April 10th, 2008

Hawaii1

Image Source.

Over the past two days, I got the opportunity to fly to Hawaii to give two talks for the Keck Observatory’s Evening With Astronomers series. The talks focused on extrasolar planets (here’s a link to the slides in Quicktime format, ~40MB , along with the audio files of (1) a planetary system in a 2:1 resonance, (2) an unstable planetary system, and (3) another unstable system). Both talks were on Kona coast of the Big Island, where, behind the palm trees, Mauna Kea looms up 13,796 feet in the hazy volcanic distance.

The landscape here resembles nothing so much as a habitable, terraformed Mars. Hardened ropes of lava run down to the water’s edge:

In the pre-dawn light this morning, the air was totally silent, and it was easy to imagine that I was actually on Mars, before the water was gone, when a Northern hemispheric ocean lapped up against the lava of the lowermost slopes of Elysium Mons:

Image Source.

In the last few years the Martian landscape has become much more familiar, as the Spirit and Opportunity rovers crawl across the surface and radio home their photographs:

At Kona, looking out toward the lava fields, the view is positively Martian, with the most immediate difference being a sky that is a hazy blue-white rather than a hazy salmon-white. Here, the Ala Loa trail recedes into the jagged distance of what could easily be Mars:

On Mars, however, one generally has a fairly reasonable sense of what the 360-degree panorama will look like even if only part of the horizon is in view. On Earth, the situation can be quite different. Here’s the view that one gets simply by turning and looking in the opposite direction down the Ala Loa trail:

(On a marginally related note, our Alpha Centauri ApJ paper is starting to pick up some news coverage. Here’s a link to a story by National Geographic News.)

And four point five billion years later…2

Image Source.

The last mile of the San Lorenzo river in Santa Cruz is strongly affected by the twice-daily ebb and flow of the tides.

It’s always startling to see the tidal bore, a solitary breaking wave that runs upstream at a ~8 minute per mile pace when the tide is coming in. The San Lorenzo bore is small, usually six to nine inches high, but dramatic nonetheless. In its wake, there’s a turbulent froth of whitewater, whose eddies eventually cascade into viscous dissipation, turning the kinetic energy of organized flow into a slight heating of the water. As the Moon recedes, the Earth spins down, and the bore expends itself in a swirl of eddies.

The energy that powers the bore was all imparted during the Moon-forming impact, in which a Mars-sized object collided with Earth, leaving the planet violently shaken and stirred and spinning crazily through days that were originally just a few hours long. Now, 4.5 billion years later, the bore running up the river is a distant echo of the impact that was large enough to cause Earth to glow with the temperature of a red dwarf star.

From Robin Canup's moon-forming impact simulation

Adapted from: Source.

There’s a nice discussion of tidal bores in the 1899 popular-level book The Tides and Kindred Phenomena in the Solar System, by Sir G. H. Darwin (son of the naturalist). The book in its entirety can be downloaded from The Internet Archive.

The Moon-forming impact, which occurred somewhere between 10 and 100 million years after the collapse of the pre-solar molecular cloud core, essentially marked the end of terrestrial planet formation in our own solar system. From a dynamical standpoint, a system undergoes a lot of evolution during a time scale of 100 million orbits. By contrast, the Milky Way galaxy is only about 40 orbits old, and is still in an effectively pristine, dynamically unrelaxed configuration.

At Darwin’s time, the first photographs of spiral galaxies were appearing, and there’s a remarkably good photo of the Andromedae galaxy on page 339 of the book:

Darwin writes:

There is good reason for believing that the Nebular Hypothesis presents a true statement in outline of the origin of the solar system, and of the planetary subsystems, because photographs of nebulae have been taken recently in which we can almost see the process in action. Figure 40 is a reproduction of a remarkable photograph by Dr. Isaac Roberts of the great nebula in the constellation of Andromeda. In it we may see the lenticular nebula with its central condensation, the annulation of the outer portions, and even the condensations in the rings which will doubtless at some time form planets. This system is built on a colossal scale, compared with which our solar system is utterly insignificant. Other nebulae show the same thing, and although they are less striking we derive from them good grounds for accepting this theory of evolution as substantially true.

In 1899, the extragalactic distance scale hadn’t been established, and so Darwin thought that M31 was a lot closer than it actually is. In dynamical terms, he would have guessed that it’s many thousands of orbits old rather than only a few dozen. Nevertheless, it’s interesting to think about what will happen to an isolated spiral galaxy by the time it’s 10^18 years old…

Toward Alpha Cen B b22

Image Source.

Yesterday, I gave a talk at the JPL Exoplanet Science and Technology Fair, a one-day meeting that showcased the remarkably broad variety of extrasolar planet-related research being carried out at JPL. In keeping with the wide array of projects, the agenda was fast-paced and completely diverse, with talks on theory, observation, instrumentation, and mission planning.

The moment I walked into the auditorium, I was struck by the out-there title on one of the posters: The Ultimate Project: 500 Years Until Phase E, from Sven Grenander and Steve Kilston. Their poster (pdf version here) gives a thumbnail sketch of how a bona-fide journey to a nearby habitable planet might be accomplished. The audacious basic stats include: 1 million travelers, 100 million ton vessel, USD 50 trillion, and a launch date of 2500 CE.

Fifty trillion dollars, which is roughly equivalent to one year of the World GDP, seems surprisingly, perhaps even alarmingly cheap. The Ultimate Project has a website, and for always-current perspective on interstellar travel, it pays to read Paul Gilster’s Centauri Dreams weblog.

Interest in interstellar travel would ramp up if a truly Earth-like world were discovered around one of the Sun’s nearest stellar neighbors. Alpha Centauri, 4.36 light years distant, has the unique allure. Last year, I wrote a series of posts [1, 2, 3, 4] that explored the possibility that a habitable world might be orbiting Alpha Centauri B. In short, the current best-guess theory for planet formation predicts that there should be terrestrial planets orbiting both stars in the Alpha Cen binary. In the absence of non-gaussian stellar radial velocity noise sources, these planets would be straightforward to detect with a dedicated telescope capable of 3 m/s velocity precision.

Over the past year, we’ve done a detailed study that fleshes out the ideas in those original oklo posts. The work was led by UCSC graduate student Javiera Guedes and includes Eugenio, Erica Davis, myself, Elisa Quintana and Debra Fischer as co-authors. We’ve just had a paper accepted by the Astrophysical Journal that describes the research. Javiera will be posting the article to astro-ph in the next day or so, but in the meantime, here is a .pdf version.

Here’s a diagram that shows the sorts of planetary systems one should expect around Alpha Cen B. The higher metallicity of the star in comparison to the Sun leads to terrestrial planets that are somewhat more massive.

We’re envisioning an all-out Doppler RV campaign on the Alpha Cen System. If the stars present gaussian noise, then with 3 m/s, one can expect a very strong detection after collecting data for five years:

Here’s a link to an animation on Javiera’s project website which shows how a habitable planet can literally jump out of the periodogram.

I think the planets are there. The main question in my opinion is whether the stellar noise spectrum is sufficiently Gaussian. It’s worth a try to have a look…

two for one deals?5

Image Source.

The Gliese 876 system is remarkable for a number of reasons. It makes a mockery of the notion that the minimum-mass solar nebula has a universal validity. It harbors one of the lowest-mass extrasolar planets known (discovered by our own Eugenio Rivera). And of course, the outer two planets are famously caught in a 2:1 mean motion resonance, in which the inner 0.8 Jupiter-mass planet makes (on average) exactly two trips around the red dwarf for every one trip made by the outer 2.5 Jupiter-mass planet.

As users of the console know, the planet-planet interactions between the Gliese 876 planets are strong enough so that one needs a self-consistent dynamical fit to the system. Even on the timescale of a single outer planet orbit, the failure of the Keplerian model can be seen on a 450-pixel wide .gif image:

The following three frames are from a time-lapse .mpg animation of the Gliese 876 system over a period of roughly one hundred years:


Each frame strobes the orbital motion of the planets at 50 equally spaced intervals which subdivide the P~60 day period of the outer planet. Upon watching the movie, it’s clear that the apsidal lines of the outer two planets are swinging back and forth like a pendulum. This oscillation has an amplitude (or libration width) of 29 degrees, and acts like a fingerprint identifier of the Gliese 876 system.

