation can be proved from the usual ZFC axioms of Set Theory,
provided they are consistent. In Gödel’s constructible universe CH holds,
while Cohen’s method of forcing allows to build models of ZFC in which
the cardinality of R can be any cardinal, subject only to the necessary
requirement that it have uncountable cofinality.

This situation, however, is far from satisfactory. Admittedly, some math-
ematicians, including Cohen himself (see [9]), have expressed the belief that
no further, more satisfactory solution is attainable, and that one should be
content with the independence results. But this is a rather uncommon posi-
tion among mathematicians, and set theorists in particular, with respect to
the continuum problem. Drawing on a realistic approach to Mathematics,
the most common by far among mathematicians, one can argue that the only
thing the results of Gödel and Cohen show is that the ZFC axioms, while
sufficient for developing most of classical Mathematics, constitute too weak
a formal system for settling Cantor’s problem and they should, therefore,
be supplemented with additional axioms. Indeed, Gödel himself formulated
a program ([12],[13]) of finding new natural axioms which, added to the
ZFC axioms, would settle the continuum problem, and he hinted that large
cardinal axioms would do it. This has been known as Gödel’s program.
Unfortunately, however, it was soon noticed by Levy and Solovay [20] that
the usual large cardinal axioms, like the existence of measurable cardinals,
or even supercompact or huge cardinals, would not be enough. But this
does not mean that Gödel’s program is no longer defensible. Quite the con-
trary. It is still perfectly possible that new kinds of large-cardinal axioms,
different from the ones that have been considered so far, could be relevant
to the solution of the continuum problem. In fact, recent work by Woodin
([38]) shows that under large cardinals, any reasonable extension of the ZFC
axioms that would settle all questions of the same complexity of CH, in a
strong logic known as Ω-logic, would refute CH (see [15] for a discussion
of the relevance of Woodin’s work on Gödel’s program). But our purpose
here is not to address the import of large-cardinal axioms to the continuum
problem, at least not directly, but to introduce and discuss some heuristic
principles, which might be regarded as Meta-Axioms of Set Theory , that
provide a criterion for assessing the naturalness of the set-theoretic axioms.
Under this criterion we then evaluate several kinds of axioms, including
large cardinals, with a special emphasis on a class of set-theoretic principles
that have been recently introduced, known as Bounded Forcing Axioms, for
which one can reasonably argue that they constitute very natural axioms of
Set Theory, and which settle Cantor’s continuum problem.
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2. Natural axioms of Set Theory

The central principle is the reflection principle, which pre-
sumably will be understood better as our experience increases.

K. Gödel ([36])
What should be counted as a natural axiom of Set Theory? Certainly

any intuitively obvious fact about sets. Here we shall take for granted that
the ZF axioms are of this sort. There is very little disagreement about this
point. As for the Axiom of Choice, the reluctance regarding its full accep-
tance by some mathematicians is due more to some of its counter-intuitive
consequences, rather than to its otherwise very natural character (see how-
ever [16]). It is a fact that no other universally (or almost-universally)
accepted as intuitively obvious principles about sets have been proposed,
perhaps with the only exception of the existence of small large cardinals,
like the inaccessible cardinals.

If we accept that being an intuitively obvious fact about sets is a neces-
sary requirement for a set-theoretic principle to be counted as an axiom,
then no axioms other than the ZF (or ZFC) axioms, plus, perhaps, some
small large-cardinal existence axioms should be accepted. So, if we were
to look for additional axioms we should first try to sharpen our intuitions
about sets until we were forced to accept some new principle as intuitively
obvious, or at least intuitively reasonable. While this is a priori possible,
and it would certainly be a remarkable achievement to discover such a new
principle, there are at least two practical difficulties with this approach.
First, it is well known that intuition may be easily confused with familiar-
ity. For do we not end up finding reasonable whatever principle we have
been using for a long time? Are we not eager to welcome as a new ax-
iom any principle in which we have invested a considerable amount of time
and effort, and for which we have developed, no doubt, a strong intuition?
Second, in principle, incompatible intuitively reasonable principles could be
found. For what prevents set-theoretic intuition to be developed in several
irreconcilable ways? It may be replied that if this were the case, then all
the better, for we would have several different set theories, all founded on
intuition, albeit each on a different one. If this will be the case, then so be
it. But we will see that, beyond intuition, there are other criteria which can
be successfully used to find new axioms.

In his paper What is Cantor’s Continuum Problem? ([12], [13]), Gödel
considers two criteria for the acceptance of new axioms of Set Theory. One
is that of necessity or non-arbitrariness. He uses this criterion to justify
the existence of inaccessible cardinals. If we want to extend the operations
of set formation beyond what is provable in ZFC, then we are forced to
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postulate the existence of an inaccessible cardinal (see our discussion of this
point in section 4 below). Thus the existence of an inaccessible cardinal
is a necessary, non-arbitrary assumption, for further extending the set of
operation. Notice that the postulation of the existence of an inaccessible
cardinal is analogous to the situation in which, starting from ZF-Infinity
(i.e., Zermelo-Fraenkel Set Theory minus the Axiom of Infinity), we postu-
late the existence of an infinite set. Indeed, no matter how we extend the
ZF-Infinity axioms by asserting the existence of new sets, we are forced to
assert the existence of an infinite set, and so, in this sense, ZF is a necessary,
non-arbitrary extension of ZF-Infinity. Once the existence of an inaccessi-
ble cardinal is accepted, then one is naturally led to the iteration of this
principle, thus leading to hyperinaccessible cardinals, and beyond. But can
larger cardinals be justified under the necessity criterion? In what sense, if
any, are measurable cardinals necessary? We shall come back to this.

A second criterion used by Gödel in [12] for the acceptance as axioms
of set-theoretic principles is success, that is, the fruitfulness in their con-
sequences. This criterion is put forward as an alternative to necessity or
non-arbitrariness. After over half a century of continued work on large car-
dinals, and especially since the discovery of the connections between large
cardinals and determinacy in the eighties, it can be argued that the exis-
tence of large cardinals, at least up to Woodin cardinals, should be accepted
as axioms of Set Theory, according to this criterion. Indeed, Martin and
Steel [25] showed that the Axiom of Projective Determinacy (PD), and in
fact the axiom ADL(R), which asserts that all sets of reals definable fom
ordinals and real numbers as parameters are determined, follows from ax-
ioms of large cardinals. Woodin showed that the existence of infinitely
many Woodin Cardinals plus a measurable cardinal larger than all of them
would suffice and, furthermore, that infinitely many Woodin cardinals are
necessary to obtain PD (see [37] and [34]). As it became clear during the
seventies through the spectacular advances made by Descriptive Set Theory
under the assumption of PD, this principle appears to be the right one for
developing the theory of projective sets of real numbers. Indeed, PD gives
an essentially complete theory of the projective sets. Moreover, any known
set-theoretic principle of at least the consistency strength of PD – for in-
stance, the Proper Forcing Axiom – implies PD, which strongly suggests its
necessity. The fruitfulness of large cardinal axioms is further exemplified by
their numerous consequences in infinitary combinatorics (see [18]). It is now
plainly clear that many desirable consequences, not only in Set Theory, but
in all areas of Mathematics where set-theoretic methods are applied, fol-
low from large-cardinal assumptions. Thus, strong large-cardinal principles
have done very well under the fruitfulness criterion. But is this sufficient for



