
Date: 22 August 2005

Ontology Definition Metamodel
Third Revised Submission to OMG/ RFP ad/2003-03-40

Submitted by:

IBM
Sandpiper Software, Inc.

Supported by:

Adaptive, Inc.
AT&T Government Solutions
Consultative Committee for Space Data Systems (CCSDS)
Data Access Technologies
David Frankel Consulting
DSTC Pty. Ltd.
Florida Institute for Human and Machine Cognition (IHMC)
Gentleware AG
Hewlett-Packard Company
Hyperion
IKAN Group
John Deere
Mercury Computer Systems
MetaMatrix
MetLife
No Magic
SAP Labs, LLC
Stanford University, Knowledge Systems Laboratory (KSL)
UMTP

ad/2005-08-01

Copyright © 2005 IBM
Copyright © 2005 Sandpiper Software, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective
users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY
2 Ontology Definition Metamodel

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH
THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 250 First Avenue, Needham,
MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™,
CORBA logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM
Logo™, Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven
Architecture™, OMG MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other
products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
Ontology Definition Metamodel 3

event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.
4 Ontology Definition Metamodel

Table of Contents
1 Scope. 21

2 Conformance. 22

3 Normative References. 23

4 Terms and Definitions . 25

5 Symbols . 28

6 Additional Information . 29

6.1 Changes to Adopted OMG Specifications . 29

6.2 How to Read This Specification . 29

6.3 Contributors . 29

6.4 Primary Contacts . 30

6.5 Acknowledgements. 31

6.6 Resolution of RFP Mandatory Requirements. 31

6.7 Optional Requirements . 32

6.8 Issues To Be Discussed . 33

6.9 Evaluation Criteria . 34

6.10 Proof of Concept. 34

7 Usage Scenarios and Goals. 35

7.1 Introduction. 35

7.2 Perspectives . 35

7.2.1 Model-Centric Perspectives ..36
7.2.2 Application-Centric Perspectives..37

7.3 Usage Scenarios . 39

7.4 Business Applications. 41

7.4.1 Run Time Interoperation...41
7.4.2 Application Generation ...42
7.4.3 Ontology Lifecycle ...42
Ontology Definition Metamodel 5

Table of Contents
7.5 Analytic Applications . 43

7.5.1 Emergent Property Discovery ...43
7.5.2 Exchange of Complex Data Sets...43

7.6 Engineering Applications . 44

7.6.1 Information Systems Development...44
7.6.2 Ontology Engineering ...44

7.7 Goals for Generic Ontologies and Tools . 45

8 Design Rationale. 47

8.1 Design Principles . 47

8.2 Why Not Simply Use or Extend the UML 2.0 Metamodel? 47

8.3 Component Metamodel Selection. 48

8.4 Relationships among Metamodels . 49

8.4.1 The Need for Translation ..49
8.4.2 UML Profiles ..49
8.4.3 Mappings...50
8.4.4 Mappings Are Informative, Not Normative..50

8.5 Why Common Logic over OCL? . 50

8.6 Why EMOF?. 51

8.7 M1 Issues . 51

9 ODM Overview . 53

10 The UML2 Metamodel . 55

10.1 Introduction. 55

10.2 Features in Common (More or Less) . 55

10.2.1 UML Kernel ..55
10.2.2 Class and Property - Basics...57
10.2.3 More Advanced Concepts ...62
10.2.4 Summary of More-or-Less Common Features ...67

10.3 OWL but not UML . 68

10.3.1 Predicate Definition Language..68
10.3.2 Names..69
10.3.3 Other OWL Developments ...69
6 Ontology Definition Metamodel

Table of Contents
10.4 In UML But Not OWL . 69

10.4.1 Behavioral and Related Features...69
10.4.2 Complex Objects...70
10.4.3 Access Control ..70
10.4.4 Keywords ..70

11 The RDF Schema Metamodel. 71

11.1 Overview. 71

11.1.1 Organization of the RDFS Metamodel ...71
11.1.2 Design Considerations ..71

11.2 The Classes and Utilities Diagrams . 72

11.2.1 PlainLiteral..73
11.2.2 RDFSClass ..73
11.2.3 RDFSDatatype ..74
11.2.4 RDFSLiteral ..74
11.2.5 RDFSResource..75
11.2.6 RDFXMLLiteral ...76
11.2.7 TypedLiteral..76

11.3 The Properties Diagram . 77

11.3.1 RDFProperty ...77

11.4 The Containers Diagram. 78

11.4.1 RDFAlt..78
11.4.2 RDFBag ..79
11.4.3 RDFSContainer...79
11.4.4 RDFSContainerMembershipProperty...80
11.4.5 RDFSeq...80

11.5 The Collections Diagram . 81

11.5.1 RDFList...81

11.6 The Reification Diagram . 81

11.6.1 RDFStatement...82

11.7 The Ontology Diagram . 82

11.7.1 Ontology..83

11.8 Language Mappings . 83

11.8.1 Classes and Utilities ..84
11.8.2 Properties ..84
11.8.3 Containers ...85
11.8.4 Collections ..85
Ontology Definition Metamodel 7

Table of Contents
11.8.5 Reification ...85
11.8.6 Ontology..86

12 The OWL Metamodel . 87

12.1 Overview. 87

12.1.1 Organization of the OWL Metamodel ..87
12.1.2 Design Considerations ..88

12.2 The Classes and Restrictions Diagrams . 88

12.2.1 AllValuesFromRestriction ..90
12.2.2 CardinalityRestriction ...90
12.2.3 ComplementClass ...91
12.2.4 EnumeratedClass...91
12.2.5 HasValueRestriction ...92
12.2.6 IntersectionClass ...92
12.2.7 MaxCardinalityRestriction..93
12.2.8 MinCardinalityRestriction...93
12.2.9 OWLClass ...94
12.2.10 OWLRestriction ..95
12.2.11 SomeValuesFromRestriction ..95
12.2.12 UnionClass ..96