The derangement of the orbits is reflected in their continual inability to maintain an exact 2:1 orbital commensurability. The first figure up above shows that when planet c has finished exactly two orbits, it has already managed to lap planet b, which was still dawdling down Boardwalk prior to passing GO.

Planet b, however, doesn’t always run slow. The gravitational perturbations between the two planets provide a second pendulum-like restoring action which prevents the bodies from straying from the average period ratio of 2:1, which, over the long term, is maintained exactly. The degree to which the orbits themselves librate, combined with the planets’ abilities to run either ahead or behind exact commensurability is captured by the resonant arguments of the configuration. These can be defined as,

where the lambdas are mean longitudes and the curly pi’s are the longitudes of periastron. The two resonant arguments capture the simultaneous libration of the mean motions and the apsidal lines. The smaller the arguments, the more tightly the system is in resonance.

In the Gliese 876 system, the resonant arguments are both librating with amplitudes of less than 30 degrees. This is evidence that a dissipative mechanism was at work during the formation of the system. Interestingly, however, when one looks at the other extrasolar planetary systems that are thought to be in 2:1 resonance, one finds that the libration amplitudes in every case are much larger. In fact, in the HD 73526 system and in the HD 128311 system, only one of the arguments is librating, while the other is circulating. In this state of affairs, the apsidal lines act like a pendulum that is swinging over the top. In addition, the orbital eccentricites are higher, and the sum of planet-planet activity is strikingly greater (see this animation of the evolution of the HD 128311 system).

A gas disk seems to be the most likely mechanism for pushing a planetary system into mean-motion resonance. Protoplanetary disks are likely, however to experience turbulent density fluctuations. These density fluctuations lead to stochastic gravitational torques, which provide a steady source of orbital perturbations to any planets that are embedded in a disk. For a reasonable spectrum of turbulent fluctuations, it turns out that it’s rather difficult to wind up with a planetary system that is as deeply in resonance as Gliese 876. The conclusion, then, is that Gliese 876-like configurations should be quite rare. Indeed, 2:1 resonances of every stripe should constitute only a minor fraction of planetary systems, and the majority that do exist should either large libration widths or only a single argument in resonance.

If you’re interested in more detail, we’ve submitted a paper that goes into much more detail (Adams, Laughlin & Bloch, ApJ, 2008 Submitted).

Messenger4

Image Source.

Messenger flew by Mercury last week, and photographed vast swaths of terrain that, until now, had never been seen. The new landscapes, as expected, are cratered, barren, and utterly moonlike. The galaxy could contain a hundred billion planets that would be hard, at first glance, to distinguish from Mercury, and within our cosmic horizon, there are probably of order as many Mercury-like worlds as there are sucrose molecules in a cube of sugar.

Image Source.

Nevertheless, we do gain something extraordinary whenever a new vista onto a terrestrial world is opened up. Galileo was the first to achieve this, when he turned his telescope to the Moon and saw its three-dimensional relief for the first time. Mariner 4 and Mariner 9 accomplished a similar feat for Mars. The Magellan spacecraft revealed the Venusian topography. And once Messenger has photographed the full surface of Mercury, there will be a profoundly significant interval before we get our next up-close view of an unmapped terrestrial planet. My guess is that it’ll be Alpha Centauri B b.

The Messenger website is well worth a visit. I was particularly struck by the movie that the spacecraft made of the Earth during the close fly by of March 2005. During the course of 24 hours, the spinning Earth recedes into the black velvet distance and space travel seems like the real thing.

Mercury’s orbit, with its 88 day period and its eccentricity of 0.2 could slip unnoticed into the distribution of known exoplanets. It’s vaguely comparable, for example, with the orbit of HD 37605 b. This Msini=2.3 Mjup gas giant has an apoastron distance similar to Mercury’s, but dives much closer to its star during periastron.

We’ve been interested in HD 37605 b lately because its orbit dips in and out of the insolation zone where water clouds are expected to exist. At the far point of the 55 day orbit, it should be possible for white clouds to form out of a clear steamy atmosphere. At close approach, the clouds are turning to steam.

Jonathan Langton’s models for this planet show persistent polar vortices, which sequester cooler air, and which may remain cloudy even during the hot days surrounding periastron. The vortices are tenaciously long-lived, and tracer particles seeded into the vortices leak out only slowly. It would be interesting to know what sort of chemistry is brewing in the steamy hothouse environment of trapped and noxious air.

Sir, I have no need of that hypothesis!2

Image Source.

On the UCSC Science Library shelves, we have an 1828 edition of Pierre Simon de Laplace’s Oeuvres that includes the five-volume Mécanique Céleste. At moments like this, it’s great to have a camera on one’s cellphone:

Image Source.

Laplace’s identification of the 5:2 near-resonance between Jupiter and Saturn allowed him to augment the exisiting second-order Laplace-Lagrange secular analysis to produce a theory of planetary motion that was in extraordinary agreement with the observations of the late eighteenth century. His success in explaining the so-called Great Inequality was likely a contributing factor in the development the concept of Laplacian determinism, of a clockwork universe.

In 1802, during William Herschel’s visit to Paris, Herschel and Laplace had a meeting with Napoleon, who, like Thomas Jefferson, appears to have been not much taken with a system of the world created and dictated by natural law:

The first Consul then asked a few questions relating to Astronomy and the construction of the heavens to which I made such answers as seemed to give him great satisfaction. He also addressed himself to Mr. Laplace on the same subject, and held a considerable argument with him in which he differed from that eminent mathematician. The difference was occasioned by an exclamation of the first Consul, who asked in a tone of exclamation or admiration (when we were speaking of the extent of the sidereal heavens): ‘And who is the author of all this!’ Mons. De la Place wished to shew that a chain of natural causes would account for the construction and preservation of the wonderful system. This the first Consul rather opposed.

[Source: Herschel’s diary of his visit to Paris in 1802, as found in C. Lubbock’s _The Herschel Chronicle_, p. 310, see here for a nice background.]

I like the extrasolar planet game because it’s simultaneously up-to-the-minute and steeped in tradition. With systems like Gliese 876, we’re approaching roughly the same effective degree of refinement in our detection of planet-planet orbital perturbations that was possible in the late eighteenth century for Jupiter and Saturn. As a result, someone like Laplace, were he to materialize (see today’s NYT) in the Interdisciplinary Sciences Building here at UCSC, could roll up his french cuffs and immediately begin contributing publishable work. The same would certainly not be true if one of his equally luminous scientific contemporaries, say Antoine Lavoisier, were to suddenly walk in to a modern-day chemistry lab.

Will be making an effort to post more frequently. Thanks for your continued readership and participation as oklo.org heads into its third year.

6 Gigabytes. Two Stars. One Planet.6

Image Source.

Another long gap between posts. I’m starting to dig out from under my stack, however, and there’ll soon be some very interesting items to report.

As mentioned briefly in the previous post, our Spitzer observations of HD 80606 did indeed occur as scheduled. Approximately 7,800 8-micron 256×256 px IRAC images of the field containing HD 80606 and its binary companion HD 80607 were obtained during the 30-hour interval surrounding the periastron passage. On Nov. 22nd, the data (totaling a staggering 6 GB) was down-linked to the waiting Earth-based radio telescopes of NASA’s Deep Space Network. By Dec 4th, the data had cleared the Spitzer Science Center’s internal pipeline.

We’re living in a remarkable age. When I was in high school, I specifically remember standing out the backyard in the winter, scrutinizing the relatively sparse fields of stars in Ursa Major with my new 20×80 binoculars, and wondering whether any of them had planets. Now, a quarter century on, it’s possible to write and electronically submit a planetary observation proposal on a laptop computer, and then, less than a year later, 6 GB of data from a planet orbiting one of the stars visible in my binoculars literally rains down from the sky.

It will likely take a month or so before we’re finished with the analysis and the interpretation of the data. The IRAC instrument produces a gradually increasing sensitivity with time (known to the cognescenti as “the ramp”). This leads to a raw photometric light curve that slopes upward during the first hours of observation. For example, here’s the raw photometry from our Gliese 436 observations that Spitzer made last Summer. The ramp dominates the time series (although the secondary eclipse can also be seen):

The ramp differs in height, shape, and duration from case to case, but it is a well understood instrumental effect, and so its presence can be modeled out. Drake Deming is a world expert on this procedure, and so the data is in very capable hands. Once the ramp is gone, we’ll have a 2800-point 30 hour time series for both HD 80606 and HD 80607. We’ll be able to immediately see whether a secondary transit occurred (1 in 6.66 chance), and with more work, we’ll be able to measure how fast the atmosphere heats up during the periastron passage. Jonathan Langton is running a set of hydrodynamical simulations with different optical and infrared opacities, and we’ll be able to use these to get a full interpretation of the light curve.