NATURAL AXIOMS OF SET THEORY AND THE CONTINUUM PROBLEM 5

accepting them as axioms of Set Theory? This may be so for the existence
of infinitely many Woodin cardinals, since they have been shown to be both
sufficient and necessary to obtain PD, thus yielding a rich and elegant the-
ory for the projective sets of real numbers which extends the classical ZFC
theorems of Descriptive Set Theory. For stronger large-cardinal principles,
the situation is much less clear. The main problem in accepting large cardi-
nal axioms is their consistency. After all, some large cardinal principles have
been shown to be inconsistent and consequently rejected. Nevertheless, the
so-called inner model program, which attempts to build canonical models
for large cardinals, has developed very sophisticated methods for showing
that, at least for large cardinals up to infinitely-many Woodin cardinals,
one can construct canonical inner models with a well-developed fine struc-
ture, thereby building confidence in their consistency. So, in spite of some
diverging opinions, we can fairly say that it is a widespread belief among set
theorists that large-cardinal principles should be accepted as axioms of Set
Theory provided there is a sufficiently well-developed inner model theory
for them. This is already the case for infinitely many Woodin cardinals, but
no such inner model theory has been yet developed for, e.g., supercompact
cardinals.

But as has been pointed out before, large-cardinal axioms, in spite of
their extraordinary success, are not sufficient for settling Cantor’s Contin-
uum Problem. So in the absence of any further intuitively obvious axioms,
the question is whether there are any other kinds of axioms that are non-
arbitrary and, if possible, that also satisfy the fruitfulness criterion.

Although the value of an axiom will ultimately be determined by its
success, the criterion of success can hardly be sufficient for accepting a new
axiom. It should only be used to assess, a posteriori, the value of the axioms,
which must be found according to other criteria.

H. Wang, in [35], and later in [36] section 8.7, quotes Gödel on his 1972
answer to the question of what should be the principles by which new ax-
ioms of Set Theory should be introduced. According to Gödel there are
five such principles: Intuitive Range, the Closure Principle, the Reflection
Principle, Extensionalization, and Uniformity. The first, Intuitive Range,
is the principle of intuitive set formation, which is embodied into the ZFC
axioms. The Closure Principle can be subsumed into the principle of Re-
flection, which may be summarized as follows: The universe V of all sets
cannot be uniquely characterized, i.e., distinguished from all its initial seg-
ments, by any property expressible in any reasonable logic involving the
membership relation. A weak form of this principle is the ZFC-provable
reflection theorem of Montague and Levy (see [18]):
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Any sentence in the first-order language of Set Theory that
holds in V holds also in some Vα.

Gödel’s Reflection principle consists precisely of the extension of this theo-
rem to higher-order logics, infinitary logics, etc.

The principle of Extensionalization asserts that V satisfies an extensional
form of the Axiom of Replacement and it is introduced in order to justify
the existence of inaccessible cardinals. We will explain its role in the next
section.

The principle of Uniformity asserts that the universe V is uniform, in the
sense that its structure is similar everywhere. In Gödel’s words ([36], 8.7.5):
The same or analogous states of affairs reappear again and again (perhaps
in more complicated versions). He also says that this principle may also be
called the principle of proportionality of the universe, according to which,
analogues of the properties of small cardinals lead to large cardinals. Gödel
claims that this principle makes plausible the introduction of measurable
or strongly compact cardinals, insofar as those large-cardinal notions are
obtained by generalizing to uncountable cardinals some properties of ω.

Thus, following Gödel, in the search for new axioms beyond ZFC, we are
to be guided by the criteria of Necessity, Success, Reflection, Extensional-
ization, and Uniformity, to which we should add that of Consistency, which
Gödel certainly took for granted. The new axioms should be necessary in
order to extend the operations of set formation beyond what is provable in
ZFC, they should take the form of reflection principles, they should imply
some kind of uniformity in the universe of all sets, and they should be both
consistent and fruitful in their consequences.

In the next section we will discuss and attempt to further clarify these
criteria so that they can be actually applied in the testing of – and the search
for – new axioms. We will argue that all criteria reduce essentially to two:
Maximality and Fairness. Consistency and Success play a complementary
role, the first as a regulator and the second as a final test for value. All
together, the criteria may be regarded as an attempt to define what being a
natural axiom of Set Theory actually means. They may as well be viewed
as a test for necessity or non-arbitrariness, since any set theoretic statement
that satisfies the criteria will, in a precise sense, be forced upon us if we
want to extend ZFC.

3. Meta-axioms of Set Theory

We are searching for additional axioms of Set Theory that extend ZFC,
that is, for a sentence (or a recursive set of sentences) in the first-order
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language of Set Theory. What are the criteria such a sentence should satisfy
in order to be considered an axiom?

The first criterion is, of course, Consistency . We want the new axiom
to be consistent with ZFC. Clearly, by Gödel’s second incompleteness the-
orem, we can only hope for a proof of relative consistency. Namely, we
should be able to prove that if ZFC is consistent, then so is ZFC plus the
new axiom. There are many incompatible examples, e.g., CON(ZFC) and
¬CON(ZFC), the Axiom of Constructibility or its negation, the Contin-
uum Hypothesis or its negation, Suslin’s Hypothesis or its negation, etc.
Thus, consistency cannot be the only criterion. Moreover, we should also
entertain the possibility of accepting axioms whose consistency (modulo
ZFC) cannot be proved in ZFC, simply because they can be shown to be,
consistencywise, stronger than ZFC, but which nevertheless satisfy the other
criteria.

Therefore, the criterion of Consistency can only play a regulatory role
in the search and justification of new axioms. It puts a bound on the joint
action of the other criteria. The mere fact that a set-theoretic principle
can be shown to be consistent with ZFC does not make it automatically
an axiom. But consistency with ZFC is certainly a necessary requirement.
Moreover, if the new axiom is shown to be consistent modulo some large-
cardinal assumption, then the consistency of such a large cardinal must
follow from ZFC plus the new axiom, thus proving its necessity for the new
axiom’s consistency proof.

The second criterion is that of Maximality . Namely, the more sets the
axiom asserts to exist, the better. Gödel already stated that: ...Only a
maximum property would seem to harmonize with the concept of set..(see
[13]). The idea of maximizing has been defended by many people and it has
been extensively discussed by P. Maddy (see [21] and [22]) in the context
of her naturalistic philosophy of Set Theory. The maximality criterion has
normally been used to provide a justification for the rejection of the Axiom
of Constructibility, but here we intend to apply it systematically as a guiding
criterion in the search for new axioms.

