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ABSTRACT 

We present an approach and architecture for 
implementing scalable and maintainable clinical 
decision support at the Partners HealthCare System. 
The architecture integrates a business rules engine 
that executes declarative if-then rules stored in a  
rule-base referencing objects and methods in a 
business object model. The rules engine executes 
object methods by invoking services implemented on 
the clinical data repository. Specialized inferences 
that support classification of data and instances into 
classes are identified and an approach to implement 
these inferences using an OWL based ontology 
engine is presented. Alternative representations of 
these specialized inferences as if-then rules or OWL 
axioms are explored and their impact on the 
scalability and maintenance of the system is 
presented. Architectural alternatives for integration 
of clinical decision support functionality with the 
invoking application and the underlying clinical data 
repository; and their associated trade-offs are 
discussed and presented.  

INTRODUCTION 

Clinical care guidelines are important tools for 
reinforcing the adoption of best practices in clinical 
care and are intended to improve safety, quality and 
cost effectiveness3 of patient care. As different payer 
agencies such as the Federal Government (through 
Medicare/Medicaid) and insurance agencies such as 
Blue Cross and Blue Shield move towards a pay for 
performance model,  healthcare quality and patient 
outcome metrics, such as the JCAHO1 and HEDIS2 
measures have come into focus. At Partners 
Healthcare, we seek to incorporate these measures 
within our clinical information systems. 
 
Approaches for modeling and automation of clinical 
practice guidelines have been proposed over the 
years with different degrees of success. Some of 
them have contributed significantly to the state of the 
art: the Arden Syntax4, EON5, PRODIGY-36, 
PROforma7, Asbru8, GUIDE9, Prestige10 and 
GLIF311. From an architectural viewpoint, GLIF3 
deserves special discussion. The various steps in the 
GLIF3 guideline model have been delineated as3: 

action and decision steps to represent clinical actions 
and decisions; patient state steps to serve as entry 
points into a guideline; and branch and 
synchronization steps for modeling concurrency. In 
this paper, we present an approach for implementing 
clinical decision support that subscribe to GLIF3 
architectural principles by using an industrial 
strength Business Rules Engine -  iLOG13 and an 
OWL16 ontology engine, Cerebra14.  
 
We present an approach for architecting rule content 
that represents patient state encapsulated in classes 
and methods of a business object model. These 
classes and methods are referenced in a rule base 
containing a set of declarative if-then rules. The “if 
part” of a rule typically consists of boolean 
conditions on the patient state. The “then” part 
consists of actions such as updating the patient state, 
making clinical recommendations, and specifying 
medication orders, etc. We also propose further 
delineation of decision support logic into definitions 
and decisions, where definitions correspond to 
characterization of patient states and classes; and 
decisions correspond to clinical recommendations 
and orders. Definitions are used in the context of 
assigning (or “classifying”) a given patient to a 
particular state or class on the basis of her 
documented clinical profile. This approach leads to a 
modular architecture for decision support, and easier 
maintenance of rules in the face of changing 
definitions. Finally, integration of the clinical 
decision support component with the invoking 
application and the clinical data repository is also 
discussed. Different architectural alternatives are 
presented followed by a discussion of their 
advantages and disadvantages. 

USE CASE 

Consider the following guideline for lipid 
management suggested by the American Diabetes 
Association (ADA)12: 
Lowering triglycerides and increasing HDL cholesterol 
with a fibrate are associated with a reduction in 
 cardiovascular events in patients with clinical CVD, low 
 HDL and near-normal levels of LDL (A). Lower triglycerides 
to <150 mg/dL (1.7 mmol/L) and raise HDL cholesterol to 
>40 mg/dL (1.15 mmol/L). In women, an HDL goal 10 mg/dL 
higher may be appropriate (C). Patient has CVD, 
triglycerides >150 and/or HDL<40 (for women HDL<50) and 
LDL levels are near normal. 



 
The steps for implementing the above clinical 
guideline are: 
• Create the Business Object Model that defines 

patient related classes and methods. 
• Specify Rules to encode Decision Support logic. 
• Delineate definitions characterizing patient states 

and classes and represent them in an Ontology. 

BUSINESS OBJECT MODEL DESIGN 

The business object model for the above guideline 
could be specified as follows: 
 
Class Patient  
method get_gender(): string; 
method has_diabetes(): boolean; 
method has_CVD(): boolean; 
method get_last_triglycerides(): real; 
method get_last_HDL(): real; 
method get_last_LDL(): real; 
 
The model describes patient state information by 
providing a class and set of methods that make 
patient state information available to the rules engine. 
The methods defined in the object model are 
executed by the rules engine which results in 
invocation of services on the clinical data repository 
for retrieval of patient data. These methods may also 
perform additional conditioning of data retrieved 
from the clinical data repository. This leads to 
interesting design choices for design and 
implementation of the business object model, which 
are discussed next. 
 