In another exciting development, Joe Lazio, Paul Shankland, David Blank and collaborators were able to successfully observe HD 80606 using the VLA during the Nov. 19-20 periastron encounter! It’s not hard to imagine that there might be very interesting aurora-like effects that occur during the planet’s harrowing periastron passage. If so, the planet might have broadcasted significant power on the decameter band. Rest assured that when that when their analysis is ready, we’ll have all the details here at oklo.org.

55 Cancri - A tough nut to crack.5

Image Source.

As soon as the new data sets for 55 Cancri from the Keck and Lick Observatories were made public last week, they were added to the downloadable systemic console and to the systemic backend. The newly released radial velocities can be combined with existing published data from both ELODIE and HET.

Just as we’d hoped, the systemic backend users got right down to brass tacks. As anyone who has gone up against 55 Cnc knows, it is the Gangkhar Puensum of radial velocity data sets. There are four telescopes, hundreds of velocities, a nearly twenty year baseline, and a 2.8 day inner periodicity. Keplerian models, furthermore, can’t provide fully definitive fits to the data. Planet-planet gravitational perturbations need to be taken into account to fully resolve the system.

Eugenio has specified a number of different incarnations of the data set. It’s generally thought that fits to partial data sets will be useful for building up to a final definitive fit. Here’s a snapshot of the current situation on the backend:

The “55cancriup_4datasets” aggregate contains all of the published data for all four telescopes. This is therefore the dataset that is most in need of being fully understood. The best fit so far has been provided by Mike Hall, who submitted on Nov. 9th. After I wrote to congratulate him, he replied,

Thanks Greg, […] It actually slipped into place very easily. About 13-30 minutes of adding planets and polishing with simple Keplerian, then 25 iterations overnight with Hermite 4th Order.

The problem is that it seemed like I was getting sucked into a very deep chi^2 minimum, so getting alternative fits may be tricky!

Here’s a detail from his fit which illustrates the degree of difference between the Keplerian and the full dynamical model:

and here’s a thumbnail of the inner configuration of the system. It’s basically a self-consistent version of the best 5-Keplerian fit.

Mike’s fit has a reduced chi-square of 7.72. This would require a Gaussian stellar jitter of 6.53 m/s in order to drop the reduced chi-square to unity. Yet 55 Cancri is an old, inherently quiet star, and so I think it’s possible, even likely, that there is still a considerable improvement to be had. It’s just not clear how to make the breakthrough happen.

This situation is thus what we’ve been hoping for all along with the systemic collaboration: A world-famous star, a high-quality highly complex published data set, a tough unsolved computational problem, and the promise of a fascinating dynamical insight if the problem can be solved.

I’ll end with two comments posted by the frontline crew (Eric Diaz, Mike Hall, Petej, and Chris Thiessen) that I found quite striking. These are part of a very interesting discussion that’s going on right now inside the backend.

When something is this difficult to solve using the ordinary approaches, I start to look to improbable and difficult solutions. In the case of 55C, my hunch is that it’s a system where the integration is necessary, but not sufficient to build a correct solution. I think that the parameter space of solutions is so chaotic that the L-M minimization doesn’t explore it well, or that the inclination of the system is significant enough to skew the planet-to-planet interactions in the console, or both. Trojans or horseshoe orbits would fit these conditions. Perhaps other resonant or eccentric orbits would as well.

I think the high chi square results and flat periodograms after fitting the known planets also point to a 1:1 resonant solution or significant inclination. I just don’t think there’s enough K left to fit another significant planet unless it’s highly interactive with the others.

I’m going to keep working on this system in the hopes that we can find a solution (and because it’s really, really fun), but I suspect that a satisfactory answer won’t be found without a systematic search of the parameter space including inclination.

– Chris

“Nature is not stranger than we imagine but stranger than we can imagine.” Or words to that effect, I can’t remember who said that but in all probability this system shall have more questions answered about it (or not as is often the case!) by direct imaging e.g. such as by the Terrestrial Planet Finder (TPF) mission to show what is really happening (if it is ever launched). The 55 Cancri system is listed as 63 on the top TPF 100 target stars.

In the meantime, we struggle on… I don’t think I can add anything else to what Eric and everyone else has said…

– Petej

Jonathan Langton’s new paper (available now!)1

Image Source.

The Spitzer telescope recently observed HAT-P-2b (data not yet analyzed) and the Nov. 19-20th encounter with HD 80606b is coming right up. No better time, then, to go out on a limb with our predictions of what will be seen. Our latest paper (Langton & Laughlin 2007) has been accepted by the Astrophysical Journal, and will be posted to astro-ph shortly. In the meantime, here’s a .pdf file containing the full paper. We’re happy with the way it came out, and we’re working hard to push the models to the next level.

From the conclusion:

A short-period Jovian planet on an eccentric orbit likely presents one of the Galaxy’s most thrilling sights. One can imagine, for example, how HD 86060 b appears during the interval surrounding its hair-rising encounter with its parent star. The blast of periastron heating drives global shock waves that reverberate several times around the globe. From Earth’s line of sight, the hours and days following periastron are characterized by a gradually dimming crescent of reflected starlight, accompanied by planet-wide vortical storms that fade like swirling embers as the planet recedes from the star. It’s remarkable that we now have the ability to watch this scene (albeit at one-pixel and two-frequency resolution) from a vantage several hundred light years away.

HD 17156 b5

Image Source.

Last week, I wrote a post introducing HD 17156 b, a Jovian planet on a highly eccentric 21.2-day orbit around a V=8.17 solar-type star lying 250 light-years away in Cassiopeia (RA=2h 50m, Dec=72 deg).

A photometric check for transits by HD 17156 b was reported in the discovery paper, but due to the nearly three-week orbital period, it was only possible to rule out about 25% of the transit window. Given the highly favorable geometry of the planetary orbit, this means that there’s an impressive ~11% chance (8.25% if you take the discount) that the planet can be observed in transit. The expected transit depth is a very respectable 1%, and given the bright parent star, it’s a straightforward detection for small-telescope observers everywhere in the Northern Hemisphere.

What’s it worth to catch HD 17156 b in transit? From a crass cash-money standpoint, one can estimate a dollar value. Because the planet has a long period and an eccentric orbit, it would be the first transiting example of its kind, and would thus be expected to generate a fairly large number of citations. From a career standpoint, an ADS citation is worth at least $100 (see, e.g. here). Based on the citation count for the TrES-1 discovery paper (144 citations in three years) it’s reasonable to expect that at one decade out, a HD 17156 b transit would garner of order 200 citations, for a conservative total value of 20K. Given the 10% probability of the transit coming through, the resulting expectation value is equivalent to having twenty Benjamins floating down from the black velvet of the night sky.

I used the systemic console’s bootstrap utility to generate a set of orbital fits to the published radial velocities for HD 17156. Each orbital fit describes a unique sequence of central transit times. For a particular transit opportunity, the aggregate of predicted central transit times from the different fits can be plotted as a histogram. Here’s the resulting plot for the transit opportunity that’ll occur next Monday (HJD 2454353.68):

The uncertainty in the time of central transit is ~0.3 days. A window this narrow is rare for a planet that hasn’t yet been thoroughly checked. In fact, as far as Transitsearch.org opportunities are concerned, it doesn’t get much better than this. Extending our opportunity cost analysis, the expected monetary return for observations within the 1-sigma transit window is an impressive $114 per hour. (Only rarely does the expected return per hour exceed minimum wage for existing transit opportunities.)

Scientifically, a transit by HD 17156 b would certainly be very exciting. The planet should be heating up very rapidly during its periastron passage, which should spur the generation of hemispheric-scale vortices and an 8-micron light curve that’s detectable with the Spitzer telescope. Observation of the secondary eclipse (assuming it occurs) would allow for a measurement of the global planetary temperature near the orbital apastron.

The frame above is from a hydrodynamical study of HD 17156 b that Jonathan Langton has just finished computing. If all the talk of dollars, ephemerides, opportunity cost, and expectation value is leaving you stressed out, then just kick back with this fat 1.0 MB .mov of the simulation and get your groove on.