All large-cardinal axioms and all forcing axioms satisfy the Maximality
criterion, in the weak sense that they all imply the existence of new sets.
Thus, in such a generality this is clearly too vague a criterion, and therefore
definitely useless. For if ZFC is consistent, then we can easily find state-
ments that are consistent, modulo ZFC, and assert the existence of some
new sets, but which are incompatible. Take, for instance, CON(ZFC),
which asserts the existence of a model of ZFC, and ¬CON(ZFC), which
asserts the existence of a (non-standard) proof of a contradiction from ZFC.
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To attain a more concrete and useful form of the Maximality criterion it
will be convenient to think about maximality in terms of models. Namely,
suppose V is the universe of all sets as given by ZFC, and think of V as
being properly contained in an ideal larger universe W which also satisfies
ZFC and contains, of course, some sets that do not belong to V – and it may
even contain V itself as a set – and whose existence, therefore, cannot be
proved in ZFC alone. Now the new axiom should imply that some of those
sets existing in W already exist in V , i.e., that some existential statements
that hold in W hold also in V . Since the sets in V are already given we may
as well allow for the existential statements to have parameters in V . Thus,
Maximality leads to Reflection principles, namely, the existential statements
(with parameters) that hold in the ideal extension W reflect to V .

By repeated application of Reflection, something which the Maximality
criterion forces us to do, the universe of all sets becomes more uniform. For
instance, if some set A is the solution of an existential sentence ϕ(x) that
holds in some ideal extension W of V , then we may consider the sentence
(ϕ(x) ∧ ¬x = A), which contains A as a parameter, and by applying Re-
flection again obtain another solution of ϕ(x) different from A. Or if α is
the rank of A, then by considering the sentence (ϕ(x) ∧ rank(x) > α) we
obtain another solution of ϕ(x) of higher rank, etc. Thus, Reflection leads
to the existence of many solutions of any given existential statement, e.g.,
solutions of arbitrarily high rank. Gödel listed Uniformity as a separate
principle. He understood it as a justification for the extrapolation to larger
cardinals of some of the properties of small cardinals, like ω. We do not
consider this by itself as a sound criterion, since we do not see any need for
arbitrary properties of, say, ω to hold for some larger cardinals. Some of
its properties certainly do not hold for larger cardinals, like the property of
being countable. So, some criterion should be given for choosing among all
the distinct properties. In our remarks below regarding particular kinds of
axioms we will see how a strong form of Uniformity does follow from the
systematic application of the criterion of Maximality.

Notice that not all existential statements are maximizing principles in
the same sense. Indeed, CH is an existential statement which asserts the
existence of a function on ω1 that enumerates all the real numbers, but at
the same time asserts the existence of few real numbers. So, does CH assert
the existence of more sets or of fewer sets? On the other hand, not-CH
is also an existential statement which asserts the existence of more than
ℵ1 many reals, while implying that, for instance, there are no diamond
sequences. So, again it is unclear, a priori, whether not-CH is a maximizing
or a minimizing principle. Which one of CH or its negation should we then
accept according to the Maximality criterion? The difficulty of the question
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is best exemplified by the fact that it is easy to construct by forcing three
models of ZFC, M1 ⊆ M2 ⊆ M3, such that CH holds in both M1 and M3

and fails in M2. The problem is that both CH and its negation are Σ2

statements, and Σ2 sentences, while asserting the existence of some sets,
may in fact be limitative. The same applies to more complex existential
sentences. The only unquestionably maximizing existential sentences are
the Σ1.

Another direct consequence of the Maximality criterion is Gödel’s princi-
ple of Extensionalization. This can be stated as follows: We should require
that V satisfies all instances of the Replacement Axiom for functions with
domain some set in V and range contained in V that are available in some
ideal extension of V . To what extent is this a reasonable assumption? It is
reasonable insofar as this is what we would like to have for V itself. With
V the problem is that, besides the set-functions, there are no more such
functions available other than those that are definable in V . But when
more functions become available, even if they are ideal functions, there is
no reason, a priori, why they should be excluded.

We may thus conclude that Gödel’s principles of Reflection, Extensional-
ization, and Uniformity arise naturally from the systematic application of
the criterion of Maximality.

We need a third criterion to help us sort out among all possible set
existence statements that hold in some ideal extensions of V those that will
be taken as new axioms. Such a criterion may be called Fairness. We could
also call it the Equal Opportunity criterion. It can be stated as:

One should not discriminate against sentences of the same logical
complexity.

The rationale for this criterion is that in the absence of a clear intuition
for the selection, among all the set-existence statements that hold in some
ideal extension of the set-theoretic universe, of those that are true about
sets, we have a priori no reason for accepting one or another. So, once
we accept one, we must also accept all those that have the same logical
complexity.

The logical complexity of a formula of the language of Set Theory is given
by the Levy hierarchy, namely, the Σn and Πn classes of formulas (see [17]).

If we are to allow parameters in our formulas, then we should also require
that:

One should not discriminate against sets of the same complexity.

Now the complexity of a set may be defined in different ways, but the
most natural measures of the complexity of a set are its rank and its hered-
itary cardinality.
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Thus, a fair class of existential sentences will be one of the classes Σn

with parameters in some Vα, α an ordinal, or some Hκ, κ a cardinal. Classes
of higher-order formulas, like the Σm

n , or formulas pertaining to some infini-
tary logic could also be considered. Moreover, the language could also be
expanded by allowing new constants or predicates, etc.

Finally, there is the criterion of Success. As was remarked before, its
main use is for evaluating the axioms that have been found by following
the other criteria. A new axiom should not only be natural, but it should
also be useful. Now, usefulness may be measured in different ways, but a
useful new axiom must be able at least to decide some natural questions
left undecided by ZFC. If, in addition, the new axiom provides a clearer
picture of the set-theoretic universe, or sheds new light into obscure areas,
or provides new simpler proofs of known results, then all the better.

In conclusion, once we agree on what kind of ideal extensions of V we
should be considering, by applying the three criteria above simultaneously
(Consistency, Maximality, and Fairness), the crucial question becomes:

Find a (largest possible) fair class Σ of existential sentences such that the
principle that asserts that all sentences in Σ that hold in an ideal extension
are true can be stated as a sentence (or a recursive set of sentences) in the
first-order language of Set Theory and is consistent with ZFC.

Once such a principle is found, we can reasonably argue that it constitutes
a natural axiom of Set Theory. Its survival as a new axiom, in terms of being
accepted and used by the set theorists, will then be largely determined by
its success.

We shall now put to test our criteria in the case of large-cardinal axioms.

4. The naturalness of large-cardinal axioms

Whatever theory we have about what exists, it should be
compatible with our understanding of our theory that the
totality of existing things should be a set.

W.N. Reinhardt ([27])
Large cardinal axioms may be divided into two classes: the strong axioms

of infinity, and the large cardinal axioms arising from elementary embed-
dings of V into transitive proper classes, i.e., the measurable cardinals and
above.