Consider the methods has_diabetes() and 
has_CVD(), that determine whether a patient has 
diabetes or cardiovascular disease respectively. An 
alternative design would be to define a method 
get_diseases() that return a list of diseases which a 
patient suffers from. Whether the disease diabetes 
or CVD is on that list can be checked by the rule 
engine. This may be implemented by specifying an 
appropriate rule in the rule base. This simplifies the 
business object model, but introduces complexity in 
rule execution. The current design leverages 
optimized processing in the clinical data repository to 
determine whether a patient has diabetes or 
cardiovascular disease and at the same time reduces 
complexity in rule creation. 
 
Consider the method get_last_triglycerides() 
that retrieves the last triglycerides reading for a 
patient from the clinical data repository. This 
approach assumes the existence of a service on the 
clinical data repository which would return the last 
triglycerides reading for a patient. In some cases the 
clinical data repository may return triglycerides 
readings for a patient. That may require additional 

computations to determine the “last” triglycerides 
reading. This may be implemented as a method in the 
business object model or as an additional rule in the 
rule base.  

RULE BASE DESIGN 

The business object model presented in the earlier 
section provides the vocabulary to specify various 
rules for implementing the clinical guideline. 
Consider the following rule specifications: 
 
IF the_patient.get_gender() = “male” 
AND the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND the_patient.get_last_HDL()<=40 
AND the_patient.get_last_LDL()>=Value1 
AND the_patient.get_last_LDL()<=Value2 
THEN “order fibrate therapy” 
 
The above rule represents the first part of the diabetes 
guideline. A special variable “the_patient” acts as a 
placeholder for the actual patient being evaluated. 
The definition of “near normal LDL” is modeled by 
assuming that the LDL reading of the patient lies 
between Value1 and Value2.  The next rule is similar 
to the above but has a higher threshold for HDL 
values for women and can be specified as follows: 
 
IF the_patient.get_gender() = “female” 
AND the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND the_patient.get_last_HDL()<=50 
AND the_patient.get_last_LDL()>=Value1 
AND the_patient.get_last_LDL()<=Value2 
THEN “order fibrate therapy” 
 
There are alternative ways of specifying these rules. 
For instance, the two rules above can be combined 
into one rule as follows: 
 
IF the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND the_patient.get_last_LDL()>=Value1 
AND the_patient.get_last_LDL()<=Value2 
AND(  (the_patient.get_gender() = “male” 
       AND the_patient.get_last_HDL()<=40) 
    OR(the_patient.get_gender() = “female” 
       AND the_patient.get_last_HDL()<=50)) 
THEN “order fibrate therapy” 
 
This representation reduces the number of rules in 
the rule base which has a beneficial impact both on 
rule execution and maintenance. However, the rule 
specification itself has increased in complexity 
making it difficult for a knowledge author to 
understand and vet the rule for clinical validity 
effectively.  
 
 



DEFINITIONS VS DECISIONS 

Clinical decision support rules encode different types 
of inferences:  
• Rule-based specifications of conditions that 

describe patient states and classes, for instance, 
“Diabetic Patient with Higher Risk for CVD” or 
characterize normal or near normal physiological 
patient states, for instance, “Patients with near 
normal values of LDL”. These specifications are 
also called definitions. 

• Rule-based specifications that propose therapies, 
medications and referrals, for instance, 
prescribing fibrate therapy for a diabetic patient 
with higher risk for CVD. These specifications 
are called decisions. 

 
This observation provides us with an opportunity to 
further modularize our rule base by separation of the 
definition of a “Diabetic Patient with high risk of 
CVD”, from decisions that are recommended once a 
patient is identified as belonging to that category.  
 