ƒr3$h R4Ð14£ V3£0(1713$4

Image Source.

Eugenio has finished combing through this summer’s literature, and has added twenty newly published radial velocity data sets to both the systemic backend and to the current version of the downloadable systemic console. As a result of his efforts, new or augmented data is now available for the following stars: Cha Ha 8, GJ 317, HD3651, HD5319, HD11506, HD17156, HD37605, HD43691, HD75898, HD80606, HD89744, HD125612, HD132406, HD170469, HD171028, HD231701, NGC2423, NGC4349, HAT-P-3, and TrES-4. As always, the published literature citations for the velocities are contained in the “vels_list.txt” file that comes bundled with the systemic console download. The vels_list.txt file can be indispensible if you want to publish results that use the systemic package as a research tool — indeed, we’re quite excited that researchers are starting to adopt the console in the course of carrying out state-of-the-art research (see, e.g. here.)

There’s quite a bit to explore with these new data sets. Eugenio has had a first look, and included in his recommendations are:

GJ 317: This system (discovered by John Johnson and the California-Carnegie planet search team, preprint here) is only the third red dwarf that’s been found to harbor a Jovian-mass companion. The data shows clear evidence for one planet “b”, with at least 1.2 Jupiter masses and a 693-day orbit, and there’s a strong hint of a second planet in the radial velocity variations. Check it out with the console!

HD 17156: This data comes from a recent paper by the California-Carnegie team. There are radial velocities from both the Keck and the Subaru telescopes, and the signal-to-noise of the orbit is very high.

The data show a ~3 Jupiter-mass planet on a 21.2 day orbit. The orbit is remarkably eccentric for a planet on such a short period, leading to a 25-fold variation in the amount of light received during each trip around the star.

It’ll be interesting to get a weather forecast for this world, and it’s also important to point out that the orientation of the orbit is very well suited for the possibility of observing transits. Periastron is reasonably close to being aligned with the line of sight to Earth, leading to an a-priori transit probability of more than 10%. In the discovery paper, a preliminary transit search is reported, but only about 1/4th of the transit window was ruled out. With a Dec of +71 degrees and a nice situation in the winter sky, this is definitely one for Transitesearch.org’s Finland contingent.

Countdown1

Image Source.

August 1st marked the most recent ‘606 day, which came and went without wide remark. Perhaps this was because in late Summer, HD 80606 rises and sets in near-synch the Sun, and is thus lost from the Earth’s night skies.

At the moment, HD 80606b is headed back out toward apastron.

The global storms and shockwaves that were unleashed at the beginning of August are dissipating rapidly, and the flux of heat from the planet is likely fading back down to the sullen baseline glow that arises from tidal heating.

HD 80606’s next periastron passage occurs on November 20th, and the Spitzer Space Telescope is scheduled to observe the whole event (details here). It’s going to be a big deal. Spitzer can only observe HD 80606 during two three-week windows each year, and fortunately, the Nov. 20th Periastron passage occurs during one of these windows. It’s literally the only opportunity to catch HD 80606 b’s big swing before Spitzer’s cryogen runs out in 2009.

The orbital geometry of the periastron passage looks like this:

Each marker of the orbit is separated by one hour. The prediction for the pseudo-synchronous rotation of the planet is also indicated. The planet should be spinning with a period of 36.8 hours. Jonathan Langton’s hydrodynamics code predicts what the temperature distribution on the planet should look like at each moment from Spitzer’s viewpoint in our solar system:

Transitsearch.org observers have covered a number of the HD 80606 b transit opportunities, and it seems pretty certain that the planet doesn’t transit. This isn’t surprising. The geometry of the orbit is such that when the planet crosses the plane containing the line of sight to the Earth, it’s quite a distance away from the star. Not so, however, for the secondary transit. There’s a very respectable 15% chance that Spitzer will detect a secondary transit centered two hours prior to the periastron passage.

Even if the planet doesn’t transit, we should be able to get a good sense of the orbital inclination from the shape of the light curve. If the orbit is nearly in the plane of the sky, then we should see a steady rise followed by a plateau in the 8-micron flux coming from the planet. For more nearly edge-on configurations, the flux peak should be clearly discernable. The observations are scheduled to start 20 hours prior to periastron and end 10 hours after.

Vorticity11

Vorticity can be thought of as the tendency of a paddlewheel to spin if placed in the flow. High vorticity is a large counter-clockwise spin, zero vorticity is no spin, and a large negative vorticity is a tendency to spin clockwise. Jonathan Langton’s climate models of short-period extrasolar planets show a remarkable variety of vorticity patterns on their surfaces, in keeping with the incredibly stormy and complex nature of their atmospheres. Here’s a gallery of Mercator-projection vorticity maps for the known strongly irradiated Jovian planets that have significant eccentricities. The red arrows indicate the wind speeds and directions across the planetary surfaces. These figures are all from a paper that’s currently under review at the Astrophysical Journal (see here for an overview of the numerical method that we’re using). Also, a shout-out is due to Edward Tufte for advocating the strong graphic-design effect of small spots of saturated color on a gray-scaled backdrop.


HAT-P-2b
:

Here are 1.1 MB North Pole, South Pole and Mercator Projection animations of the HAT-P2b vorticity evolution.

HD 80606 b
:

1.1 MB Mercator animation here.

HD 185269 b:

1.1 MB Mercator animation here.

HD 108147 b

1.1 MB Mercator animation here.

HD 118203 b
:

1.1 MB Mercator animation here. The animations above are hosted on the Oklo Corporation’s servers.

It’s interesting to compare the vorticity maps with the temperature distributions on the planetary surfaces (shown in the same order as above):

Whorls1

Image Source.

HAT-P-2b. The name doesn’t exactly ring of grandeur, but this planet — a product of Gáspár Bakos’ HAT Net transit survey — is poised to give the Spitzer Space Telescope its most dramatic glimpse to date of a hot Jupiter.

HAT-P-2b’s orbit is remarkably eccentric for a planet with an orbital period of only 5.6 days, and by a stroke of luck, periastron is located almost exactly midway between the primary and the secondary transits (as viewed from Earth). The strength of the stellar insolation at periastron is nine times as strong as at apastron, which more than guarantees that the planet will have disaster-movie-ready weather.

On June 6th, Josh Winn and his collaborators used the Keck telescope to obtain 97 radial velocities for HAT-P-2. The observations were timed to occur before, during, and after primary transit, and the Rossiter-McLaughlin effect is clearly visible in their data (preprint here):

The symmetry of the Rossitered points indicates that the angular momentum vector of the planetary orbit is aligned with the spin pole of the star:

schematic diagram showing rossiter effect

This state of affairs also holds true for the other transiting planets — HD 209458b, HD 149026b, HD 189733b — for which the effect has been measured. The observed alignments are evidence in favor of disk migration as the mechanism for producing hot Jupiters.

With its apparent magnitude of V=8.7, the HAT-P-2b parent star is roughly ten times brighter than the average planet-bearing star discovered in a wide-field transit survey. The star is bright enough, in fact, to have earned an entry in both the Henry Draper Catalog (HD 147506) and the Hipparcos Database (HIP 80076), but with its surface temperature of 6300K (F8 spectral type) it was too hot to have been a sure-fire “add” to the ongoing radial velocity surveys. Prior to this May, it had been entirely ignored in the astronomical literature (save a brief mention in this paper from 1969).

HAT-P-2’s intrisic brightness and its planet’s orbital geometry mean that in a relatively compact 34-hour observation, Spitzer can collect on the most interesting features of the orbit with high signal-to-noise. In particular, there is an excellent opportunity to measure the rate at which the day-side atmosphere heats up during the close approach to the star. The planet, in fact, presents such a remarkable situation that a block of Director’s Discretionary time was awarded so that the observations can be made during the current GO-4 cycle. They’ll be occurring soon.

Both HAT-P-2b and HD 80606 b will provide a crucial ground truth for extrasolar planetary climate simulations. Jonathan Langton’s current model, for example, predicts that that the temperatures on HAT-P-2b will range over more than 1000K. At the four times shown in the above orbital diagram, the hemisphere facing Earth is predicted to show the following appearances:

Spitzer, of course, can’t resolve the planetary disk. It measures the total amount of light coming from the planet in chosen passband. At 8-microns, the planet’s light curve should look like this:

The temperature maps only hint at the complex dynamics of the surface flow. A better indication is given by the distribution of vorticity,

which we’ll pick up in the next post…

Showing Mercury the Door (Part 1).4

Image Source.