12.3 The Properties Diagram . 96

12.3.1 OWLDatatypeProperty ...97
12.3.2 OWLObjectProperty ...97
12.3.3 Property ...98

12.4 The Individuals Diagram . 99

12.4.1 DatatypeSlot ..100
12.4.2 Individual ..101
12.4.3 ObjectSlot..102
12.4.4 OWLAllDifferent ..102

12.5 The Datatypes Diagram . 103

12.5.1 OWLDataRange..103

12.6 The Utilities Diagram . 103

12.6.1 OWLAnnotationProperty ..104

12.7 The Ontology Diagram . 104

12.7.1 OWLOntology...105
12.7.2 OWLOntologyProperty...106

12.8 Language Mappings . 106

12.8.1 Classes and Restrictions..108
8 Ontology Definition Metamodel

Table of Contents
12.8.2 Properties ..110
12.8.3 Individuals...110
12.8.4 Datatypes...111
12.8.5 Utilities..111
12.8.6 Ontology..111

13 The Common Logic Metamodel. 113

13.1 Overview. 113

13.1.1 Design Considerations ..113
13.1.2 Modeling Notes...114

13.2 The Phrases Diagram . 114

13.2.1 Comment...114
13.2.2 ExclusionSet..115
13.2.3 Identifier..115
13.2.4 Importation..116
13.2.5 LogicalName...117
13.2.6 Module ..118
13.2.7 Phrase ..118
13.2.8 Sentence ..119
13.2.9 Text ...121

13.3 The Terms Diagram . 122

13.3.1 CommentedTerm ..122
13.3.2 FunctionalTerm...122
13.3.3 SequenceVariable..123
13.3.4 Term ..124

13.4 The Atoms Diagram . 125

13.4.1 Atom..125
13.4.2 AtomicSentence ..126
13.4.3 Equation ..126

13.5 The Sentences Diagram . 127

13.5.1 Biconditional...127
13.5.2 CommentedSentence...128
13.5.3 Conjunction...128
13.5.4 Disjunction ..129
13.5.5 ExistentialQuantification ..129
13.5.6 Implication ..130
13.5.7 IrregularSentence ..130
13.5.8 Negation ..131
13.5.9 QuantifiedSentence ...131
13.5.10 UniversalQuantification ..132

13.6 The Boolean Sentences Diagram . 132

13.7 The Quantified Sentences Diagram . 133
Ontology Definition Metamodel 9

Table of Contents
13.8 Summary of CL Metamodel Elements with Interpretation 133

14 The ER Metamodel . 135

14.1 Overview. 135

14.1.1 Organization of the ER Metamodel ..135

14.2 The Model Diagram . 135

14.2.1 Model ..136
14.2.2 ModelElement ...137
14.2.3 Package ...137
14.2.4 SubjectArea ...138

14.3 The Domain Diagram . 139

14.3.1 AtomicDomain..140
14.3.2 Domain..140
14.3.3 DomainConstraint ...140
14.3.4 ListDomain..141
14.3.5 UnionDomain..142

14.4 The Entity Diagrams. 142

14.4.1 Attribute ..143
14.4.2 Entity ...144
14.4.3 EntityConstraint ..145
14.4.4 Generalization ...145

14.5 The Relationship Diagram . 146

14.5.1 Relationship...147
14.5.2 Role ...148

14.6 The Key Diagram . 149

14.6.1 AlternateKey ...149
14.6.2 ForeignKey..150
14.6.3 InversionEntry...150
14.6.4 Key ..150
14.6.5 PrimaryKey ...151

14.7 The Instance Diagram. 151

14.7.1 AttributeInstance ...152
14.7.2 EntityInstance..153
14.7.3 Extent ..153
14.7.4 Instance ...154
14.7.5 RelationshipInstance ...154
14.7.6 RoleInstance..155

14.8 The Inheritance Diagram . 155
10 Ontology Definition Metamodel

Table of Contents
14.8.1 NamedElement..156

14.9 Examples. 157

15 The Topic Map Metamodel . 161

15.1 Topic Map Constructs. 161

15.1.1 TopicMapConstruct ..162
15.1.2 TopicMap ..162
15.1.3 MapItem ..163
15.1.4 Topic ...163
15.1.5 Association..165

15.2 Scope and Type. 165

15.2.1 Scope_able ..166
15.2.2 Type_able..166

15.3 Characteristics. 167

15.3.1 Characteristic ..167
15.3.2 AssociationRole ..167
15.3.3 Occurrence ..168
15.3.4 TopicName..169
15.3.5 VariantName ...169

15.4 Published Subjects . 170

15.5 Example . 170

16 UML Profiles for RDF Schema and OWL 173

16.1 UML Profile for RDF Schema . 173

16.1.1 RDF Document Syntax (Optional) ...173
16.1.2 RDF Graph Model (Optional)...180
16.1.3 RDF Schema Profile Package ...186
16.1.4 RDFS Ontology...186
16.1.5 RDF Document (optional) ..187
16.1.6 Classes and Utilities ..190
16.1.7 Properties in RDF/S ..192
16.1.8 Containers and Collections ...195
16.1.9 Reification...196
16.1.10 RDF Graphs and Nodes (optional)..197

16.2 UML Profile for OWL . 197

16.2.1 OWL Profile Package ...198
16.2.2 OWL Ontology Document..198
16.2.3 OWL Annotation Properties ...199
16.2.4 OWL Ontology Properties ..201
16.2.5 OWL Classes, Restrictions, and Class Axioms ..205
Ontology Definition Metamodel 11

Table of Contents
16.2.6 Properties...217
16.2.7 Individuals...222
16.2.8 Datatypes...225