The definitions in the rule base can be represented as 
follows: 
 
IF the_patient.get_last_LDL()>=Value1 
AND the_patient.get_last_LDL()<=Value2 
THEN set the_patient.LDLcategory  
          = “LDLNearNormal” 
 
IF the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND  the_patient.get_LDLcategory() 
                        = “LDLNearNormal” 
AND the_patient.get_gender() = “male” 
AND the_patient.get_last_HDL()<=40 
THEN set the_patient.category 
     = “DiabeticPatientWithHigherRiskOfCVD” 
 
IF the_patient.has_CVD() = “true” 
AND the_patient.get_last_triglycerides()>=150 
AND the_patient.get_LDLcategory() 
                        = “LDLNearNormal” 
AND the_patient.get_gender() = “female” 
AND the_patient.get_last_HDL()<=50 
THEN set the_patient.category 
     = “DiabeticPatientWithHigherRiskOfCVD” 
 
The simplified rule base can now be represented as: 
 
IF the_patient.get_category() 
   = “DiabeticPatientWithHigherRiskofCVD” 
THEN “order fibrate therapy” 
 
The definitions of various patient states and classes 
can be represented as axioms in an ontology that 
could be executed by an OWL ontology engine, 
Cerebra14. At execution time, the ILOG rule engine 
can invoke a service that interacts with the Cerebra 
OWL engine to infer whether a particular patient 
belongs to a given class of patients, in this case, 

whether a patient is a diabetic patient with high risk 
of cardiovascular disease. The ontology of patient 
states and classes can be represented as follows: 
 
Class Patient 
ObjectProperty gender 
ObjectProperty hasDisease 
ObjectProperty lastTriglycerides 
ObjectProperty lastLDL 
ObjectProperty lastHDL 
 
Class DiabeticPatient  
≡ Patient ∩ ∃hasDisease.Diabetes 
 
Class CVD 
Class Diabetes 
Class Disease 
CVD ⊆ Disease 
Diabetes ⊆ Disease 
 
Class LDLNearNormal 
Class HDLLessThan50 
Class HDLLessThan40 
Class TriglyceridesMoreThan150 
 
Class DiabeticPatientWithHigherRiskofCVD 
≡ DiabeticPatient ∩ ∃hasDisease.CVD ∩ 
∀lastTriglycerides.TriglyceridesMoreThan150 
∩ ∀lastLDL.LDLNearNormal ∩ 
[[∀gender.{“male”}∩∀lastHDL.HDLLessThan40]∪ 
[∀gender.{“female”}∩∀lastHDL.HDLLessThan50]] 
 
The specification of various definitions in the 
ontology is illustrated above. For simplicity, we have 
adopted a non-XML based notation although they 
will be implemented following the OWL 
specification16: 
• The class Patient and properties gender, 

hasDisease, lastTriglycerides, lastLDL and 
lastHDL provide a framework for describing the 
patient. The class DiabeticPatient is a subclass 
of all patients that are known to suffer from 
diabetes. This is expressed using  axiom 
following the Patient class definition. 

• The class Disease represents various diseases 
and subclasses of interest, CVD and Diabetes.  

• The classes LDLNearNormal, HDLLessThan50, 
HDLLessThan40 and TriglyceridedMoreThan150 
represent ranges of values of normal LDL, HDL 
and Triglycerides respectively. Cerebra has 
implemented custom datatypes based on the 
OWL specifications16, providing the ability to 
map XML Schema17 datatypes to OWL Classes 
and supports range checking inferences on them. 

• Finally, DiabeticPatientWithHigherRiskofCVD 
is defined using an axiom to characterize 
diabetic patients with higher risk of CVD. The 
representation of this axiom enables the rule 
author to simplify the rule base significantly (as 
only the rule in bold needs to be specified). The 
classification of a patient as being diabetic and 



with high risk of CVD is now performed by the 
Cerebra Ontology Engine. 

CLINICAL DECISION SUPPORT 
ARCHITECTURE 

An architecture for implementing clinical decision 
support systems is illustrated below and consists of 
the following components: 
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• Clinical Data Repository: The clinical data 

repository stores patient-related clinical data. 
External applications, the rule engine (via 
methods defined in the business object model) 
and the ontology engine retrieve patient data by 
invoking services implemented by the clinical 
data repository.  

• Standalone Rules Engine Service: A 
standalone rules engine service is implemented 
using the ILOG business rules engine. On 
receiving a request, the service initializes a rule 
engine instance, loads the rule base and business 
object model. The rule engine service then 
executes methods in the business object model 
and performs rule based inferences. The results 
obtained will then be returned to the invoking 
application.  

• In-process Rule Engine Component: This 
provides similar functionality to the rules engine 
service, except that the rule engine component is 
loaded in the same process space in which the 
application is executing. 

• Ontology Engine: This will be implemented 
using the Cerebra Server. On receiving a request, 
the ontology engine performs classification 
inferences on patient data to determine if a 
patient belongs to a particular category, e.g., 
high risk patient. 