The long-term stability of the planetary orbits has been a marquee-level question in astronomy for more than three centuries. Newton saw the ordered structure of the solar system as proof positive of a benign deity. In the late 1700s, the apparent clockwork regularity of interaction between Jupiter and Saturn helped to establish the long-standing concept of Laplacian determinism. In the late Nineteenth Century, Poincaré’s work on orbital dynamics provided the first major results in the study of chaotic systems and nonlinear dynamics, and began the tilt of the scientific worldview away from determinism and toward a probabalistic interpretation.

In the past ten years, it has become fairly clear that the Solar System is dynamically unstable, in the sense that if one waits long enough (and ignores drastic overall changes such as those wrought by the Sun’s evolution or by close encounters with passing stars) the planets will eventually find themselves on crossing orbits, leading to close encounters, ejections and collisions. The question has shifted more to the following: What (if any) chance is there that the planets will experience orbit crossings within the next 5 billion years?

It’s clear that the probability of the planets going haywire prior to the Sun’s red giant phase is pretty small. Computers are now fast enough to integrate the eight planets forward for time scales of ten billion years or more. Konstantin Batygin, a UCSC physics undergrad who has been collaborating with me, has been running a suite of very long term solar system integrations, and he’s been getting some nice results.

It’s well known that over the long term, the planetary orbits are chaotic. The Lyapunov timescales for the planetary orbits in both the inner and the outer solar system are of order a few million years, which means that for durations longer than ~50 Myr into the future, it becomes impossible to make a deterministic prediction for exactly where the planets will be. . We have no idea whether January 1, 100,000,000 AD will occur in the winter or in the summer. We can’t even say with complete certainty that Earth will be orbiting the Sun at all on that date.

We can, however, carry out numerical integrations of the planetary motions. If the integration is carried out to sufficient numerical accuracy, and starts with the current orbital configuration of the planets, then we have a possible future trajectory for the solar system. An ensemble of integrations, in which each instance is carried out with an unobservably tiny perturbation to the initial conditions, can give a statistical distribution of possible long-term outcomes.

Here’s a time series showing the variation in Earth’s eccentricity during a 20 billion year integration. In this simulation, the Earth experiences a seemingly endless series of secular variations between e=0 and e=0.07 (with a very slight change in behavior at a time about 10 billion years from now). The boring, mildly chaotic variations in Earth’s orbit are mostly dictated by interactions with Venus.

Mercury, on the other hand, is a little more high-strung.

These two plots suggest that the Solar System is “good to go” for the foreseeable future. Indeed, work by Norm Murray and Matt Holman suggests that the four outer planets have a dynamical lifetime of order one hundred quadrillion years. Work by Jaques Laskar, however, suggests that the inner solar system might be on far less stable footing. Konstantin has obtained some very interesting new results on this particular point, which we’ll be sharing in an upcoming post…

Barred Spiral4

Image Source.

I’d never really seen the Milky Way until I saw it on a perfectly clear and moonless July night from a spot just below the Arc Dome in central Nevada. It spills a swath of patchy luminosity that seems to split the sky in half; a barred spiral galaxy, seen edge-on, and from within. One hundred billion intensely glowing stars, like sand grain jewels, each separated by miles. The photo above (taken by Steve Jurvetson last weekend from the Black Rock Desert in Nevada) reminded me of that experience.

The dark sky applet shows that the interior of Nevada (away from Las Vegas!) contains many of the least light-polluted areas of the United States.

Under a totally dark sky, you can distinctly see the star clouds in the foreground of the galactic center. It’s eerie to think that the 3-million solar mass black hole lurking in the center of the galaxy is just to the right of the bright luminosity of Baade’s Window near the boundary between Sagittarius and Scorpius.

The photo also shows Jupiter within a few degrees of Antares — a nice illustration of the fact that Jupiter appears slightly brighter than the brightest stars.

Newton used this similarity in apparent brightness to get the first real estimate of the staggering distances to the stars. He assumed that the stars are similar in absolute brightness to the sun, and he assumed that Jupiter (whose distance and angular size were known to him) is a perfect reflector of sunlight. This method underestimates the distance to Sirius by more than a factor of five, but it does a fairly reasonable job for Alpha Centauri.

A hot hot Neptune12

Image Source.

Regular oklo readers will recall Gillon et al.’s discovery that the Neptune-mass planet orbiting the red dwarf star Gl 436 can be observed in transit. Transitsearch got scooped, and the whole eposide got me all worked up enough to neglect the exigencies of everyday academic life and reel off three straight posts on the detection and its consequences (see here, here, here, and also here). The transits of Gl 436 b are a big deal because they indicate that the planet is possibly composed largely of water. It’s not a bare rock and it’s not a Jupiter-like gas giant. Rather, it’s consistent with being a fully Neptune-like object, hauled in for inspection on a 2.64385 day orbit.

Following Gillon et al.’s announcement, it became clear that Gl 436 transits would fit into a window of observability during the June 24th - July 04 IRAC campaign on the Spitzer Space Telescope. The red dwarf parent star, furthermore, because of its proximity, is bright enough for Spitzer to achieve good photometric signal-to-noise at 8-microns. As a result, Joe Harrington’s Spitzer Target of Opportunity GO-4 proposal was triggered, and the Deep Space Network radioed instructions to the spacecraft to observe the primary transit on June 29th, as well as the secondary eclipse (when the planet passes behind the star) on June 30th, a bit more than half an orbit later. Joe, along with his students Sarah Navarro and William Bowman, and collaborators Drake Deming, Sara Seager, and Karen Horning asked me if I wanted to participate in the analysis. After watching all the ‘436 action from the sidelines in May, I was more than happy to sign up!

One of the most exciting aspects of being a scientist is the round-the-clock push to get a time-sensitive result in shape for publication. There’s a fantastic sense of camaraderie as e-mails, calculations, figures and drafts fly back and forth. On Monday afternoon PDT (shortly after midnight GMT) when Mike Valdez sent out his daily astro-ph summary, it was suddenly clear that we were under tremendous pressure to get our results analyzed and submitted. The Geneva team had swooped in and downloaded the data for the primary transit the moment it was released to the community! They had cranked out a reduction, an analysis, and a paper, all within 48 hours. Their light curve confirmed the ground-based observations. Spitzer’s high-quality photometry indicates that the planet is slightly larger than had been indicated by the ground-based transit observations. Drake submitted our paper yesterday afternoon.

Fortunately for us, the real prize from Spitzer is the secondary eclipse. Its timing is capable of independently confirming that the orbit is eccentric, and the depth gives an indication of the surface temperature on the planet itself.

The upper panel of the following figure shows the raw Spitzer photometry during the secondary eclipse window. IRAC photometry at 8 μm is known to exhibit a gradually increasing ramp-up in sensitivity, due to filling of charge traps in the detectors, but even before this effect is modeled and subtracted, the secondary transit is visible to the eye. The bottom panel shows the secondary transit in detail.

The secondary transit occurs 58.7% of an orbit later than the primary transit, which proves that the orbit is eccentric. A detailed fit to the transit times and to the radial velocities indicates that the orbital eccentricity is e=0.15 — halfway between that of Mars (e=0.1) and Mercury (e=0.2). The orbital geometry can be drawn to scale in a diagram that’s 440 pixels across:

The depth of the secondary eclipse is 0.057%, which allowed us to estimate a 712 ± 36K temperature for the planetary surface.

A temperature of 700+ K is hotter than expected. If we assume that the planet absorbs all the energy that it gets from the star and re-radiates its heat uniformly from the entire planetary surface, then the temperature should be T = 642 K. The higher temperature implied by the secondary eclipse depth could arise from inefficient transport of heat to the night side of the planet, from a non-”blackbody” planetary emission spectrum, from tidal heating, or from a combination of the three. If the excess heat is all coming from tidal dissipation, then the Q-value for the planet is 7000, suggesting that it’s a bit more dissipative inside than Uranus and Neptune.

