
On Implementing Clinical Decision Support: Achieving Scalability and
Maintainability by Combining Business Rules and Ontologies.

Vipul Kashyapa, Alfredo Moralesb, Tonya Hongsermeiera

aClinical Informatics R&D, Partners HealthCare System, Wellesley, MA
bCerebra, Inc., Carlsbad, CA
vkashyap1@partners.org

ABSTRACT

We present an approach and architecture for
implementing scalable and maintainable clinical
decision support at the Partners HealthCare System.
The architecture integrates a business rules engine
that executes declarative if-then rules stored in a
rule-base referencing objects and methods in a
business object model. The rules engine executes
object methods by invoking services implemented on
the clinical data repository. Specialized inferences
that support classification of data and instances into
classes are identified and an approach to implement
these inferences using an OWL based ontology
engine is presented. Alternative representations of
these specialized inferences as if-then rules or OWL
axioms are explored and their impact on the
scalability and maintenance of the system is
presented. Architectural alternatives for integration
of clinical decision support functionality with the
invoking application and the underlying clinical data
repository; and their associated trade-offs are
discussed and presented.

INTRODUCTION

Clinical care guidelines are important tools for
reinforcing the adoption of best practices in clinical
care and are intended to improve safety, quality and
cost effectiveness3 of patient care. As different payer
agencies such as the Federal Government (through
Medicare/Medicaid) and insurance agencies such as
Blue Cross and Blue Shield move towards a pay for
performance model, healthcare quality and patient
outcome metrics, such as the JCAHO1 and HEDIS2
measures have come into focus. At Partners
Healthcare, we seek to incorporate these measures
within our clinical information systems.

Approaches for modeling and automation of clinical
practice guidelines have been proposed over the
years with different degrees of success. Some of
them have contributed significantly to the state of the
art: the Arden Syntax4, EON5, PRODIGY-36,
PROforma7, Asbru8, GUIDE9, Prestige10 and
GLIF311. From an architectural viewpoint, GLIF3
deserves special discussion. The various steps in the
GLIF3 guideline model have been delineated as3:

action and decision steps to represent clinical actions
and decisions; patient state steps to serve as entry
points into a guideline; and branch and
synchronization steps for modeling concurrency. In
this paper, we present an approach for implementing
clinical decision support that subscribe to GLIF3
architectural principles by using an industrial
strength Business Rules Engine - iLOG13 and an
OWL16 ontology engine, Cerebra14.

We present an approach for architecting rule content
that represents patient state encapsulated in classes
and methods of a business object model. These
classes and methods are referenced in a rule base
containing a set of declarative if-then rules. The “if
part” of a rule typically consists of boolean
conditions on the patient state. The “then” part
consists of actions such as updating the patient state,
making clinical recommendations, and specifying
medication orders, etc. We also propose further
delineation of decision support logic into definitions
and decisions, where definitions correspond to
characterization of patient states and classes; and
decisions correspond to clinical recommendations
and orders. Definitions are used in the context of
assigning (or “classifying”) a given patient to a
particular state or class on the basis of her
documented clinical profile. This approach leads to a
modular architecture for decision support, and easier
maintenance of rules in the face of changing
definitions. Finally, integration of the clinical
decision support component with the invoking
application and the clinical data repository is also
discussed. Different architectural alternatives are
presented followed by a discussion of their
advantages and disadvantages.

USE CASE

Consider the following guideline for lipid
management suggested by the American Diabetes
Association (ADA)12:
Lowering triglycerides and increasing HDL cholesterol
with a fibrate are associated with a reduction in
 cardiovascular events in patients with clinical CVD, low
 HDL and near-normal levels of LDL (A). Lower triglycerides
to <150 mg/dL (1.7 mmol/L) and raise HDL cholesterol to
>40 mg/dL (1.15 mmol/L). In women, an HDL goal 10 mg/dL
higher may be appropriate (C). Patient has CVD,
triglycerides >150 and/or HDL<40 (for women HDL<50) and
LDL levels are near normal.