17 The Topic Map Profile . 227

17.1 Stereotypes . 227

17.1.1 Topic Map ...227
17.1.2 Topic ...227
17.1.3 Association..228
17.1.4 Characteristics ...228

17.2 Abstract Bases. 229

17.2.1 TopicMapElement...229
17.2.2 Scoped Element...229
17.2.3 TypedElement ...230

17.3 Example . 230

18 Mapping UML to OWL . 233

18.1 Overview. 233

18.2 UML to OWL Mapping . 233

18.2.1 Package ...233
18.2.2 Class ..234
18.2.3 Association..239
18.2.4 InstanceSpecification ..240

18.3 OWL to UML Mapping . 242

19 ER to OWL Mapping . 243

19.1 Overview. 243

19.1.1 Representation of Source and Target Models ...243
19.1.2 Representation of Mapping Specifications ...243

19.2 ER to OWL Mapping . 244

19.2.1 ER to OWL Mapping Summary ...244
19.2.2 NamedElement..245
19.2.3 Model ..245
19.2.4 Entity ...246
19.2.5 Attribute ..247
19.2.6 Relationship and Role ...247

19.3 OWL to ER Mapping . 248
12 Ontology Definition Metamodel

Table of Contents
19.3.1 OWL to ER Mapping Summary ...249
19.3.2 RDFSResource..249
19.3.3 OWLOntology ..250
19.3.4 OWLClass ...250
19.3.5 OWLRestriction ..251
19.3.6 OWLDatatypeProperty ...251
19.3.7 OWLObjectProperty ...251
19.3.8 OWLDataRange..252

19.4 ER Abstract Syntax. 252

19.5 ODM OWL Abstract Syntax . 254

20 Mapping Topic Maps to OWL 257

20.1 Overview. 257

20.2 Topic Maps to OWL Full Mapping . 257

20.2.1 Overview...257
20.2.2 Basic Constructs..257
20.2.3 Property Restriction Patterns ..261
20.2.4 Type Hierarchy Pattern ...262
20.2.5 Naming Patterns..262
20.2.6 Instance Patterns ...263

20.3 OWL to Topic Maps Mapping . 265

20.3.1 Overview...265
20.3.2 Basic Constructs..265
20.3.3 Class Hierarchy ...267
20.3.4 Labels ..268
20.3.5 Instances..268
20.3.6 Example ..269

21 Mapping RDFS and OWL to CL 271

21.1 Overview. 271

21.2 RDFS to CL Mapping. 271

21.2.1 RDF Triples...271
21.2.2 RDF Literals..272
21.2.3 RDF URIs and Graphs ..272
21.2.4 RDF Lists ..273
21.2.5 RDF Schema ...273
21.2.6 RDFS Semantics ...274

21.3 OWL to CL Mapping . 277
Ontology Definition Metamodel 13

Table of Contents
22 References (non-normative) . 289

Appendix A Foundation Ontology (M1) for RDFS and OWL
291

Appendix B A Description Logic Metamodel 293
B.1 Introduction. 293

B.2 Containers . 294

B.3 Concepts and Roles. 295

B.4 Datatypes . 297

B.5 Collections . 298

B.6 Expressions and Constructors . 299

B.7 Examples. 302

B.8 Overview Diagram . 305

Appendix C Extending the ODM 307
C.1 Extendibility . 307

C.2 Metaclass Taxonomy . 307

C.3 Models of General Kinds of Application Domains 308

C.4 N-ary Associations . 308

Appendix D Open Issues . 311
Appendix E Mappings - Informative, Not Normative . . 313
14 Ontology Definition Metamodel

List of Figures
Figure 1 ODM Metamodels: Structure and Mappings...54
Figure 2 Key Aspects of UML Class Diagram ..55
Figure 3 Simple M1 Model ..56
Figure 4 M1 Model with Association Class...61
Figure 5 Example N-ary Association with Multiplicity...64
Figure 6 The Classes Diagram of the RDF Schema Metamodel72
Figure 7 The Utilities Diagram of the RDF Schema Metamodel73
Figure 8 The Properties Diagram of the RDF Schema Metamodel77
Figure 9 The Containers Diagram of the RDF Schema Metamodel78
Figure 10 The Collections Diagram of the RDF Schema Metamodel81
Figure 11 The Reification Diagram of the RDF Schema Metamodel82
Figure 12 The Description Diagram of the RDF Schema Metamodel.............................83
Figure 13 The Classes Diagram of the OWL Metamodel..89
Figure 14 The Restrictions Diagram of the OWL Metamodel ..90
Figure 15 The Properties Diagram of the OWL Metamodel ...97
Figure 16 The Individuals Diagram of the OWL Metamodel..100
Figure 17 The Datatypes Diagram of the OWL Metamodel..103
Figure 18 The Utilities Diagram of the OWL Metamodel...104
Figure 19 The Ontology Diagram of the OWL Metamodel ..105
Figure 20 Phrases ...114
Figure 21 Valid Terms in CL ...122
Figure 22 Atomic Sentences ..125
Figure 23 Sentences ...127
Figure 24 Boolean Sentences ...132
Figure 25 Quantified Sentences ...133
Figure 26 The Model Diagram of the ER Metamodel ...136
Figure 27 The Domain Diagram of the ER Metamodel...139
Figure 28 The Entity Diagram of the ER Metamodel..143
Figure 29 The Relationship Diagram of the ER Metamodel ...147
Figure 30 The Key Diagram of the ER Metamodel ...149
Figure 31 The Instance Diagram of the ER Metamodel ..152
Figure 32 The Inheritance Diagram of the ER Metamodel..156
Figure 33 The Model Example Diagram of the ER Metamodel158
Figure 34 The Instance Example Diagram of the ER Metamodel159
Figure 35 Primary Elements in the Topic Map Metamodel...161
Figure 36 The Topic Class ...164
Figure 37 Topic Name Class..169
Figure 38 Instance of Topic Map Metamodel..171
Figure 39 RDF Document Definitions ...175
Figure 40 RDF Graph, Node & Statement Definitions..181
Figure 41 RDF Schema Profile Package..186
Figure 42 RDFS Ontology Package ...187
Figure 43 RDFDocument Provides an Alternate Container For RDFS Vocabularies and
OWL Ontologies187
Figure 44 Property hasColor Without Specified Domain ..192
Figure 45 Property hasColor Without Specified Domain, Alternate Notation193
Ontology Definition Metamodel 15