What would Gl 436 b look like if we could go there? To dark adapted eyes, the night side is just barely hot enough to produce a faint reddish glow (as is the case on the surface of Venus, which has a similar temperature). The atmosphere is too hot for water clouds, and is likely transparent down to a fairly high atmospheric pressure level. The day-side probably reflects a #E0B0FF-colored hue that contrasts with the orange-yellow light of the star. The planet spins with a period of 2.32 days so that it can be as spin-synchronous as possible during the sector of its orbit closest to periastron. At a fixed longitude on the planet, the day drags on for 456 hours from high noon to high noon.

Jonathan Langton has been running atmospheric simulations with the latest parameters. On the phone, just a bit ago, he would only say that the preliminary results were “interesting”…

GJ 876 d6

Image Source.

Galileo’s discovery of the four major Jovian satellites — his Medicean Stars — revealed that Jupiter is accompanied by a planetary system in miniature. In his Dialogue on the Two Chief World Systems, Galileo drew on the obvious analogy between Jupiter and its moons on the one hand and the Sun and the planets on the other as evidence in favor of the Copernican worldview.

The pattern is that when an orbit is larger, the revolution is completed in a longer period of time; and when smaller, in a shorter period. Thus Saturn, which traces a greater circle than any other planet, completes it in thirty years; Mars in two; the moon goes through its much smaller orbit in just a month; and in regard to the Medicean stars, we see no less sensibly that the one nearest Jupiter completes its revolution in a very short time (namely about forty-two hours), the next one in three and one-half days, the third one in seven days, and the most remote one in sixteen. This very harmonious pattern is not changed in the least as long as the motion of twenty four hours is attributed to the terrestrial globe (rotating on itself).

Image Source.

Two decades ago, prior to the discovery of the extrasolar planets, the Galilean satellites, along with the regular satellite systems of Saturn and Uranus, constituted one of the strongest hints that extrasolar planets should exist. In each case, the total fractional mass and relative orbital scale of the satellites is quite similar, implying that a robust and generic formation process was at work. There’s a factor-of-twenty difference between the masses of Jupiter and Uranus, but the fractional mass caught up in their satellites differs by only a factor of two. The Jovian satellites add up to 0.021% of Jupiter’s mass, whereas the Uranian moons amount to 0.011% of Uranus’ mass. Similarly, the Saturnian satellite system (which is completely dominated by Titan) has a total mass amounting to 0.025% of Saturn. In all three cases, the orbital distance of the outermost large satellite is between 20 and 60 planetary radii.

Robin Canup and Bill Ward of Boulder’s Southwest Research Institute have developed a compelling formation model that naturally accounts for the similarities between the giant planet satellite systems (see here and here). In their picture, regular satellites build up from solid particles that flow into the circumplanetary disks from the surrounding solar nebula. Once a nascent moon reaches a non-trivial size, it decouples from the inward spiral of gas, and is able to rapidly accrete large quantities of solid particles. Ultimately, a satellite’s ability to grow to very large size is shuttered by Type I migration, whose timescale decreases in inverse proportion to the satellite mass. In the Canup-Ward picture, a succession of Jovian satellites form and are accreted onto the central planet when their mass exceeds ~0.02% of the planetary mass.

The flow pattern in the outer region of a protoplanet’s Roche lobe that regulates the flow of gas into the circumplanetary disk is quite complicated. Here’s an image adapted from the hydrodynamical simulations of Steve Lubow and his collaborators (paper here) that shows the streamlines in the vicinity of the forming planet’s Roche lobe:

The gravity of the Sun produces a tidal barrier which meters the flow of gas into the protoplanetary disk, and Canup and Ward compare the Jovian satellites to the buildup of mineral deposits on the interior of a pipe through which a great deal of water has flowed.

Squeezing out regular oklo posts is a bit of a challenge. I want to keep the posting schedule fairly regular in order to keep the readership up, but at the same time, its sometimes hard to keep coming up with post-worthy topics. In trolling for ideas, I often go to the Extrasolar Planets Encyclopaedia and comb through the tables, looking for patterns or analogies. A bit more than a year ago, I noticed that Gl 876 d, with its 1.92-day orbit and its 0.007% mass ratio is reminiscent of a Jovian satellite. Could it have arisen from a direct analog of the Canup-Ward formation process?

In the Gl 876 system, the middle planet c would have metered the gas flow into Gl 876’s inner circumstellar disk. A considerable amount of the inward flowing gas in the nascent Gl 876 system would have accreted onto planet c, but there was likely a stream (or streams, given the additional presence of planet b) that bypassed the planets and flowed onto the inner disk. The low density of steadily flowing gas in the inner disk would have allowed planet d to feed on the incoming solid material while staving off demise via Type I migration. The formation of d through this process would have occurred entirely within the Gl 876 snowline, and so in this picture, planet d is composed largely of iron and silicates. Figure 10 from the Lubow et al. paper gives a nice sense of how gas and small solid particles would have slipped by planet c on their way in:

Willy Kley and his collaborators have done hydrodynamical simulations which model the interaction between that the outer two Gl 876 planets and the parent gas disk. The flow pattern in the vicinity of the planets is more complicated than in the single-planet case, and streams of gas (and small particles) are able to flow into the disk region interior to the 30-day orbit of planet c. It’s not unreasonable to imagine that the combined presence of planets b and c mediated an inner circumstellar disk around GJ 876 that was reminiscent of the circumplanetary disk around a Jovian planet. Here’s an example figure from the Kley et al. paper showing the hydrodynamical flow in the vicinity of planets b and c:

It thus seems plausible that GJ 876 d could indeed owe its origin to the same process that produced the Jovian satellites. The planet d that shows up in the radial velocity data might be the largest survivor among a number of similar iron-silicate planets that formed in the gas-starved inner disk and were then lost to the star via type I migration. In keeping with the analogy to Jovian satellites, this scenario would hint at additional, somewhat smaller iron-silicate planets circling Gl 876 in orbits with periods in the 4-12 day range. Looks like more RVs are in order!

A manufacturing scheme akin to the giant planet satellite formation process is, however, not the only way to produce Gl 876 d. Doug Lin and his collaborators, for example, have suggested that GJ 876 d formed from pre-existing icy planetesimals that were herded inward during the resonant migration of the massive outer planets b and c. In their picture, Gl 876 d is made largely from water, and would thus have a larger physical radius than if it was built primarily from silicates via a Jovian satellite-like formation process. Mandell et al. outline a related mechanism by which d could have formed via resonant shepherding.

It’s a shame that d doesn’t transit.

Are there any other inner planets that might be candidates for formation via the Canup-Ward mechanism? Plausible clues would consist of a short orbital period, a ~0.01% mass ratio, and a massive outer planet in a ~10-50 day orbit. 55 Cancri e just might fit that bill…

A miss is as good as a mile0

Image Source.

When I give a public lecture, I often start by trying to impart a sense of the extraordinarily rarefied character of the local galactic neighborhood. The known catalog of planet-bearing stars is akin to 200 small grains of sand dusting a volume more than 1000 kilometers on a side. It seems amazing to me that we’re able to see the stars at all with the naked eye. Even Sirius appears twelve billion times fainter than the Sun.

At the moment, the Alpha-Proxima trio is the closest group of stars to the Sun, and they are currently drawing closer still. In 27,000 years, they will pass at a minimum distance of 2.75 light years. Already, the Alpha-Proxima system is beginning to have an effect on the Oort Cloud, and as a result of the encounter, roughly half a million comets will be delivered into Earth-crossing orbits over the next several million years. This will generate something like a 10% increase in the arrival of new comets above the long-term average.

In 1999, Joan Garcia-Sanchez and collaborators filtered the known space motions of nearby stars in order to determine which systems are scheduled to make (or have already made) close encounters with the Solar System. The closest approach that they identified belongs to the currently inconspicuous red dwarf Gliese 710. In 1.4 million years, this half-solar mass star will skim by at a distance of ~1.09 light years, and will appear as bright and as red in the night sky as Betelgeuse. Like most low-mass stars in the galactic disk, Gliese 710 probably has a retinue of terrestrial planets. If the encounter were occurring now, Gliese 710 would likely have both an evocative Arabic name, as well as hundreds to thousands of high-precision radial velocity measurements.

The Gliese 710 encounter will produce a comet shower roughly six times more severe than what Alpha and Proxima will generate. It’s unlikely, however, that the increase in the number of comets will lead to an extinction-level impact. Nevertheless, the impending passage of a red dwarf at a distance of only 70,000 AU has a certain panache.