4.1. Strong axioms of infinity. The strong axioms of infinity originate
when one considers ideal extensions of the universe V of all sets, as given
by ZFC, in which the transfinite sequence of all ordinals, and therefore the
power set operation, is continued yet even further. In this ideal extension,
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the class ORV of all ordinals in V would be an ordinal κ, and V itself would
be a set. We thus imagine V to be actually some initial rank Vκ of a larger
universe so that Vκ |= ZFC.

We can introduce new axioms stating that sentences in a given fair class
Σ reflect to Vκ. These kinds of axiom, even though they satisfy our criteria,
they may not have any large-cardinal strength and their consequences may
be rather poor. For instance, the axiom that asserts that Vκ satisfies ZFC
and reflects all Σn sentences, for some fixed n, follows from the existence
of a stationary class of ordinals α such that Vα satisfies ZFC, a principle
which has no large-cardinal strength and is consistent with the Axiom of
Constructibility.

A crucial step forward in strength is obtained by requiring that κ is a
regular cardinal. Notice that if Vκ is a model of ZFC, then 〈Vκ,∈, κ〉 |= “κ
is a regular cardinal”. But κ need not even be a cardinal in V . Requiring
that κ is a regular cardinal in V amounts to requiring that Vκ satisfies a
bit of the second-order Replacement Axiom. Namely, Replacement for all
functions with domain some ordinal less than κ and values in κ, which need
not be definable in Vκ. It turns out that since Vκ |= ZFC, satisfying this
bit of second-order Replacement implies that Vκ satisfies the full second-
order Replacement Axiom. This form of extensional Replacement is exactly
the content of Gödel’s principle of Extensionalization, which we have al-
ready discussed in the previous section; we argued its naturalness under the
Maximality criterion.

Now for κ a regular cardinal, the following are equivalent:

(1) Vκ |= ZFC
(2) Vκ ≺Σ1 V

i.e., Vκ reflects all Σ1 sentences with parameters, which means
that for every a1, ..., ak ∈ Vκ and every Σ1-formula ϕ(x1, ..., xk),

Vκ |= ϕ(a1, ..., ak) iff ϕ(a1, ..., ak).

A regular cardinal satisfying (1) or (2) above is inaccessible. Thus according
to our criteria the existence of an inaccessible cardinal is a natural axiom
of Set Theory. If we want to continue, yet one more step, the iterative
construction of V , we are forced to accept the existence of an inaccessible
cardinal. The existence of an inaccessible cardinal is the first of the large
cardinal axioms.

The existence of an inaccessible cardinal cannot be proved in ZFC, for if
κ is inaccessible, then Vκ is a model of ZFC. Hence, the consistency of ZFC
cannot imply the consistency of ZFC plus the existence of an inaccessible
cardinal. The sentence that asserts the existence of an inaccessible cardinal
κ, as every other large cardinal axiom, has greater consistency-strength than
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ZFC. Therefore, it cannot satisfy the criterion of Consistency in its basic
form, but of course it trivially satisfies it modulo large cardinals. It does
however satisfy the other two criteria of Maximality and Fairness for the
class of Σ1 formulas with parameters in Vκ = Hκ.

The next step is to consider the class of Σ2 sentences, namely, suppose
that κ is inaccessible and

Vκ ≺2 V

i.e., it reflects all Σ2 sentences with parameters. Then κ is an inaccessible
cardinal, a limit of inaccessible cardinals, and much more.

More generally, for every n one may consider the existence of a regular
cardinal κ such that

Vκ ≺n V

Such a cardinal is called n-reflecting. The axioms that assert the existence
of n-reflecting cardinals do satisfy the criteria of Maximality and Fairness.
But if n < m, then ZFC plus the existence of an m-reflecting cardinal
implies the consistency of ZFC plus there is a n-reflecting cardinal. Thus,
those axioms are strictly increasing in consistency strength.

Notice that since for n < m, if κ is an m-reflecting cardinal then it is also
n-reflecting, asserting the existence of an m-reflecting cardinal makes the
universe larger than just asserting the existence of an n-reflecting cardinal.

For each n, the sentence: There exists a n-reflecting cardinal, can be
written as a first-order sentence. However, by Tarski’s theorem on the
undefinability of truth, there cannot be a definable κ such that Vκ reflects
all sentences. Moreover, the sentence: There exists a cardinal κ that reflects
all Σn sentences, all n, cannot even be written in the first-order language
of Set Theory.

We conclude that the set of all sentences of the form: There exists a
n-reflecting cardinal, n an integer, forms a recursive set of natural axioms
of Set Theory (modulo its consistency with ZFC). In fact, by the same
arguments, and following the principle of Maximality, we are led to the
acceptance as a natural recursive set of axioms the set of all sentences of
the form: There exists a proper class of n-reflecting cardinals, n an integer
(modulo its consistency with ZFC).

A strengthening of the notion of inaccessibility is that of a Mahlo cardinal:
κ is a Mahlo cardinal if it is regular and the set of inaccessible cardinals
below κ is stationary, i.e., every closed and unbounded subset of κ contains
an inaccessible cardinal. Notice that since inaccessible cardinals are regular,
we cannot hope to have a club of inaccessible cardinals below κ, but we
may have the next best thing, namely, a stationary set of them. This is
a natural assumption according to the principle of Maximality. The point
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is that, provably in ZFC, every sentence ϕ that holds in V reflects to a
club class of Vα. So, there should be an inaccessible cardinal κ such that
Vκ satisfies ϕ. Once the existence of inaccessible cardinals is accepted, we
should also accept that there are as many of them as possible, and this
means a stationary class of them.

A Mahlo cardinal cardinal κ is inaccessible, and in Vκ there is a stationary
class of Σω-reflecting cardinals, i.e., Σn-reflecting for every n. Notice that κ
is Mahlo iff κ is regular, Vκ |= ZFC, and the set of regular λ < κ such that
Vλ |= ZFC is stationary. Thus, once inaccessible cardinals and reflecting
cardinals are accepted, Mahlo cardinals are the next natural step in the
process of extending the reflection properties of the universe of all sets.

By allowing higher-order formulas one obtains the so-called indescribable
cardinals, which form a hierarchy, according to the complexity and the order
of the formulas reflected: κ is Σm

n -indescribable (Πm
n -indescribable) if for

every A ⊆ Vκ and every Σm
n -sentence (Πm

n -sentence) ϕ, if 〈Vκ,∈, A〉 |= ϕ,
then there is λ < κ such that 〈Vλ,∈, A ∩ Vλ〉 |= ϕ.

We have that κ is Σ1
1-indescribable iff it is inaccessible. A minimal

strengthening of this property yields the Π1
1-indescribable cardinals. Π1

1-
indescribable cardinals are also known as weakly-compact cardinals. Every
weakly-compact cardinal κ is Mahlo and the set of Mahlo cardinals below
κ is stationary.