List of Figures
Figure 46 Property hasColor - Association Class Representation193
Figure 47 Properties With Defined Domain, Undefined Range193
Figure 48 Property Subsetting, Notation on Property Entry for Class...........................194
Figure 49 Property Subsetting, Unidirectional Association Notation............................194
Figure 50 Property Subsetting, Association Class Notation ..194
Figure 51 Web Ontology Language (OWL) Profile Package ..198
Figure 52 Stereotype Notation for owl:versionInfo Applied to an Ontology or RDF Doc-
ument 201
Figure 53 Stereotype Notation for owl:backwardCompatibleWith203
Figure 54 Stereotype Notation for owl:imports ...204
Figure 55 Stereotype Notation for owl:incompatibleWith...204
Figure 56 Stereotype Notation for owl:priorVersion ...205
Figure 57 owl:Cardinality - Restricted Multiplicity in Subtype208
Figure 58 owl:Cardinality - Restricted Multiplicity in Subtype209
Figure 59 Simple Property Redefinition Example For owl:allValuesFrom...................210
Figure 60 Property Redefinition For owl:allValuesFrom With Unidirectional Associa-
tions 210
Figure 61 Property Redefinition For owl:allValuesFrom With Association Classes210
Figure 62 Example Using owl:hasValue Constraint ..212
Figure 63 Example Using owl:intersectionOf..213
Figure 64 Example Using owl:unionOf ...214
Figure 65 Example Using owl:complementOf...214
Figure 66 Example Using owl:disjointWith...215
Figure 67 Example Using owl:disjointWith With Multiple Participants216
Figure 68 Example Using owl:disjointWith With Common Supertype216
Figure 69 Example Using owl:equivalentClass ...217
Figure 70 Using owl:inverseOf With Bidirectional Shorthand Notation.......................221
Figure 71 Using owl:inverseOf Between Association Classes221
Figure 72 Topic Map Stereotype..227
Figure 73 Topic Stereotype ..227
Figure 74 Association Stereotype ..228
Figure 75 Characteristic Stereotype ...228
Figure 76 TopicMapElement Stereotypes..229
Figure 77 ScopedElement Stereotypes...229
Figure 78 TypedElement Stereotypes ..230
Figure 79 Example Profile ...231
Figure 80 Knowledge Representation System ...293
Figure 81 Basic Containment Constructs...294
Figure 82 Element Model...295
Figure 83 DataType Model ..297
Figure 84 Collection Model ...298
Figure 85 Specialisations of Constructor ...300
Figure 86 Example One..303
Figure 87 Example Two...304
Figure 88 Complete DL Metamodel ..305
Figure 89 Countable/Bulk Package Extending OWL ..307
16 Ontology Definition Metamodel

List of Figures
Figure 90 Semantic Domain Model for isPartOf Property ..308
Figure 91 Metaproperty Package for OWL..309
Ontology Definition Metamodel 17

List of Figures
18 Ontology Definition Metamodel

List of Tables
Table 1 Summary of Compliance Points ..22
Table 2 Response to RFP Mandatory Requirements..31
Table 3 Response to RFP Optional Requirements ...32
Table 4 Response to RFP Issues...33
Table 5 Response to RFP Evaluation Criteria ..34
Table 6 Perspectives of Applications that Use Ontologies Considered in this Analysis....35
Table 7 Usage Scenario Perspective Values...40
Table 8 Summary of Requirements ..45
Table 9 Properties and Types in Simple Model..56
Table 10 Classes and Owned Properties in Simple Model...57
Table 11 Implementation of Association in Simple Model..57
Table 12 Alternative Implementation of Association in Simple Model...............................57
Table 13 Example Course Instance ..57
Table 14 Simple Model Classes Translated to OWL ...58
Table 15 Simple Model Associations Translated to OWL...59
Table 16 Sample Associations Translated to OWL..60
Table 17 Sample Model Association Classes...62
Table 18 Common Features of UML and OWL...67
Table 19 OWL Features with No UML Equivalent ...68
Table 20 Mapping Classes and Utilities ...84
Table 21 Mapping Properties..84
Table 22 Mapping Containers ..85
Table 23 Mapping Collections..85
Table 24 Mapping Reification ..85
Table 25 Mapping Description ...86
Table 26 Classes and Restrictions in the OWL Syntaxes...108
Table 27 Properties in the OWL Syntaxes ...110
Table 28 Individuals in the OWL Syntaxes..110
Table 29 Datatypes in the OWL Syntaxes..111
Table 30 Utilities in the OWL Syntaxes...111
Table 31 Ontology in the OWL Syntaxes...111
Table 32 CL Metamodel Summary with Interpretation ...133
Table 33 RDF Documents ...188
Table 34 Classes and Utilities...190
Table 35 Properties ...195
Table 36 Containers and Collections..195
Table 37 Reification (Basic Model) ...196
Table 38 RDF Graphs and Nodes...197
Table 39 Annotation Properties ..199
Table 40 Ontology Properties...202
Table 41 Class Descriptions ...206
Table 42 Properties ..218
Table 43 ER to OWL Mapping Summary..244
Table 44 OWL to ER Mapping Summary..249
Table 45 Equivalent Topic Map and OWL Constructs ..269
Table 46 RDF Triple to CL Mapping ...271
Ontology Definition Metamodel 19

List of Tables
Table 47 Basic RDF to CL Mapping ..272
Table 48 RDFS Triple to CL Mapping...274
Table 49 RDFS Extensional Logical Form Translation ...275
Table 50 RDFS/OWL to CL Metamodel Translation ..278
Table 51 Foundation Ontology (M1) for RDFS and OWL ..291
20 Ontology Definition Metamodel

1 Scope
IBM and Sandpiper Software are pleased to submit this response to the ADTF's RFP for an Ontology Definition
Metamodel (ODM). We believe that this specification represents the foundation for an extremely important set of
enabling capabilities for Model Driven Architecture (MDA) based software engineering, namely the formal
grounding for representation, management, interoperability, and application of business semantics.