The steps for implementing the above clinical
guideline are:
• Create the Business Object Model that defines

patient related classes and methods.
• Specify Rules to encode Decision Support logic.
• Delineate definitions characterizing patient states

and classes and represent them in an Ontology.

BUSINESS OBJECT MODEL DESIGN

The business object model for the above guideline
could be specified as follows:

Class Patient
method get_gender(): string;
method has_diabetes(): boolean;
method has_CVD(): boolean;
method get_last_triglycerides(): real;
method get_last_HDL(): real;
method get_last_LDL(): real;

The model describes patient state information by
providing a class and set of methods that make
patient state information available to the rules engine.
The methods defined in the object model are
executed by the rules engine which results in
invocation of services on the clinical data repository
for retrieval of patient data. These methods may also
perform additional conditioning of data retrieved
from the clinical data repository. This leads to
interesting design choices for design and
implementation of the business object model, which
are discussed next.

Consider the methods has_diabetes() and
has_CVD(), that determine whether a patient has
diabetes or cardiovascular disease respectively. An
alternative design would be to define a method
get_diseases() that return a list of diseases which a
patient suffers from. Whether the disease diabetes
or CVD is on that list can be checked by the rule
engine. This may be implemented by specifying an
appropriate rule in the rule base. This simplifies the
business object model, but introduces complexity in
rule execution. The current design leverages
optimized processing in the clinical data repository to
determine whether a patient has diabetes or
cardiovascular disease and at the same time reduces
complexity in rule creation.

Consider the method get_last_triglycerides()
that retrieves the last triglycerides reading for a
patient from the clinical data repository. This
approach assumes the existence of a service on the
clinical data repository which would return the last
triglycerides reading for a patient. In some cases the
clinical data repository may return triglycerides
readings for a patient. That may require additional

computations to determine the “last” triglycerides
reading. This may be implemented as a method in the
business object model or as an additional rule in the
rule base.

RULE BASE DESIGN

The business object model presented in the earlier
section provides the vocabulary to specify various
rules for implementing the clinical guideline.
Consider the following rule specifications:

IF the_patient.get_gender() = “male”
AND the_patient.has_CVD() = “true”
AND the_patient.get_last_triglycerides()>=150
AND the_patient.get_last_HDL()<=40
AND the_patient.get_last_LDL()>=Value1
AND the_patient.get_last_LDL()<=Value2
THEN “order fibrate therapy”

The above rule represents the first part of the diabetes
guideline. A special variable “the_patient” acts as a
placeholder for the actual patient being evaluated.
The definition of “near normal LDL” is modeled by
assuming that the LDL reading of the patient lies
between Value1 and Value2. The next rule is similar
to the above but has a higher threshold for HDL
values for women and can be specified as follows:

IF the_patient.get_gender() = “female”
AND the_patient.has_CVD() = “true”
AND the_patient.get_last_triglycerides()>=150
AND the_patient.get_last_HDL()<=50
AND the_patient.get_last_LDL()>=Value1
AND the_patient.get_last_LDL()<=Value2
THEN “order fibrate therapy”

There are alternative ways of specifying these rules.
For instance, the two rules above can be combined
into one rule as follows:

IF the_patient.has_CVD() = “true”
AND the_patient.get_last_triglycerides()>=150
AND the_patient.get_last_LDL()>=Value1
AND the_patient.get_last_LDL()<=Value2
AND((the_patient.get_gender() = “male”
 AND the_patient.get_last_HDL()<=40)
 OR(the_patient.get_gender() = “female”
 AND the_patient.get_last_HDL()<=50))
THEN “order fibrate therapy”

This representation reduces the number of rules in
the rule base which has a beneficial impact both on
rule execution and maintenance. However, the rule
specification itself has increased in complexity
making it difficult for a knowledge author to
understand and vet the rule for clinical validity
effectively.

DEFINITIONS VS DECISIONS

Clinical decision support rules encode different types
of inferences:
• Rule-based specifications of conditions that

describe patient states and classes, for instance,
“Diabetic Patient with Higher Risk for CVD” or
characterize normal or near normal physiological
patient states, for instance, “Patients with near
normal values of LDL”. These specifications are
also called definitions.