 
We now revisit the design patterns discussed earlier 
and evaluate the trade-offs in the context of the 
architecture presented above. 
1. In cases, where there is a lot of interaction 

between the invoking application and the 
decision support component, including it as an 
in-process component may reduce the time taken 
for execution as network latency between rule 
engine invocations will be minimized. 

2. Caching of the patient state is likely to play a 
significant role in execution efficiency. For 
instance, in the case where specialized services 
check whether a patient has diabetes, is not 
available on the clinical data repository, the 
complete patient object will need to be populated 
so that the rule engine can check for existence of 
diabetes in the list of patient diseases. Efficient 
mechanisms to check, refresh and dispose 
cached patient state information will be required. 

3. For large rule bases, the ability of the rule engine 
to leverage Rete Rule Matching computation15 to 
rapidly identify rules that are likely to fire will 
be crucial.  

4. Designing rule bases with a minimal set of rules 
will also be useful in speeding up rule engine 
execution. For example in the example discussed 
earlier, combining two rules into one may be 
helpful as it would result in one rule (as opposed 
to two) being loaded on the agenda. 

5. Identification of a set of classification inferences 
that can be implemented by an ontology engine 
and invoked as a service from the rules engine 
offers significant potential for speeding up 
execution performance of the rules engine. A 
significant proportion of clinical decision 
support involves classification and this could 
result in reducing overhead on the rules engine 
and speeding up execution performance. 

RULE AUTHORING AND MAINTENANCE 
CONSIDERATIONS 

Some of the design patterns discussed earlier will 
have an impact when it comes to rules authoring and 
maintenance. We revisit some of the design patterns 
in this context. 
1. The compactness of the business object model 

makes the job of maintenance easier. For 
instance, it’s better to have a method for 
retrieving patient diseases rather than a large 
number of methods for checking the existence of 
a potentially large number of diseases a patient 
could have. On the other hand, this could 
increase the complexity of the rule base, should 
this checking be done via a specialized rule. 

2. The ability to create a compact rule base by 
combining two or more rules into a single rule 
(as illustrated earlier) also makes the 
maintenance of the rule base easier. However, 
this could make the individual rules more 
complex and difficult to understand. This could 
impact the ease of rule re-use and editing. 

3. The separation of definitions from decisions and 
their implementation in an ontology engine 
reduces the complexity of the rule base 
maintenance significantly. It may be noted that 
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the conditions that comprise a definition may 
appear multiple times in multiple rules in a rule 
base. Our approach enables the encapsulation of 
these conditions in a definition, for e.g., 
DiabeticPatientWithHighRiskofCVD. Thus all 
rules can now reference the class 
DiabeticPatientWithHighRiskofCVD which is 
defined and maintained in an ontology in the 
ontology engine. Whenever the definition of 
DiabeticPatientWithHighRiskofCVD changes, 
the changes can be isolated within the ontology 
engine and the rules that reference this definition 
can be easily identified. 

  
The issue of rules maintenance is a very important 
one and decisions taken for modularization and re-
design of the rule-base for execution performance are 
likely to be inter-dependent on each other.                 

CONCLUSIONS AND FUTURE WORK 

We have presented an approach and architecture for 
implementing clinical decision support in a 
healthcare delivery system. An example clinical 
guideline was represented by designing a business 
object model that describes patient information and a 
rule base that makes inferences and suggests actions 
based on patient state. Furthermore, we propose 
delineation between definitions and decisions and the 
use of an ontology engine for performing 
classification inferences. This motivated an 
architecture for invocation of an ontology engine 
from a rules engine. A service oriented approach for 
retrieving information from the clinical data 
repository was presented. Alternative 
implementations of a rule engine component as an in-
process component and as a stand alone service were 
also proposed. Different design decisions and trade-
offs were discussed in the context of this architecture 
along with their impact on rule authoring and 
maintenance.  
 
The work described in this paper is part of an 
ongoing project at Partners HealthCare to use an 
industrial strength business rules engine, ILOG and 
an ontology engine, Cerebra for implementing 
clinical decision support. Creation of a robust rules 
authoring and maintenance environment for rapid 
and consistent update of decision support knowledge 
is also being architected. We will investigate the 
following issues going forward: 
• To what extent is it possible to isolate changes in 

definitions and the business object model from 
rules? 

• What will be the impact of genomic and 
personalized medicine on clinical guidelines? 

Will our architecture be able to manage 
knowledge related to personalized medicine? 

• Can semantic web technologies and reasoners 
based on OWL enable design of enhanced 
decision support and knowledge maintenance? 
Will this help support clinical decision support 
requirements for personalized medicine? 
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