The ODM specification offers a number of benefits to potential users, including:

• Options in the level of expressivity, complexity, and form available for designing and implementing conceptual
models, ranging from familiar UML and ER methodologies to formal ontologies represented in description logics
or first order logic

• Grounding in formal logic, through standards-based, model-theoretic semantics for the knowledge representation
languages supported, sufficient to enable reasoning engines to understand, validate, and apply ontologies devel-
oped using the ODM

• Profiles and mappings sufficient to support not only the exchange of models developed independently in various
formalisms but to enable consistency checking and validation in ways that have not been feasible to date

• The basis for a family of specifications that marry MDA and Semantic Web technologies to support semantic web
services, ontology and policy-based communications and interoperability, and declarative, policy-based applica-
tions in general

The specification defines a family of independent metamodels, related profiles, and mappings among the metamodels
corresponding to several international standards for ontology and Topic Map definition, as well as capabilities
supporting conventional modeling paradigms for capturing conceptual knowledge, such as entity-relationship
modeling.

The ODM is applicable to knowledge representation, conceptual modeling, formal taxonomy development and
ontology definition, and enables the use of a variety of enterprise models as starting points for ontology development
through mappings to UML and MOF. ODM-based ontologies can be used to support

• interchange of knowledge among heterogeneous computer systems

• representation of knowledge in ontologies and knowledge bases

• specification of expressions that are the input to or output from inference engines

The ODM is not intended to encompass

• specification of proof theory or inference rules

• specification of translation and transformations between the notations used by heterogeneous computer systems

• free logics

• conditional logics

• methods of providing relationships between symbols in the logical “universe” and individuals in the “real world”

• issues related to computability using the knowledge representation formalisms represented in the ODM (e.g., opti-
mization, efficiency, etc.)
Ontology Definition Metamodel 21

2 Conformance
There are three compliance points distinguished for the Ontology Definition Metamodel:

[1] No compliance

[2] Compliant compliance: Implementation fully complies with the abstract syntax, well-formedness rules, semantics
and notation of the package

[3] Interchange compliance. The tool has compliant compliance, and can exchange metamodel instances using XMI

Note: The mapping sections of the specification were made informative just prior to publication.

Table 1 Summary of Compliance Points

Compliance Point Valid Options

RDFS Metamodel (Basic) Compliant , Interchange

RDFS Metamodel (Extended, Document Model) No, Compliant , Interchange

RDFS Metamodel (Extended, Document and Graph
Model)

No, Compliant , Interchange

OWL Metamodel Compliant , Interchange

CL Metamodel No, Compliant , Interchange

ER Metamodel No, Compliant , Interchange

Topic Maps Metamodel No, Compliant , Interchange

UML Profile for RDFS and OWL (Basic) No, Compliant , Interchange

UML Profile for RDFS and OWL (Document
Model)

No, Compliant , Interchange

UML Profile for RDFS and OWL (Document and
Graph Models)

No, Compliant , Interchange

UML Profile for Topic Maps No, Compliant , Interchange

Mapping from UML to OWL No, Compliant (unidirectional, bidirectional)

Mapping from ER to OWL No, Compliant (unidirectional, bidirectional)

Mapping from Topic Maps to OWL No, Compliant (unidirectional, bidirectional)

Mapping from RDFS and OWL to CL No, Compliant
22 Ontology Definition Metamodel

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

[ISO 646] ISO/IEC 646:1991, Information technology -- ISO 7-bit coded character set for information interchange

[ISO 2382] ISO/IEC 2382-15:1999, Information technology -- Vocabulary -- Part 15: Programming languages

[ISO 10646] ISO/IEC 10646:2003, Information technology -- Universal Multiple-Octet Coded Character Set (UCS)

[ISO 14977] ISO/IEC 14977, Information technology -- Syntactic metalanguage -- Extended BNF

[ISO 24707] ISO/IEC CD 24707 Information technology – Common Logic (Common Logic) – A Framework for a
Family of Logic-Based Languages, 2005-03-11. Latest version is available at http://cl.tamu.edu/docs/cl/24707-for-
CD-Spring-2005.doc.

[MOF] MOF 2.0 Core. Final Adopted Specification, ptc/03-10-04. Latest version is available at http://www.omg.org/
docs/ptc/03-10-04.pdf.

[MOF XMI] MOF 2.0 XMI (XML Metadata Interchange). Final Adopted Specification, ptc/04-06-11. Latest version is
available at http://www.omg.org/docs/ptc/04-06-11.pdf.

[OCL] UML 2.0 OCL. Final Adopted Specification, ptc/03-10-14. Latest version is available at http://www.omg.org/
docs/ptc/03-10-14.pdf.

[OWL S&AS] OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommendation 10 February
2004, Peter F. Patel-Schneider, Patrick Hayes, Ian Horrocks, eds. Latest version is available at http://www.w3.org/TR/
owl-semantics/.

[RDF Concepts] Resource Description Framework (RDF): Concepts and Abstract Syntax. Graham Klyne and Jeremy
J. Carroll, Editors. W3C Recommendation, 10 February 2004. Latest version is available at http://www.w3.org/TR/
rdf-concepts/.

[RDF MIME Type] MIME Media Types, The Internet Assigned Numbers Authority (IANA). This document is http://
www.iana.org/assignments/media-types/. The registration for application/rdf+xml is archived at http://www.w3.org/2001/
sw/RDFCore/mediatype-registration.