Above all those cardinals are the totally indescribable cardinals. i.e.,
κ is totally indescribable if for every A ⊆ Vκ and every sentence, of any
complexity and any order, that holds in 〈Vκ,∈, A〉 it already holds in some
〈Vλ,∈, A ∩ Vλ〉, λ < κ.

Totally indescribable cardinals seem to be the end in the direction of ex-
tending the reflection properties of V obtained by considering ideal exten-
sions of the sequence of ordinals. We may have a stationary class of totally
indescribable cardinals, but no stronger forms of reflection seem possible.

It can be shown that if the large cardinal axioms considered so far are
consistent with ZFC, then they are also consistent with ZFC plus V =
L. This is not surprising since those axioms arise without making any
assumptions on the structure of V beyond ZFC, and for all we know V
might just be L.

4.2. Large cardinal axioms. One obtains much stronger axioms by con-
sidering another kind of ideal extension of V . Even though V contains all
sets, we may think of V as included in a larger transitive universe M having
the same ordinals as V so that M is fatter than V , in the sense that for
every ordinal α, Vα is included in Mα, and for some α – hence also for all
ordinals greater than α – the inclusion is proper. According to the Fairness
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criterion, we would like to say that every Σ1 sentence, possibly with param-
eters in V , that holds in M , already holds in V . But this is not possible.
No transitive proper class V different from M can be a Σ1-elementary sub-
structure of M . The reason is that if this were the case, then Mα = Vα, for
all α, contradicting the assumption that M was fatter than V . The problem
here is twofold. On one hand we assumed M contains some sets that do not
belong to V , while having the same ordinals. On the other hand we allowed
arbitrary parameters in our Σ1 sentences. But there is a more fundamental
problem: in considering ideal extensions of V which contain the same ordi-
nals, we just do not know what are the ideal sets that exist in M but not
in V . In the case of the strong axioms of infinity, when we considered ideal
extensions where the ordinals extended beyond all the ordinals of V , we
knew what the new sets could be like, namely, the constructible sets built
at the ideal ordinal stages. But in the present situation, where the ordinals
of V and M are the same and V is contained in M , we just do not have
any clue as to what the ideal sets in M might be. In other words, for all we
know V , and therefore M , might just be L.

One possible way out of this difficulty is to take M to be a subclass of V ,
so that there are really no new sets, but still view V as properly contained
in M . This is possible if we think of V as embedded into M . By transitively
collapsing M we may just assume that M is transitive. So, suppose that M
is a transitive class and there exists an embedding j : V → M which is not
the identity and is Σ1-elementary, i.e., for every Σ1 sentence ϕ(x1, ..., xn),
and every a1, ..., an,

ϕ(a1, ..., an) iff M |= ϕ(j(a1), ..., j(an)).

Then there is a least cardinal such that j(κ) 6= κ, called the critical point of
j. κ is the first ordinal where j′′V and M start to differ. Indeed, we have
that j ¹ Vκ is the identity. Such a cardinal is measurable, i.e., there exists a
two-valued κ-complete measure U on κ, namely U = {X ⊆ κ : κ ∈ j(X)}. In
fact, the existence of a measurable cardinal is equivalent to the existence of a
Σ1-elementary embedding, different from the identity, of V into a transitive
class M . The class M is the transitive collapse of the ultrapower V κ/U ,
and the embedding is given by j(x) = π([cx]U ), where cx : κ → {x} is the
constant function x and π is the Mostowski transitive collapsing function.

If κ is a measurable cardinal, then it is the κ-th inaccessible cardinal.
However, it need not even be Σ2-reflecting.

As it turns out, if j : V → M is Σ1-elementary, then it is fully elementary,
i.e., for every formula ϕ(x1, ..., xn) and every a1, ..., an,

ϕ(a1, ..., an) iff M |= ϕ(j(a1), ..., j(an)).
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Although the sentence There exists an embedding from V into M is not
first-order expressible, we can assert the existence of an elementary em-
bedding from V into some class M just by asserting the existence of a
measurable cardinal κ, which is first-order expressible.

Thus, we conclude that the axiom that asserts the existence of a mea-
surable cardinal satisfies the criteria of Maximality and Fairness and is,
therefore, a natural axiom of Set Theory (modulo its consistency with ZFC).

M cannot be V itself, since by a famous result of Kunen (see [17]), one
cannot have a non-trivial elementary embedding j : V → V . M cannot be L
either, since as it was observed by Scott (see [17]) otherwise we would have
V = L and, if κ is the least measurable and j the associated embedding, by
elementarity, in L j(κ) would be the least measurable cardinal, thus con-
tradicting the fact that κ < j(κ). Thus, unlike in the case of Σn-reflecting
cardinals, the existence of a measurable cardinal implies that V 6= L.

The larger M , the closer it is to V , the stronger is the axiom obtained.
This is not surprising, since the richer M is, the richer is any substructure
elementarily embedded into it. The upper bound is when M is V itself,
which leads to inconsistency, by Kunen’s result. Some possible strength-
enings are the following: first, we may require that M contain arbitrarily
large initial segments of V , namely,

There is a cardinal κ such that for every ordinal α there is an elementary
embedding j : V → M , M transitive, with critical point κ and with Vα ⊆ M .

Such a cardinal κ is known as a strong cardinal. If κ is strong, then it
is the κ-th measurable cardinal. Unlike the case of measurable cardinals,
the existence of a strong cardinal κ cannot be formulated in terms of the
existence of a certain measure on κ. However, a formulation in the first-
order language of Set Theory is still possible, although somewhat more
involved (see [18]). If there exists a strong cardinal, then V 6= L(A), for
every set A. In particular, V 6= L(Vα), for every α. Thus the existence
of a strong cardinal could never be obtained by just ideally extending the
ordinal sequence. A further strengthening is given by the following:

There is a cardinal κ such that for every ordinal α there is an elementary
embedding j : V → M , M transitive, with critical point κ and with αM ⊆
M .

Such a κ is called a supercompact cardinal. If κ is supercompact, then it is
strong. Consistency-wise, the existence of a supercompact cardinal is much
stronger than the existence of a strong cardinal. Many other variations
and further strengthenings are possible (see [18]), yielding ever stronger ax-
ioms. Specially important for their essential role in Descriptive Set Theory
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are the Woodin cardinals, which are consistency-wise between strong and
supercompact cardinals.

We already remarked that the upper limit of the axioms of this sort
is given by Kunen’s proof of the impossibility of having a non-trivial ele-
mentary embedding j : V → V . But by fusing together the two kinds of
ideal extensions of V considered so far, namely, the extension of the ordinal
sequence and the existence of elementary embeddings of V into some tran-
sitive classes, we could ask for the existence of some non-trivial elementary
embedding j : Vα → Vα, for some α. This turns out to be an extremely
strong axiom, although so far no inconsistency has been derived from it.
But this axiom does satisfy the two criteria of Maximality and Fairness,
and so, modulo its consistency, is a natural axiom of Set Theory.