• Rule-based specifications that propose therapies,
medications and referrals, for instance,
prescribing fibrate therapy for a diabetic patient
with higher risk for CVD. These specifications
are called decisions.

This observation provides us with an opportunity to
further modularize our rule base by separation of the
definition of a “Diabetic Patient with high risk of
CVD”, from decisions that are recommended once a
patient is identified as belonging to that category.

The definitions in the rule base can be represented as
follows:

IF the_patient.get_last_LDL()>=Value1
AND the_patient.get_last_LDL()<=Value2
THEN set the_patient.LDLcategory
 = “LDLNearNormal”

IF the_patient.has_CVD() = “true”
AND the_patient.get_last_triglycerides()>=150
AND the_patient.get_LDLcategory()
 = “LDLNearNormal”
AND the_patient.get_gender() = “male”
AND the_patient.get_last_HDL()<=40
THEN set the_patient.category
 = “DiabeticPatientWithHigherRiskOfCVD”

IF the_patient.has_CVD() = “true”
AND the_patient.get_last_triglycerides()>=150
AND the_patient.get_LDLcategory()
 = “LDLNearNormal”
AND the_patient.get_gender() = “female”
AND the_patient.get_last_HDL()<=50
THEN set the_patient.category
 = “DiabeticPatientWithHigherRiskOfCVD”

The simplified rule base can now be represented as:

IF the_patient.get_category()
 = “DiabeticPatientWithHigherRiskofCVD”
THEN “order fibrate therapy”

The definitions of various patient states and classes
can be represented as axioms in an ontology that
could be executed by an OWL ontology engine,
Cerebra14. At execution time, the ILOG rule engine
can invoke a service that interacts with the Cerebra
OWL engine to infer whether a particular patient
belongs to a given class of patients, in this case,

whether a patient is a diabetic patient with high risk
of cardiovascular disease. The ontology of patient
states and classes can be represented as follows:

Class Patient
ObjectProperty gender
ObjectProperty hasDisease
ObjectProperty lastTriglycerides
ObjectProperty lastLDL
ObjectProperty lastHDL

Class DiabeticPatient
≡ Patient ∩ ∃hasDisease.Diabetes

Class CVD
Class Diabetes
Class Disease
CVD ⊆ Disease
Diabetes ⊆ Disease

Class LDLNearNormal
Class HDLLessThan50
Class HDLLessThan40
Class TriglyceridesMoreThan150

Class DiabeticPatientWithHigherRiskofCVD
≡ DiabeticPatient ∩ ∃hasDisease.CVD ∩
∀lastTriglycerides.TriglyceridesMoreThan150
∩ ∀lastLDL.LDLNearNormal ∩
[[∀gender.{“male”}∩∀lastHDL.HDLLessThan40]∪
[∀gender.{“female”}∩∀lastHDL.HDLLessThan50]]

The specification of various definitions in the
ontology is illustrated above. For simplicity, we have
adopted a non-XML based notation although they
will be implemented following the OWL
specification16:
• The class Patient and properties gender,

hasDisease, lastTriglycerides, lastLDL and
lastHDL provide a framework for describing the
patient. The class DiabeticPatient is a subclass
of all patients that are known to suffer from
diabetes. This is expressed using axiom
following the Patient class definition.

• The class Disease represents various diseases
and subclasses of interest, CVD and Diabetes.

• The classes LDLNearNormal, HDLLessThan50,
HDLLessThan40 and TriglyceridedMoreThan150
represent ranges of values of normal LDL, HDL
and Triglycerides respectively. Cerebra has
implemented custom datatypes based on the
OWL specifications16, providing the ability to
map XML Schema17 datatypes to OWL Classes
and supports range checking inferences on them.

• Finally, DiabeticPatientWithHigherRiskofCVD
is defined using an axiom to characterize
diabetic patients with higher risk of CVD. The
representation of this axiom enables the rule
author to simplify the rule base significantly (as
only the rule in bold needs to be specified). The
classification of a patient as being diabetic and

with high risk of CVD is now performed by the
Cerebra Ontology Engine.