[RDF Primer] RDF Primer. Frank Manola and Eric Miller, Editors. W3C Recommendation, 10 February 2004. Latest
version is available at http://www.w3.org/TR/rdf-primer/.

[RDF Schema] RDF Vocabulary Description Language 1.0: RDF Schema. Dan Brickley and R.V. Guha, Editors.
W3C Recommendation, 10 February 2004. Latest version is available at http://www.w3.org/TR/rdf-schema/.

[RDF Semantics] RDF Semantics. Patrick Hayes, Editor, W3C Recommendation, 10 February 2004. Latest version
available at http://www.w3.org/TR/rdf-mt/.

[RDF Syntax] RDF/XML Syntax Specification (Revised). Dave Beckett, Editor, W3C Recommendation, 10 February
2004, http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/. Latest version available at http://www.w3.org/
TR/rdf-syntax-grammar/.

[RFC2396] IETF (Internet Engineering Task Force) RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax,
eds. T. Berners-Lee, R. Fielding, L. Masinter. August 1998.

[RFC2732] RFC 2732 - Format for Literal IPv6 Addresses in URL's, R. Hinden, B. Carpenter and L. Masinter, IETF,
December 1999. This document is http://www.isi.edu/in-notes/rfc2732.txt.
Ontology Definition Metamodel 23

[TMDM] ISO/IEC FCD 13250-2: Topic Maps – Data Model, 2005-07-13. Latest version is available at http://
www.isotopicmaps.org/sam/sam-model/.

[UML2] UML 2.0 Superstructure Specification. OMG Adopted Specification, ptc/2004-10-02. FTF Convenience
Document is available at http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

[UML Infra] UML 2.0 Infrastructure Specification. OMG Final Adopted Specification, ptc/03-09-15. Latest version
is available at http://www.omg.org/docs/ptc/03-09-15.pdf.

[Unicode] The Unicode Standard, Version 3, The Unicode Consortium, Addison-Wesley, 2000. ISBN 0-201-61633-5, as
updated from time to time by the publication of new versions. (See http://www.unicode.org/unicode/standard/versions/ for
the latest version and additional information on versions of the standard and of the Unicode Character Database).

[XLINK] XML Linking Language (XLink) Version 1.0, W3C Recommendation 27 June 2001, http://www.w3.org/
TR/xlink/.

[XML Schema Datatypes] XML Schema Part 2: Datatypes. W3C Recommendation 02 May 2000. Latest version is
available at http://www.w3.org/TR/xmlschema-2/.

[XMLNS] Namespaces in XML; W3C Recommendation, 14 January 1999. Latest version is available at http://
www.w3.org/TR/1999/REC-xml-names-19990114/.

[XTM] ISO/IEC 13250-3: Topic Maps – XML Syntax. Latest version is available at http://www.isotopicmaps.org/
sam/sam-xtm/.
24 Ontology Definition Metamodel

4 Terms and Definitions
Complete MOF (CMOF)
The CMOF, or Complete MOF, Model is the model used to specify other metamodels such as UML2. It is built from
EMOF and the Core::Constructs of UML. The CMOF package does not define any classes of its own. Rather, it merges
packages with its extensions that together define basic metamodeling capabilities.

Common Logic (CL)
Common Logic is a first order logic framework intended for information exchange and transmission. The framework
allows for a variety of different syntactic forms, called dialects, all expressible within a common XML-based syntax and
all sharing a single semantics.

Computation Independent Model (CIM)
A computation independent model is a view of a system from the computation independent viewpoint. A CIM does not
show details of the structure of systems. A CIM is sometimes called a domain model, and a vocabulary that is familiar to
the practitioners of the domain in question is used in its specification. Some ontologies are essentially CIMs from a
software engineering perspective.

Description Logics (DL)
Description logics are knowledge representation languages tailored for expressing knowledge about concepts and concept
hierarchies, and typically represent a decidable subset of traditional first order logic. Description logic systems have been
used for building a variety of applications including conceptual modeling, information integration, query mechanisms,
view maintenance, software management systems, planning systems, configuration systems, and natural language
understanding. The Web Ontology Language (OWL) is a member of the description logics family of knowledge
representation languages.

Entity-Relationship (ER)
An ER (entity-relationship) diagram is a graphical modeling notation that illustrates the interrelationships between entities
in a domain. ER diagrams often use symbols to represent three different types of information. Boxes are commonly used
to represent entities. Diamonds are normally used to represent relationships and ovals are used to represent attributes.

Essential MOF (EMOF)
Essential MOF is the subset of MOF that most closely corresponds to the facilities found in object-oriented programming
languages and in XML. It provides a straightforward framework for mapping MOF models to implementations such as
JMI and XMI for simple metamodels. A primary goal of EMOF is to allow simple metamodels to be defined using simple
concepts while supporting extensions (by the usual class extension mechanism in MOF) for more sophisticated
metamodeling using CMOF.

interpretation
A relationship between individuals in a universe of discourse and the symbols and relations in a model such that the
model expresses truths about the individuals.

Knowledge Interchange Format (KIF)
Knowledge Interchange Format (KIF) is a computer-oriented language for the interchange of knowledge among disparate
systems. It has declarative semantics (i.e. the meaning of expressions in the representation can be understood without
appeal to an interpreter for manipulating those expressions); it is logically comprehensive (i.e. it provides for the
expression of arbitrary sentences in the first-order predicate calculus); it provides for the representation of knowledge
about the representation of knowledge; it provides for the representation of nonmonotonic reasoning rules; and it provides
for the definition of objects, functions, and relations. KIF was developed in the late 1980s and early 1990s through
support of the DARPA Knowledge Sharing Effort. There are several “flavors” of KIF in use today, including the best
known versions: ANSI KIF (i.e., Knowledge Interchange Format dpANS, NCITS.T2/98-004, http://logic.stanford.edu/
kif/dpans.html) and KIF Reference (i.e., Version 3.0 of the KIF Reference Manual, http://www-ksl.stanford.edu/
knowledge-sharing/papers/kif.ps). For the purpose of this ODM specification, references to KIF should be considered
references to the KIF 3.0 Reference Manual cited in the Non-Normative References section of this specification.