As with the axioms of strong infinity, in the case of axioms of large
cardinals, once we are led to the acceptance of the existence of a certain
large cardinal, by applying the principle of Maximality we are naturally led
to the acceptance of a (stationary) proper class of them.

Let us stop here our discussion of the axioms of large cardinals, since
the above examples are sufficient for our present purposes. We just wanted
to illustrate the fact that the usual large cardinal axioms are nothing else
but the natural axioms – natural meaning that they satisfy the criteria of
Maximality and Fairness – one obtains by asserting the existence of those
sets that would exist in ideal extensions of V obtained by either expanding
the ordinal sequence or by viewing V as embedded in yet a larger universe
having the same ordinals, but which is, in fact, a subclass of V . It has been
repeatedly argued that the remarkable fact that large cardinal axioms, in
spite of the initially different motivations for their introduction, have been
shown to fall into a linearly ordered hierarchy, lends them naturalness and
contributes to their justification as additional axioms of Set Theory. But this
is a misleading perspective. There is nothing remarkable about the fact that
the large cardinal axioms fall into a linear hierarchy, for this is an immediate
consequence of their being equivalent to ever stronger reflection principles
from ideal expansions of the universe into V . What are remarkable, in any
case, are the results that characterize them as reflection principles, thus
revealing their true nature.

Another possible solution to the difficulties of finding fair axioms arising
from ideal extensions of V which contain the same ordinals is provided by
the method of forcing. Forcing is actually the only general method we know
of which, starting with a model of ZFC, allows to build a larger new model
of ZFC.
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5. Suslin’s Hypothesis and Forcing Axioms

Forcing is a method to make true statements about some-
thing of which we know nothing.

K. Gödel ([36])
Arguably, the second most important problem for the development of Set

Theory (the first being, of course, Cantor’s continuum problem) has been
Suslin’s Hypothesis: Every complete dense and without endpoints linear
ordering with the countable chain condition is order-isomorphic to R. The
proof of its failure in L by Jensen led to his discovery of the ♦ principle and
all the subsequent combinatorial principles in L, the development of fine
structure theory, etc. On the other hand, the proof of its consistency by
Solovay and Tennenbaum [30] gave birth to the theory of iterated forcing
with all its developments and applications. The special relevance of Suslin’s
Hypothesis to our discussion lies in the fact that, as we shall see, it is in the
proof of its consistency that we find the origin of the class of set-theoretic
principles that we want to discuss.

The proof of the consistency of Suslin’s Hypothesis using iterated forcing
led to the isolation by D. Martin [24] of a set-theoretic principle which has
been known as Martin’s Axiom (MA). In spite of its name, at first glance
the principle can be hardly recognized as an axiom. It states the following:

For every partially-ordered set P with the countable chain condition, and
for every family D of cardinality less than the cardinality of the continuum
of dense open (in the order topology) subsets of P, there is a filter F ⊆ P
that intersects all sets in D.

This axiom can also be seen as a generalization of the Baire Category
Theorem, for it is equivalent to the following:

In every compact Hausdorff ccc space, the intersection of fewer than the
cardinality of the continuum dense open sets is dense.

Since its formulation in 1970, MA has been widely used not only within
Set Theory, but it has also been successfully applied to the solution of
many problems in Combinatorics, General Topology, Measure Theory, Real
Analysis, etc. (see [10]). However, in spite of its success as a technical tool,
the prevalent opinion has been that it is by no means an axiom, in the same
sense that the other ZFC axioms are, namely, an intuitively obvious fact
about sets (see, for instance, [19]).

In the late seventies, and as an outgrowth of his study of Jensen’s forcing
which was used to prove the consistency of Suslin’s Hypothesis with the
generalized Continuum Hypothesis, Shelah introduced the notion of Proper
Forcing (see [28]). Properness is a property of partially-ordered sets weaker



18 JOAN BAGARIA

than the countable chain condition (ccc). It is a rather natural notion that
arises when one wants to perform forcing iterations with partial orderings
that are not ccc without collapsing ω1.

Several weaker notions than the ccc had already been considered in
the literature before Shelah’s notion of properness, and the corresponding
stronger forms of MA had been formulated and applied. Especially success-
ful was Baumgartner’s Axiom A, a property of partial orderings weaker than
the ccc which encompassed many of the partial orderings used in forcing
constructions involving the continuum. Since properness is an even weaker
condition than the Axiom A property, Baumgartner naturally formulated
the Proper Forcing Axiom (PFA), that is, MA for the class of proper posets
with the necessary restriction that the family D of dense open subsets of
the partial ordering P be of cardinality at most ℵ1. Without this restriction
the axiom would just be inconsistent with ZFC. Baumgartner also showed
that PFA is consistent with ZFC, assuming the consistency of ZFC with the
existence of a supercompact cardinal.

An even weaker notion than properness was introduced by Shelah in [28],
namely, semi-properness, which is essentially the weakest property that a
partial ordering must have in order to iterate it without collapsing ω1. The
corresponding axiom, the Semi-Proper Forcing Axiom (SPFA), was subse-
quently formulated by Shelah and proved to be consistent modulo a super-
compact cardinal. In a rather surprising result, however, Shelah [29] showed
that SPFA was actually equivalent to the maximal possible extension of MA,
introduced by Foreman, Magidor and Shelah in [23] and known as Martin’s
Maximum (MM). This is MA for the class of partial orderings that do not
collapse stationary subsets of ω1 (and for D of cardinality at most ℵ1, a
necessary assumption as it was pointed out before). Many consequences of
MM are proved in [23], the most remarkable for our purposes being that
the size of the continuum is ℵ2.

Thus, MM, the strongest consistent (modulo the existence of a supercom-
pact cardinal) generalization of MA settles the continuum problem, and in
a way that was already predicted by Gödel, namely that its size is ℵ2. This
result was later improved by Todorčević and Veličković by showing that
PFA (actually MA for a class much smaller than the Axiom A partial or-
derings, a principle consistent modulo the existence of a weakly-compact
cardinal, suffices) implies already that the continuum has size ℵ2 (see [7]).
The question therefore arises as to what extent these are natural axioms of
Set Theory.

On the one hand, they are generalizations of ZFC-provable statements,
for they generalize MAℵ1 which is itself a generalization of the Baire Cate-
gory Theorem. Further, they have been shown to be consistent modulo some
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large cardinal axioms. But generalizing some ZFC theorems should certainly
not be taken as a sufficient condition for being considered as axioms, for
the simple reason that ZFC theorems may be generalized in incompatible
ways. To be counted as natural axioms we need to see that they satisfy the
criteria of Maximality and Fairness.