Given that encounters of the Alpha-Proxima and Gliese 710 variety are occurring on a million-year timescale, what is the most hair-raising encounter that one can one expect on a 4.5-billion year time scale? The mean encounter velocity between stars in the galactic disk is of order 40 kilometers per second, and the density of stars is ~0.1 systems per cubic parsec. Using these numbers, a simple n-sigma-v calculation yields an expected close-approach distance of only 770 AU. An encounter this close would literally thread the orbits of outer solar system bodies such as Sedna.

Imagine waking up to one of two headlines: (1) “Red Dwarf Discovered heading straight toward the Solar System at 400 meters per second!” and (2) “Red Dwarf Discovered heading straight toward the Solar System at 40 kilometers per second!”

Naively, one might expect that headline #2 bears much worse news, but surprisingly, that’s not the case. A red dwarf passing through the outer Solar System at 40 kilometers per second would barely deviate from a straight-line trajectory. Aside from any comets or Kuiper belt objects lying nearly directly in its path, it would barrel past us and produce only a minimal perturbation to the planetary orbits. Headline #2, on the other hand, could potentially be very bad news, as a close encounter with a slowly moving star can be far more damaging. The reason is that the interloping star is in the vicinity for much longer, and has time to build up a far stronger overall perturbation on solar system bodies. When the solar system was forming, the Sun very well could have belonged to an open cluster like the Orion Nebular Cluster. In a cluster environment, a close (several hundred AU) passage of a slowly moving brown dwarf or a low-mass star is a fairly common event, and indeed (as argued here by Morbidelli and Levison) the Sun may well have grabbed Sedna and a few hundred other as-yet undiscovered dwarf planets from an interloping star.

Asteroids that hit the Earth routinely kick clouds of debris into interplanetary space. Large rocks launched in this fashion can harbor hardy bacteria for nearly indefinite periods of time. The outer solar system, then, at any given moment, is often sparsely populated by viable dormant spore-forming bacteria that originated on Earth (see, e.g. here).

Odds are, that once-in-the-solar-lifetime (~770 AU) close encounter involved a red dwarf as the interloping star. A run-of-the-mill red dwarf has 0.3 solar masses and 1% of the solar luminosity. A habitable orbit around such a star lies at a distance of ~0.1 AU, and orbits at a speed of ~50 kilometers per second. This orbital velocity is quite close to the ~40 kilometer per second relative velocity that one would expect for an interloping star at our galactocentric radius. This means that the existence of a habitable terrestrial planet would have given the impinging parent red dwarf a dynamical mechanism for absconding with some of the material that belonged to our own outer solar system. Comets, rocks, and dwarf planets captured in this way would have stuck with the red dwarf, orbiting until they either collided with or were ejected by the red dwarf’s planets.

When that first SETI signal gets picked up, it’s unlikely, but not impossible that it’ll be coming from my trillionth cousin five hundred billion times removed.

Win — Place — Show1

Image Source.

After several late nights of work, Jonathan Langton and I submitted our new paper that predicts the weather conditions on unevenly heated (read eccentric) short-period planets. We’re hoping that by observing these worlds in the infrared, we’ll be able to learn about the atmospheric dynamics that characterize all of the hot Jupiters.

One of our main results is a head-to-head comparison of the expected 8-micron light curves for the six most promising short-period eccentric planets. HAT-P-2b (in turquoise) comes up the winner in terms of observability, with HD 80606 b (in black) running second, and HD 118203 b (red) in third place:

In a concluding paragraph, we took the liberty to wax slightly-more-than-scientific enthusiastic about home-town favorite HD 80606b:

A short-period Jovian planet on an eccentric orbit likely presents one of the Galaxy’s most thrilling sights. One can imagine, for example, how HD 80606 b appears during the interval surrounding its hair-rising encounter with its parent star. The blast of periastron heating drives global shock waves that reverberate several times around the globe. From Earth’s line of sight, the hours and days following periastron are characterized by a gradually dimming crescent of reflected starlight, accompanied by planet-wide vortical storms that fade like swirling embers as the planet recedes from the star. It’s remarkable that we now have the ability to watch this scene (albeit at one-pixel and two-frequency resolution) from a vantage several hundred light years away.

We’ll post the paper online after it makes it through the refereeing process. And stay tuned as we get HAT-P-2b and HD 80606b ready for their multi-frequency screen tests…

“Visitable” Planets7

Image Source.

Two evenings ago, Venus and the Moon hung close together in the deep blue twilight. Their alignment, along with the location of the fading sunset glow, gave a suggestion of the sweep of the ecliptic plane.

Zooming in on the pixels of the above photograph, it’s just possible to see that Venus is not a point source. The hint of a half-illuminated world indicates that the planet is now fairly near maximum elongation. In our lifetimes, I think we’ll likely see images of habitable extrasolar terrestrial planets that harbor something like this level of detail.

Venus gets a bad rap because the surface is so unpleasant. The Venera landers were built like submarines, and yet they still managed only an hour or two on the ground before expiring. The coke-bottle lens panoramas of basaltic slabs that they radioed back do little to fire the imagination.

My attitude toward Venus was transformed by David Grinspoon’s Venus Revealed, which I think is probably the best trade book ever written on planetary science. The text is filled with gems of insight. One passage that sticks is:

There is a level in the clouds (about 33 miles up), where the atmospheric pressure is about 70% of the pressure at sea level on Earth, and the temperature is a balmy 107 degrees Fahrenheit. For ballooning at this altitude on Venus, you would need only a thin, acid resistant suit, and oxygen tank and a large supply of cold lemonade. It’s cool enough for liquid water, and small amounts of it exist there (in a strong sulfuric acid solution).

By contrast there’s no place on Mars that could be explored using gear from an Army Surplus store.

Are there other similarly “visitable” environments in the Solar System? Surprisingly, the answer is yes. On Jupiter, at a level where the atmospheric pressure is ~6 times that at sea level, the temperature is chilly, and yet still comfortably above freezing. This level (at which hot tea might be preferable to lemonade) lies in the midst of the Jovian water cloud deck, and is subject to torrential downpours accompanied by lightning and thunder. If one were ballooning at this level, you would see an misty gray expanse, stabbed by lightning discharges, with the rotten-egg smell of hydrogen sulfide seeping in through your uncomfortably heavy scuba-store face mask.

A Habitable Earth13

Image Source.

There remain three blockbuster, front-page discoveries in exoplanetary science. The first is the identification of a potentially habitable Earth-mass planet around another star. The second is the detection of a life-bearing planet. The third is contact with extraterrestrial intelligence.

It’s hard to predict when (and in which order) discoveries #2 and #3 will take place. Discovery #1, on the other hand, is imminent. We’re currently 2±1 years away from the detection of the first habitable Earth-mass planet (which implies ~15% chance that the announcement will come within one year).

The breakthrough detection of a habitable Earth will almost certainly stem from high-precision Doppler monitoring of a nearby red dwarf star, and already, both the Swiss team and the California-Carnegie team are coming tantalizingly close. The following table of notable planet detections around red dwarfs gives an interesting indication of how the situation is progressing:

Planet

M star

M sin(i)

date K #obs sig µ
Gl 876 b 0.32 615 1998 210 13 6.0 247
Gl 876 c 0.32 178 2001 90 50 5.0 127
Gl 436 b 0.44 22.6 2004 18.1 42 4.5 26
Gl 581 b 0.31 15.7 2005 13.2 20 2.5 23
Gl 876 d 0.32 5.7 2005 6.5 155 4.0 20
Gl 674 b 0.35 11.8 2007 8.7 32 0.82 60
Gl 581 d 0.31 7.5 2007 2.7 50 1.23 16
Gl 581 c 0.31 5.0 2007 2.4 50 1.23 14

The masses of the stars and planets are given in Solar and Earth masses respectively. The year of discovery for each planet is listed, along with the half-amplitude, K, of the stellar reflex velocity (in m/s), the number of RV observations on which the detection was based, the average reported instrumental error (sigma) associated with the discovery observations, and a statistic, “µ”, which is K/sigma multiplied by the square root of the number of observations at the time of announcement. The µ-statistic is related to the power in the periodogram, and gives an indication of the strength of the detection signal at the time of discovery. In essence, the lower the µ, the riskier (gutsier) the announcement.