CLINICAL DECISION SUPPORT
ARCHITECTURE

An architecture for implementing clinical decision
support systems is illustrated below and consists of
the following components:

KNOWLEDGE AUTHORING AND
MANAGEMENT CONSIDERATION

• Clinical Data Repository: The clinical data

repository stores patient-related clinical data.
External applications, the rule engine (via
methods defined in the business object model)
and the ontology engine retrieve patient data by
invoking services implemented by the clinical
data repository.

• Standalone Rules Engine Service: A
standalone rules engine service is implemented
using the ILOG business rules engine. On
receiving a request, the service initializes a rule
engine instance, loads the rule base and business
object model. The rule engine service then
executes methods in the business object model
and performs rule based inferences. The results
obtained will then be returned to the invoking
application.

• In-process Rule Engine Component: This
provides similar functionality to the rules engine
service, except that the rule engine component is
loaded in the same process space in which the
application is executing.

• Ontology Engine: This will be implemented
using the Cerebra Server. On receiving a request,
the ontology engine performs classification
inferences on patient data to determine if a
patient belongs to a particular category, e.g.,
high risk patient.

We now revisit the design patterns discussed earlier
and evaluate the trade-offs in the context of the
architecture presented above.
1. In cases, where there is a lot of interaction

between the invoking application and the
decision support component, including it as an
in-process component may reduce the time taken
for execution as network latency between rule
engine invocations will be minimized.

2. Caching of the patient state is likely to play a
significant role in execution efficiency. For
instance, in the case where specialized services
check whether a patient has diabetes, is not
available on the clinical data repository, the
complete patient object will need to be populated
so that the rule engine can check for existence of
diabetes in the list of patient diseases. Efficient
mechanisms to check, refresh and dispose
cached patient state information will be required.

3. For large rule bases, the ability of the rule engine
to leverage Rete Rule Matching computation15 to
rapidly identify rules that are likely to fire will
be crucial.

4. Designing rule bases with a minimal set of rules
will also be useful in speeding up rule engine
execution. For example in the example discussed
earlier, combining two rules into one may be
helpful as it would result in one rule (as opposed
to two) being loaded on the agenda.

5. Identification of a set of classification inferences
that can be implemented by an ontology engine
and invoked as a service from the rules engine
offers significant potential for speeding up
execution performance of the rules engine. A
significant proportion of clinical decision
support involves classification and this could
result in reducing overhead on the rules engine
and speeding up execution performance.

RULE AUTHORING AND MAINTENANCE
CONSIDERATIONS

Some of the design patterns discussed earlier will
have an impact when it comes to rules authoring and
maintenance. We revisit some of the design patterns
in this context.
1. The compactness of the business object model

makes the job of maintenance easier. For
instance, it’s better to have a method for
retrieving patient diseases rather than a large
number of methods for checking the existence of
a potentially large number of diseases a patient
could have. On the other hand, this could
increase the complexity of the rule base, should
this checking be done via a specialized rule.

2. The ability to create a compact rule base by
combining two or more rules into a single rule
(as illustrated earlier) also makes the
maintenance of the rule base easier. However,
this could make the individual rules more
complex and difficult to understand. This could
impact the ease of rule re-use and editing.

3. The separation of definitions from decisions and
their implementation in an ontology engine
reduces the complexity of the rule base
maintenance significantly. It may be noted that

APPLICATION
In-process Rule
Engine component

Ontology
Engine

Clinical Data
Repository

Standalone
Rules Engine
Service

APPLICATION
In-process Rule
Engine component

APPLICATION
In-process Rule
Engine component

Ontology
Engine

Clinical Data
Repository

Standalone
Rules Engine
Service

the conditions that comprise a definition may
appear multiple times in multiple rules in a rule
base. Our approach enables the encapsulation of
these conditions in a definition, for e.g.,
DiabeticPatientWithHighRiskofCVD. Thus all
rules can now reference the class
DiabeticPatientWithHighRiskofCVD which is
defined and maintained in an ontology in the
ontology engine. Whenever the definition of
DiabeticPatientWithHighRiskofCVD changes,
the changes can be isolated within the ontology
engine and the rules that reference this definition
can be easily identified.

