
Speech Enabling Web Browsers

Dave Raggett <dsr@w3.org>

with thanks to

AVIOS/SpeechTek West, January 2006

The Ubiquitous Web

● The Web is an increasingly dominant
applications platform

● Applications that dynamically adapt to the
user, device and environment

● Moving beyond today's client/server model
● Extending device capabilities via the network
● W3C UbiWeb Workshop, Tokyo March 2006

Options for adding speech capabilities

● Handling speech modality in the network
– Loose coupling of modality interfaces

● e.g. XHTML locally with VoiceXML in the network,
with CCXML for high level flow control

● Handling speech modality in the browser
– Embedded vs networked speech

● latency, quality, vocabulary, network, battery, ...

– Plugin vs local speech proxy
– Standard scripting interface?

Latency

● Simple commands with visual actions
– up, down, select, ...

● Feels slow if delay is much greater than 100mS

● Dialogue turn hand over
– When user stops talking (or pauses)
– When application stops talking (or pauses)

● Seizing the turn
– User or application talks over the other party

● Network delays are not as bad as they seem

Using AJAX to add speech

● AJAX = JavaScript for accessing HTTP
– XMLHTTP object
– Supported by modern web browsers

● Local HTTP server handles device audio
● Remote HTTP server for speech services

– ASR with audio in HTTP request, and
EMMA in HTTP response

– TTS with text or SSML in HTTP request,
and audio in HTTP response

HTTP for Speech Services

● Speech synthesis
– http://localhost:8888/say?text=”good

afternoon”
– http://localhost:8888/say?uri=<ssml file>

● Speech recognition
– http://localhost:8888/hear?uri=<srgs file>
– Additional parameters for

● Listening on multiple grammars
● Single result vs sequence of results
● Time out parameters

Application to Pizza ordering

Speech libraries courtesy of Loquendo

SRGS + SISR → EMMA

● Use W3C Recommendations for speech
grammars and semantic interpretation

 <rule id="order">
 <tag>var index=0; out.pizza = new Array();</tag>
 <item repeat="0-1"><ruleref uri="#start"/></item>
 <item>
 <ruleref uri="#pizza"/>
 <tag>out.pizza[index]=$pizza; index+=1;</tag>
 </item>
 <item repeat="0-">
 <item><token>and</token></item>
 <item>
 <ruleref uri="#pizza"/>
 <tag>out.pizza[index]=$pizza; index+=1;</tag>
 </item>
 </item>
 <item repeat="0-1"><ruleref uri="#stop"/></item>
 </rule>

Pizza Grammar

I would like four small cheese pizzas with olives and peppers.

[<start>] [<number>] [<size>] <type> (pizza | pizzas) [with <extras>] [<stop>]

<start> ::= I want | I would like | I'll have | I'd like | I'd love | Give me
<stop> :: thanks | please | if you please
<number> ::= a | one | two | ... | nine
<size> ::= small | medium | large
<type> ::= cheese | pepperoni | sausage
<extras> ::= <topping> [[and] <topping>]*
<topping> ::= mushroom | olives | onions | peppers | tomatoes

<emma:interpretation>
 <pizza>
 <size>small</size>
 <number>4</number>
 <type>cheese</type>
 <topping>olives</topping>
 <topping>peppers</topping>
 </pizza>
</emma:interpretation>

Pizza Grammar

Give me a medium pepperoni pizza and a large cheese pizza with peppers and onions.

 <emma:interpretation>
 <pizza>
 <number>1</number>
 <size>medium</size>
 <type>pepperoni</type>
 </pizza>
 <pizza>
 <number>1</number>
 <size>large</size>
 <type>cheese</type>
 <topping>sausage</topping>
 <topping>onions</topping>
 </pizza>
 </emma:interpretation>

A slightly more complex grammar allows for
several kinds of pizza to be requested at once

Application to Pizza ordering

● Implemented in XHTML+CSS+JavaScript
● Supports compound utterances

– Faster than filling out forms via GUI
– But requires flexible dialogue to work around

inevitable misunderstandings
● DIY solution for describing behavior

– Combination of scripting and markup
– Markup interpreted via JavaScript

● Browser independent

Modeling Behavior

● Scripted handlers for XHTML events, e.g.
onload, onmouseover, onfocus, onchange

● Asynchronous callbacks for HTTP responses
– Used to handle results of speech recognition
– Initiated via calls to XMLHTTP request

● Asynchronous timers (setTimeout)
● Use of custom markup

– Application state, dialogue goals and history
– Event driven state transition rules

Logging

● Usability is based upon real world experience
– That means you need to collect lots of data

● Log dialogues and audio for later analysis
– Speech server log's ASR, TTS requests
– AJAX used for logging dialogue state

● Including changes via visual modality

– Application assigned session identifier
● Used to associate log entries for same session
● Must be sent as part of all server requests

Final Thoughts

● Complex utterances are more natural but
require a more flexible approach for effective
dialogues

● Exposing speech to Web pages via JavaScript
offers flexibility for rolling your own solutions
whilst remaining inter-operable across
browsers

● There is an opportunity for a standard
speech object that abstracts away from
embedded vs networked speech