5.1. Forcing axioms as principles of generic absoluteness. We have
already remarked that forcing axioms were regarded, until recently, as ad
hoc principles, very useful indeed as technical tools for proving the consis-
tency of mathematical statements without having to use forcing directly,
but by no means real axioms. However, some recent results show that, in
fact, certain bounded forms of the forcing axioms are real axioms. The first
indication of this is a result first proved by J. Stavi and J. Väänänen, which
shows that Martin’s Axiom is equivalent to the following statement:

Every Σ1 sentence with parameters in H2ℵ0 that can be forced to hold by
a ccc forcing notion, is true.

Unfortunately, the result remained unpublished for many years, but it
was later independently discovered and first published in [4]. The Stavi-
Väänänen paper containing the result has now also been published ([31]).

This result shows that by considering ideal forcing extensions of the uni-
verse, MA can be seen to satisfy the criteria of Maximality and Fairness.

As for stronger forcing axioms, S. Fuchino [11] gave the following sur-
prising characterization of PFA in terms of potential embeddings:

PFA is equivalent to the statement that for any two structures A and B,
with A of cardinality ℵ1, if a proper forcing notion forces that there is an
embedding of A into B, then such an embedding exists.

The same characterization holds for the axioms SPFA and MM, replacing
proper by semi-proper or by preserving stationary subsets of ω1, respectively.

Given two structures A and B, the sentence: There exists an embedding
of A into B, is Σ1 in the parameters A and B. Thus, PFA satisfies to some
extent the criterion of Maximality, for it asserts the existence of certain sets,
namely, embeddings between structures, that would exist in an ideal forcing
extension of the universe by a proper poset. But it does not seem to satisfy
the Fairness criterion, since the class of existential sentences that assert the
existence of embeddings between structures appears to be too restrictive.
Similar considerations apply to the axioms SPFA and MM.

5.2. Bounded Forcing Axioms. PFA can also be formulated as follows:
For every proper partial ordering P and every family D of size ℵ1 of maximal
antichains of B =df r.o.(P)\{0}, there is a filter F ⊆ B that intersects every
antichain in D.
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M. Goldstern and S. Shelah [14] introduced the Bounded Proper Forcing
Axiom (BPFA) which is like PFA, as formulated above, but with the addi-
tional requirement that the maximal antichains of D have size at most ℵ1.
Fuchino’s argument shows that BPFA is actually equivalent to the state-
ment that for any two structures A and B of size ℵ1, if a proper forcing
notion forces that there is an embedding of A into B, then such an em-
bedding exists. Notice that in this formulation we may assume that the
structures A and B belong to Hω2 .

Unlike the case of structures of arbitrarily large size, the set of Σ1-
sentences that assert the existence of an embedding between structures of
size ℵ1 as parameters is not restrictive, for if any such sentence that can
be forced is true, then the same applies to any other Σ1 sentence with pa-
rameters in Hω2 . Thus we have the following characterization of BPFA
([5]):

BPFA is equivalent to the statement that every Σ1 sentence with param-
eters in Hω2 that is forced by a proper forcing notion is true.

More generally, given a class of forcing notions Γ, let the Bounded Forcing
Axiom for the class Γ, written BFA(Γ), be the following statement:

Every Σ1 sentence with parameters in Hω2 that is forced by a forcing
notion in Γ is true.

That is, for every P ∈ Γ, if ϕ is a Σ1 sentence, possibly with parameters
in Hω2 , that has r.o.(P)-Boolean value 1, then ϕ holds.

Thus, MA for families of dense open sets of size ℵ1 is just BFA(Γ),
where Γ is the class of ccc posets. Also, we can formulate the bounded
forms of SPFA and MM. Namely: The Bounded Semi-proper Forcing Ax-
iom (BSPFA) and the Bounded Martin’s Maximum (BMM) are the axioms
BFA(Γ), where Γ is the class of semi-proper posets or the class of posets
that preserve stationary subsets of ω1, respectively.

Goldstern and Shelah ([14]) showed that BPFA is consistent relative to
the consistency of the existence of a Σ2-reflecting cardinal, and that this
is its exact consistency strength. The same applies to BSPFA. Further,
Woodin proved the consistency of BMM [38] relative to the existence of large
cardinals much weaker than a supercompact (ω +1-many Woodin cardinals
suffices). As for consistency strength, R. Schindler has shown that BMM
implies that for every set X there is an inner model with a strong cardinal
containing X. Thus, BMM is, consistency-wise, much stronger that SPFA
and PFA. Schindler has also shown, modulo large cardinals, that BPFA
does not imply BSPFA. Therefore, the axioms BPFA, BSPFA, and BMM
form a strictly increasing chain in strength.
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Of course, there are no real extensions of the universe of all sets, and
therefore no real forcing extensions. But given a forcing notion P, we can
define the Boolean-valued model V B, where B = r.o.(P), and view V as
contained in V B via the canonical embedding given by x 7−→ x̌. Thus, if
we want to maximize all Σ1 sentences that hold in V B or, equivalently, that
would hold in any ideal extension of V by B, allowing both a fair class of
parameters as large as possible and a class of forcing extensions as wide as
possible, this is exactly what the Bounded Forcing Axioms do.

It is worth noting that it is a theorem of ZFC that all Σ1 sentences
that hold in some Boolean-valued model V B, allowing only sets in Hω1 as
parameters, are true. So, the Bounded Forcing Axioms are just natural
generalizations of this fact to Hω2 . Moreover, this is the most we can hope
for. We cannot have the same for Σ2 formulas since, for instance, both
CH and its negation are of this sort. Moreover, as we pointed out in the
last section, V cannot be a Σ1-elementary substructure of V B for any non-
trivial B. In fact, for many B we cannot even allow as parameters of the Σ1

formulas all sets in Hω3 (see [6] for a thorough discussion of the limitations
of Bounded Forcing Axioms). Furthermore, if we want Γ to be the class
of all forcing notions, then we cannot even have ω1 as a parameter, since
we can easily collapse ω1 to ω, and saying that ω1 is countable is Σ1 in the
parameter ω1. Even BFA(Γ) for the class of forcing notions that preserve ω1

is inconsistent with ZFC. For if S is a stationary and co-stationary subset of
ω1, then we can add a club C ⊆ S by forcing and at the same time preserve
ω1. But saying that S contains a club is Σ1 in the parameter S, and so the
axiom would imply that such a club exists in the ground model, which is
impossible.

So, a natural question is what is the maximal class Γ for which BFA(Γ)
is consistent with ZFC. This class has been singled out by D. Asperó [1]:
Let Γ be the class of all posets P such that for every set X of cardinality
ℵ1 of stationary subsets of ω1 there is a condition p ∈ P such that p forces
that S is stationary for every S ∈ X. This class coincides with the class
of forcing notions that preserve stationary subsets of ω1 if and only if the
ideal of the non-stationary subsets of ω1 is ω1-dense. The axiom BFA(Γ)
is maximal, i.e., if P 6∈ Γ, then the Bounded Forcing Axiom for P fails.
Asperó also shows that the axiom can be forced assuming the existence of
a Σ2-reflecting cardinal which is the limit of strongly compact cardinals.