The issue of rules maintenance is a very important
one and decisions taken for modularization and re-
design of the rule-base for execution performance are
likely to be inter-dependent on each other.

CONCLUSIONS AND FUTURE WORK

We have presented an approach and architecture for
implementing clinical decision support in a
healthcare delivery system. An example clinical
guideline was represented by designing a business
object model that describes patient information and a
rule base that makes inferences and suggests actions
based on patient state. Furthermore, we propose
delineation between definitions and decisions and the
use of an ontology engine for performing
classification inferences. This motivated an
architecture for invocation of an ontology engine
from a rules engine. A service oriented approach for
retrieving information from the clinical data
repository was presented. Alternative
implementations of a rule engine component as an in-
process component and as a stand alone service were
also proposed. Different design decisions and trade-
offs were discussed in the context of this architecture
along with their impact on rule authoring and
maintenance.

The work described in this paper is part of an
ongoing project at Partners HealthCare to use an
industrial strength business rules engine, ILOG and
an ontology engine, Cerebra for implementing
clinical decision support. Creation of a robust rules
authoring and maintenance environment for rapid
and consistent update of decision support knowledge
is also being architected. We will investigate the
following issues going forward:
• To what extent is it possible to isolate changes in

definitions and the business object model from
rules?

• What will be the impact of genomic and
personalized medicine on clinical guidelines?

Will our architecture be able to manage
knowledge related to personalized medicine?

• Can semantic web technologies and reasoners
based on OWL enable design of enhanced
decision support and knowledge maintenance?
Will this help support clinical decision support
requirements for personalized medicine?

REFERENCES

1. http://www.jcaho.org
2. http://www.ncqa.org/Programs/HEDIS
3. Peleg, M, Boxwala AA, Tu S, Zeng Q,

Ogunyemi O, Wang D, Patel VL, Greenes RA
and Shortliffe EH, The Intermed Approach to
Sharable Computer-Interpretable Guidelines: A
Review. JAMIA, 2004;11(1):1-10.

4. Clinical Decision Support & Arden Syntax
Technical Committee of HL7, inventor Arden
Syntax for Medical Logic Systems, version 2.0 ,
USA, July 7, 1999.

5. Tu SW and Musen MA. A Flexible approach to
Guideline Modeling. Proc. AMIA Syposium;
1999:420-424.

6. Sugden B, Purves IN, Booth N, Sowerby M. The
PRODIGY Project – the Interactive
Development of the Release One Model, Proc.
AMIA Symposium; 1999:359-363.

7. Fox J and Rahmanzadeh A. Disseminating
medical knowledge: the PROforma approach.
Artif. Intell Med 1998;14:157-181

8. Shahar Y, Mikseh S and Johnson P. The
Asgaard Project: A Task-Specific Framework
for the Application and Critiquing of Time-
Oriented Guidelines. Artif Intell Med
1998;14:29-51

9. Quaglini S, Stefanelli M, Lanzola G, Caporusso
V and Panzarasa S. Felgible Guideline-based
Patient Careflow Systems. Artif Intell Med
2001;22:65-80

10. Gordon C, Veloso M. Guidelines in Healthcare:
The experience of the Prestige project: Medical
Informatics Europe; Ljubljana, Slovenia;
1999:733-738

11. GLIF3 Technical Documentation.
http://www.smi.stanford.edu/projects/intermed-
web/guidelines/GLIF_TECH_SPEC.pdf

12. http://care.diabetesjournals.org/content/vol28/su
ppl_1/

13. http://www.ilog.com
14. http://www.cerebra.com
15. Forgy CL, Rete: A fast algorithm for the many

pattern/many object matching problem. Artificial
Intelligence, Vol 19(1), 1982.

16. http://www.w3.org/TR/owl-features/
17. http://www.w3.org/XML/Schema