What will it take to get a habitable Earth? Let’s assume that a 0.3 solar mass red dwarf has an Earth-mass planet in a habitable, circular, 14-day orbit. The radial velocity half-amplitude of such a planet would be K=0.62 m/s. Let’s say that you can operate at 1.5 m/s precision and are willing to announce at µ=20. The detection would require N=2,341 radial velocities. This could be accomplished with an all-out effort on a proprietary telescope, but would require a lot of confidence in your parent star. To put things in perspective, the detection would cost ~10 million dollars and would take ~2 years once the telescope was built.

Alternately, if the star and the instrument cooperate to give a HARPS-like precision of 1 m/s, and one is willing to call CNN at µ=14, then the detection comes after 500 radial velocities. The Swiss can do this within 2 years on a small number of favorable stars using HARPS, and California-Carnegie could do it on a handful of the very best candidate stars once APF comes on line. Another strategy would be to talk VLT or Keck into giving several weeks of dedicated time to survey a few top candidates. Keck time is worth ~$100K per night, meaning that we’re talking a several-million dollar gamble. Any retail investor focused hedge funds out there want to make a dramatic marketing impact? Or for that matter, with oil at $68 a barrel, a Texas Oil Man could write a check to commandeer HET for a full season and build another one in return. “A lone star for the Lone Star.”

If I had to bet on one specific headline for one specific star, though, here’s what I’d assign the single highest probability:

The Swiss Find a habitable Earth orbiting Proxima Centauri. Frequent visitors to oklo.org know about our preoccupation with the Alpha-Proxima Centauri triple system. We’ve looked in great detail at the prospects for detecting a habitable planet around Alpha Centauri B, and Debra Fischer and I are working to build a special-purpose telescope in South America to carry out this campaign (stay tuned for more on this fairly soon). Proxima b, on the other hand, might be ready to announce right now on the basis of a HARPS data set, and the case is alarmingly compelling.

Due to its proximity, Proxima is bright enough (V=11) for HARPS to achieve its best radial precision. For comparison, Gl 581 is just slightly brighter at V=10.6. Proxima is effortlessly old, adequately quiet, and metal-rich. If our understanding of planet formation is first-order correct, it has several significant terrestrial-mass planets. The only real questions in my mind are, the inclination of the system plane, the exact values of the orbital periods, and whether N_p = 2, 3, 4 or 5.

The habitable zone around Proxima is close-in. With an effective temperature of 2670K, and a radius 15% that of the Sun, one needs to be located at 0.03 AU from the star to receive the same amount of energy that the Earth receives from the Sun. (Feel free to post comments on tidal locking, x-ray flares, photosynthesis under red light conditions, etc. Like it or not, if the likes of Gl 581 c is able to generate habitability headlines and over-the-top artist’s impressions, just think what a 1 Earth-Mass, T=300 K Proxima Centauri b will do…) A best guess for Proxima’s mass is 12% that of the Sun. An Earth in the habitable zone thus produces a respectable K=1.5 m/s radial velocity half-amplitude. It’s likely that HARPS gets 1.2 m/s precision on Proxima. A µ=15 detection thus requires only 144 RV observations. Given that Proxima is observable for 10 months of the year at -30 South Latitude, there are presumably already more than 100 observations in the bag. We could thus get an announcement of Proxima Cen b as early as tomorrow.

When morning comes twice a day (or not at all).5

Image Source.

From all accounts, it looks like Jonathan Langton’s talk at last week’s AAS meeting in Honolulu went quite well. Here’s a link to a gzipped tar file of his Keynote presentation. It weighs in at 10.5 MB, and includes a number of cool animations. The following frames have been grabbed from the 2-orbit animation of HD 185269b:



We’re putting the finishing touches on a paper that we hope to submit this weekend. It shows that there’s a remarkable range in weather patterns and predicted infrared light curves among the short-period planets with non-zero eccentricity. The bottom line is that HAT-P-2b and HD 80606b are the best prospects for Spitzer observations, whereas HD 185269 b seems to produce the most complex and photogenic weather (see the three frames above).

HD 185269 b was discovered by John Johnson during the course of his radial velocity survey of slightly evolved high-mass stars. The orbital eccentricity is a modest yet still significant e=0.3, which leads to a 344% increase in the amount of energy received by the planet between apastron and periastron. This seasonal variation is strong, but not crazy enough to drive the shock waves that show up on HD 80606 b or HAT -P-2b. The combination of Coriolis deflection, periodic heating, eddy formation and Kelvin-Helmholtz instabilities on a global scale lead to a mesmerizing, endlessly evolving flow.

The Weather Overground3

Image Source.

Jonathan Langton is at the AAS meeting in Hawaii, and on Wednesday, he’s going to be presenting the results from his latest simulations. Let’s just say that the animations show some amazing weather patterns on the eccentric planets that receive strongly variable stellar heating. If you’re in Honolulu, then by all means make sure you catch his talk. [It’s during the Wed. 4:15-6:00 PM Extrasolar Planets Session in Room 319. Here’s a link to his abstract.]

A ten-minute talk is barely enough time to hit the highlights of the simulations; fortunately, the full story will be available shortly in a paper that we’re readying for submission.

HAT-P-2b will almost certainly be one of the planets that makes the cut. This world is vying with HD 80606b as the most interesting potential candidate for future observations with the Spitzer Space Telescope. Despite having a relatively short 5.63-day orbital period, the orbit is quite eccentric: e=0.50. Periastron occurs almost exactly midway between the primary and secondary transits, which gives the system an absolutely ideal geometry for Spitzer.

Click here for a high-resolution .eps version.

If you can’t make it to the talk, then make sure to check back here at oklo.org in a day or so. I’ll be posting the latest pictures and animations from the simulations, and we’ll have a detailed look HAT-P-2b’s remarkable predicted light curve.

z=0.65

Image Source.

Yesterday, the Texas group announced their discovery of a new two-planet system orbiting HD 155358. Assuming that they’ve drawn a more-or-less edge-on configuration, the inner planet has a bit less than a Jupiter mass and orbits the solar-type parent star in 195 days. The outer planet has about half a Jupiter mass and orbits in 530 days. Dynamically, the system is reminiscent of an overclocked Jupiter and Saturn (although the planets lie far enough away from the 5:2 commensurability so as to avoid the indignities associated with the great inequality).

The main angle on HD 155358 is the low metallicity. The star has [Fe/H]=-0.68, which means that its iron abundance is only 21% that of the Sun. It’s rare to find giant planets around a star that’s so anemic. What exactly happened that allowed HD 155358b and c to beat the odds by assembling cores and accreting enough gas to become full-fledged giant planets?

There were probably a number of contributing factors. HD 155358 may have had a relatively long-lived protostellar disk. In all likelihood, that disk was probably considerably more massive than average. Although HD 155358 is iron-poor, I bet it’ll turn out to be relatively overabundant in oxygen and silicon (that is, a core-accretion formation scenario would prefer supersolar [Si/Fe] and [O/Fe] for HD 155358, see here for more details). Giant planet cores are made from volatiles, and so it’s the oxygen, not the iron, that’s the critical element.

HD 155358, with its ~10 billion year age, and (possibly) enhanced [O/Fe] would be very much at home in a giant elliptical galaxy like M87.

Image Source.

At times, oklo.org likely seems rather provincial. The scope of discussion here rarely ranges beyond the distances of a few hundred light years that mark our local stellar neighborhood. It’s easy to forget that there are a hundred billion galaxies within our cosmological horizon. Each galaxy contains billions of planets.

A bruiser like M87 packs trillions of stars, many of which formed during the ferocious galactic mergers that occurred roughly 10 billion years ago at redshift z~2. (I like this Java applet for computing ages, redshifts and lookback times for the Universe as a function of fundamental cosmological parameters). Many of the stars in giant ellipticals have metallicities that are similar to or even greater than solar, and because older stellar populations tend to have higher [O/Fe], it’s nearly certain that collossal numbers of planets were forming during the epoch when the giant ellipticals were being assembled.

To the best of our knowledge, it takes 4.5 billion years from the epoch of planetary formation to the point where technology and directed information processing emerge. This means that when we look back at elliptical galaxies at redshift z~0.65, we’re seeing what may have been the Universe’s golden age — the time and the environment when the density of civilizations was the highest that it will ever be. What happened to them? Where are they now?

Imhotep theme designed by Chris Lin. Powered by Wordpress.
Console | RSS | Comments RSS