We conclude that Bounded Forcing Axioms are the natural axioms of
Set Theory arising from the application of the criteria of Maximality and
Fairness to ideal forcing extensions of V . Bounded Forcing Axioms are
axioms of generic absoluteness for Hω2 . Generally speaking, an axiom of
generic absoluteness asserts that whatever statement can be forced is true,
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subject only to the requirement that it be consistent. Axioms of generic
absoluteness for Hω1 , i.e., axioms that state that whatever statements with
parameters in Hω1 can be forced they are true, appear naturally in De-
scriptive Set Theory, and they are a consequence of large cardinals (see [6]).
Thus, the Bounded Forcing Axioms constitute the next level, i.e., for Hω2 ,
of this kind of axioms. Since the continuum problem is decided in Hω2 ,
it is reasonable to expect that the Bounded Forcing Axioms will be the
appropriate kind of axioms for solving the problem.

6. Bounded Forcing Axioms and the continuum problem

Many consequences, mostly combinatorial, of the axioms BPFA, BSPFA,
and BMM are known (see [2] and [33]). But the relevance of Bounded
Forcing Axioms to our present discussion is that, unlike the axioms of large
cardinals, they do settle Cantor’s continuum problem.

Woodin [38] showed that if there exists a measurable cardinal, then BMM
implies that there is a well-ordering of the reals in length ω2 which is defin-
able in Hω2 with an ω1-sequence of stationary subsets of ω1 as a parameter,
and hence the cardinality of the continuum is ℵ2. D. Asperó and P. Welch
[3] obtained the same result from a weaker large-cardinal hypothesis. Fi-
nally, Todorcevic [32] proved that BMM implies that there is a well-ordering
of the reals in length ω2 which is definable in Hω2 with a ω1-sequence of
real numbers as a parameter, and so the cardinality of the continuum is ℵ2.

Showing that BMM implies that the size of the continuum is ℵ2 requires
some method for coding reals by ordinals less than ω2. Two such methods
were devised by Woodin – assuming the existence of a measurable cardi-
nal – and Todorcevic, respectively. Very recently, Justin T. Moore [26] has
discovered a new coding method which further improves on the aforemen-
tioned chain of results of Woodin, Asperó-Welch, and Todorcevic, namely:
BPFA implies that there is a well-ordering of the reals in length ω2 which is
definable in Hω2 with an ω1-sequence of countable ordinals as a parameter,
and hence the cardinality of the continuum is ℵ2.

Since, as we have already argued, Bounded Forcing Axioms are natural
axioms of Set Theory, the results that show that they imply that the car-
dinality of the continuum is ℵ2 constitute a natural solution to Cantor’s
continuum problem.

There still remains the question of the consistency of the Bounded Forc-
ing Axioms with ZFC. We already observed that BPFA and BSPFA are
consistent relative to the existence of a Σ2-reflecting cardinal, a very weak
large-cardinal hypothesis in the large-cardinal hierarchy. The consistency
strength of BMM is not known, this being one of the most interesting open
questions in the area. BMM may even imply PD, i.e., that every projective
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set of real numbers is determined, and so its consistency strength would
be roughly at the level of infinitely-many Woodin cardinals. It is also an
open question whether Asperó’s maximal bounded forcing axiom is actu-
ally equivalent to BMM. Further open questions are the following: It would
be interesting to know whether there is any Bounded Forcing Axiom, for
a natural class of forcing notions, that implies that the cardinality of the
continuum is ℵ2 and whose consistency strength is just ZFC. It would also
be of great interest to find, under some form of Bounded Forcing Axiom, a
coding of reals by ordinals less than ω2 using a single real as parameter.

Bounded Forcing Axioms are at least as natural as the axioms of large
cardinals. Both kinds of axioms satisfy the criteria of Maximality and Fair-
ness. But Bounded Forcing Axioms are in a sense more natural than the
axioms of large cardinals, for the ideal extensions on which they are based,
namely, the ideal forcing extensions of the universe, are more intuitive than
the ideal extensions obtained by viewing a transitive class M , which is al-
ready included in V , as an extension of V via the trick of embedding V into
it.

All known large-cardinal axioms are compatible with Bounded Forcing
Axioms. Thus it is reasonable to work with both kinds of axioms simul-
taneously. Woodin has isolated an axiom we may call Woodin’s Maximum
(WM), that brings together the power of large cardinals and the Bounded
Forcing Axioms. WM has the astonishing property that it decides in Ω-logic
the whole theory of Hω2 (see [39]). WM asserts the following:

(1) There exists a proper class of Woodin cardinals, and
(2) A strong form of BMM holds in every inner model M of ZFC that

contains Hω2 and thinks that there is a proper class of Woodin
cardinals.

The strong form of BMM of (2) says: Every Σ1 sentence (with parame-
ters) in the language of the structure 〈Hω2 ,∈, NSω1 , X〉 – where NSω1 is the
non-stationary ideal and X is any set of reals in L(R) – that holds in some
(ideal) forcing extension of V via a forcing notion that preserves stationary
subsets of ω1 holds already in V .

Woodin [38] has shown that the consistency strength of WM is essentially
that of the existence of infinitely-many Woodin cardinals. Moreover, assum-
ing the existence of a proper class of Woodin cardinals and an inaccessible
limit of Woodin cardinals, he proved that WM is Ω-consistent. So, if the
Ω-conjecture is true, then WM holds in some (ideal) forcing extension of
the universe V . This would certainly contribute to making WM, according
to our criteria, a natural axiom of Set Theory.
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3. David Asperó and Philip Welch, Bounded Martin’s Maximum, weak Erdös cardinals,
and ψAC , J. Symbolic Logic 67 (2002), no. 3, 1141–1152.

4. Joan Bagaria, A characterization of Martin’s Axiom in terms of absoluteness, J.
Symbolic Logic 62 (1997), 366–372.

5. , Bounded forcing axioms as principles of generic absoluteness, Arch. Math.
Logic 39 (2000), no. 6, 393–401.

6. , Axioms of Generic Absoluteness, CRM Preprints 563 (2003), 1–25.
7. M. Bekkali, Topics in set theory, Lecture Notes in Mathematics, vol. 1476, Springer-

verlag, 1991.
8. Georg Cantor, Ein beitrag zur mannigfaltigkeitslehre, J. f. Math. 84 (1878), 242–258.
9. Paul J. Cohen, Comments on the foundations of set theory, Axiomatic Set Theory

(Dana S. Scott, ed.), Proceedings of Symposia in Pure Mathematics, vol. 13, Amer.
Math. Soc., 1971, pp. 9–15.

10. David Fremlin, Consequences of Martin’s Axiom, Cambridge Tracts in Math., vol. 84,
Cambridge Univ. Press, 1984.

11. S. Fuchino, On potential embeddings and versions of Martin’s Axiom, Notre Dame
J. Formal Logic 33 (1992), 481–492.
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