Meta-Object Facility (MOF)
The Meta Object Facility (MOF), an adopted OMG standard, provides a metadata management framework, and a set of
Ontology Definition Metamodel 25

metadata services to enable the development and interoperability of model and metadata driven systems. Examples of
these systems that use MOF include modeling and development tools, data warehouse systems, metadata repositories etc.
For the purpose of this ODM specification, references to MOF should be considered references to the Meta-Object
Facility 2.0 Core Specification, cited in Normative References, above.

Object Constraint Language (OCL)
The Object Constraint Language (OCL), an adopted OMG standard, is a formal language used to describe expressions on
UML models. These expressions typically specify invariant conditions that must hold for the system being modeled or
queries over objects described in a model. Note that when the OCL expressions are evaluated, they do not have side
effects; i.e. their evaluation cannot alter the state of the corresponding executing system. For the purpose of this ODM
specification, references to OCL should be considered references to the UML 2.0 Object Constraint Language
Specification, cited in Normative References, above.

Ontology Definition Metamodel (ODM)
The Ontology Definition Metamodel (ODM), as defined in this specification, is a family of MOF metamodels, mappings
between those metamodels as well as mappings to and from UML, and a set of profiles that enable ontology modeling
through the use of UML-based tools. The metamodels that comprise the ODM reflect the abstract syntax of several
standard knowledge representation and conceptual modeling languages that have either been recently adopted by other
international standards bodies (e.g., RDF, RDF Schema, and OWL by the W3C), are in the process of being adopted (e.g.,
Common Logic and Topic Maps by the ISO) or are considered industry de facto standards (ER).

Platform Independent Model (PIM)
A platform independent model is a view of a system from the platform independent viewpoint. A PIM exhibits a specified
degree of platform independence so as to be suitable for use with a number of different platforms of similar type.
Examples of platforms range from virtual machines, to programming languages, to deployment platforms, to applications,
depending on the perspective of the modeler and application being modeled.

Platform Specific Model (PSM)
A platform specific model is a view of a system from the platform specific viewpoint. A PSM combines the specifications
in the PIM with the details that specify how that system uses a particular type of platform.

Resource Description Framework (RDF)
The Resource Description Framework (RDF) is a framework for representing information in the Web. RDF has an
abstract syntax that reflects a simple graph-based data model, and formal semantics with a rigorously defined notion of
entailment providing a basis for well founded deductions in RDF data. The vocabulary is fully extensible, being based on
URIs with optional fragment identifiers (URI references, or URIrefs). For the purpose of this ODM specification,
references to RDF should be considered references to the set of RDF recommendations available from the World Wide
Web Consortium, and in particular, the RDF Concepts and Abstract Syntax recommendation, cited in Normative
References, above.

RDF Schema (RDFS)
RDF's vocabulary description language, RDF Schema, is a semantic extension of RDF. It provides mechanisms for
describing groups of related resources and the relationships between these resources. These resources are used to
determine characteristics of other resources, such as the domains and ranges of properties. The RDF vocabulary
description language class and property system is similar to the type systems of object-oriented programming languages
such as Java. RDF differs from many such systems in that instead of defining a class in terms of the properties its
instances may have, the RDF vocabulary description language describes properties in terms of the classes of resource to
which they apply. For the purpose of this ODM specification, references to RDF Schema should be considered references
to the set of RDF recommendations available from the World Wide Web Consortium, and in particular, the RDF
Vocabulary Description Language 1.0: RDF Schema recommendation, cited in Normative References, above.

Topic Maps (TM)
Topic Maps provide a model and grammar for representing the structure of information resources used to define topics,
and the associations (relationships) between topics. Names, resources, and relationships are said to be characteristics of
abstract subjects, which are called topics. Topics have their characteristics within scopes: i.e. the limited contexts within
which the names and resources are regarded as their name, resource, and relationship characteristics. One or more
interrelated documents employing this grammar is called a “topic map.” For the purpose of this ODM specification,
26 Ontology Definition Metamodel

references to Topic Maps should be considered references to the draft ISO standard cited in Normative References, above.

traditional first order logic
The traditional algebraic (or mathematical) formulations of logic generally described by Russell, Whitehead, Peano, and
Pierce, dealing with quantification, negation, and logical relations as expressed in propositions that are strictly true or
false. This specifically excludes reasoning over relations and excludes using the same name as both an individual name
and a relation name.

Unified Modeling Language (UML)
The Unified Modeling Language, an adopted OMG standard, is a visual language for specifying, constructing and
documenting the artifacts of systems. It is a general-purpose modeling language that can be used with all major object and
component methods, and that can be applied to all application domains (e.g., health, finance, telecommunications,
aerospace) and implementation platforms (e.g., J2EE, .NET). For the purpose of this ODM specification, references to
UML should be considered references to the Unified Modeling Language 2.0 Infrastructure and Superstructure
Specifications, cited in Normative References, above.

universe of discourse
A non-empty set over which the quantifiers of a logic language are understood to range. Sometimes called a “domain of
discourse”.

Web Ontology Language (OWL)
The OWL Web Ontology Language is designed for use by applications that need to process the content of information
instead of just presenting information to humans. OWL can be used to explicitly represent the meaning of terms in
vocabularies and the relationships between those terms. This representation of terms and their interrelationships is called
an ontology. OWL has more facilities for expressing meaning and semantics than XML, RDF, and RDF-S, and thus OWL
goes beyond these languages in its ability to represent machine interpretable content on the Web. OWL has three
increasingly-expressive sub-languages: OWL Lite, OWL DL, and OWL Full. For the purpose of this ODM specification,
references to OWL should be considered references to the set of OWL recommendations available from the World Wide
Web Consortium, and in particular, the OWL Web Ontology Language Semantics and Abstract Syntax recommendation,
cited in Normative References, above.

XML Metadata Interchange (XMI)
XMI is a widely used interchange format for sharing objects using XML. Sharing objects in XML is a comprehensive
solution that build on sharing data with XML. XMI is applicable to a wide variety of objects: analysis (UML), software
(Java, C++), components (EJB, IDL, CORBA Component Model), and databases (CWM). For the purpose of this ODM
specification, references to XMI should be considered references to the XML Metadata Interchange (XMI) 2.0
Specification, cited in Normative References, above.

eXtended Markup Language (XML)
Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879). Originally
designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly important role
in the exchange of a wide variety of data on the Web and elsewhere. RDF and OWL build on XML as a basis for
representing business semantics on the Web. Relevant W3C recommendations are cited in the RDF and OWL documents
as well as those cited under Normative References, above.
Ontology Definition Metamodel 27

5 Symbols
CIM Computation Independent Model

CL Common Logic

DL Description Logics

ER Entity-Relationship

FOL First Order Logic

ISO/IECInternational Organization for Standardization / International Electrotechnical Commission

KIF Knowledge Interchange Format

MOF Meta-Object Facility 2.0

OCL UML 2.0 Object Constraint Language

ODM Ontology Definition Metamodel

OMG Object Management Group

OWL Web Ontology Language

PIM Platform Independent Model

PSM Platform Specific Model

RDF Resource Description Framework

RDFS RDF Schema

RFP Request for Proposal

TFOL Traditional First Order Logic

TM Topic Maps

UML Unified Modeling Language 2.0

XMI XML Metadata Interchange

XML eXtended Markup Language
28 Ontology Definition Metamodel

6 Additional Information

6.1 Changes to Adopted OMG Specifications
No changes to UML 2.0 or other OMG specifications are required.

6.2 How to Read This Specification
This Chapter contains contact information and explains how the proposal addresses the RFP requirements.

Chapter 7 describes the usage scenarios and goals for the Ontology Definition Metamodel.

Chapter 8 explains the design rationale for the Ontology Definition Metamodel.

Chapter 9 explains the overall structure of the metamodels constituting the Ontology Definition Metamodel.

Chapter 10 demonstrates how the requirements of ontologies can be achieved through the re-use and extension of the
UML 2.0 Kernel.

Chapter 11 describes the Resource Description Framework Schema metamodel.

Chapter 12 describes the Web Ontology Language metamodel.

Chapter 13 describes the Common Logic metamodel.

Chapter 14 describes the Entity-Relationship metamodel.

Chapter 15 describes the Topic Maps metamodel.

Chapter 16 describes the UML Profile for RDF Schema and OWL.

Chapter 17 describes the UML Profile for Topic Maps.

Chapter 18 describes the mapping between UML 2.0 and OWL.

Chapter 19 describes the mapping between ER and OWL.

Chapter 20 describes the mapping between Topic Maps and OWL.

Chapter 21 describes the mapping from RDFS and OWL to CL.

Chapter 22 contains non-normative references to other work.

Appendix A describes a Foundation ontology (M1) for RDFS and OWL

Appendix B describes the Description Logics metamodel (not normative).

Appendix C describes a methodology for extending the ODM.

Appendix D contains a short list of open issues.

6.3 Contributors
The following companies submitted this specification:

• IBM

• Sandpiper Software, Inc.
Ontology Definition Metamodel 29

The following companies and organizations support this specification:

• Adaptive, Inc.

• AT&T Government Solutions

• Consultative Committee for Space Data Systems (CCSDS)

• Data Access Technologies

• David Frankel Consulting

• DSTC Pty Ltd.

• Florida Institute for Human and Machine Cognition (IHMC)

• Gentleware AG

• Hewlett-Packard Company

• Hyperion

• IKAN Group

• John Deere

• Mercury Computer Systems

• MetaMatrix

• MetLife

• No Magic

• SAP Labs, LLC

• Stanford University, Knowledge Systems Laboratory (KSL)

• UMTP

6.4 Primary Contacts
The primary contacts for this Ontology Definition Metamodel submission are:

Dr. Daniel T. Chang
IBM Silicon Valley Lab
555 Bailey Ave
San Jose, California
Phone: +1 408 463 2319
Email: dtchang@us.ibm.com

Elisa F. Kendall
Sandpiper Software, Inc.
2053 Grant Road #162
Los Altos, California 94024 USA
Phone: +1 650 960 2456
Fax: +1 650 969 6991
Email: ekendall@sandsoft.com
30 Ontology Definition Metamodel

6.5 Acknowledgements
The submitters wish to gratefully acknowledge the contributions of Conrad Bock, Dr. Marko Boger, Jeremy Carroll,
Dr. Robert M. Colomb, Mark Dutra, Patrick Emery, David Frankel, Lars Marius Garshol, Dr. Richard Goodwin,
Lewis Hart, Dr. Patrick Hayes, Professor Hajime Horiuchi, Sridhar Iyengar, Dr. Philippe Martin, Dr. Deborah
McGuinness, Jishnu Mukerji, Masaharu Obayashi, Masao Okabe, Dr. Yue Pan, Dr. Kerry Raymond, Dave Reynolds,
Evan Wallace, Dr. Christopher Welty, Guo Tong Xie, and Dr. Yiming Ye in the preparation of this specification.

6.6 Resolution of RFP Mandatory Requirements
This section describes how this submission meets the mandatory and optional requirements identified in the RFP.

The ODM RFP calls for a Platform Independent Model (PIM) for ontology definition and at least one mapping to a
Platform Specific Model (PSM) for OWL DL. The set of metamodels defined herein does not include a single generic
metamodel for ontology modeling, given the variation in definitions of “ontology” (see discussions in Chapter 7,
Usage Scenarios and Goals, and in Chapter 8, Design Rationale). The RFP also indicated that a PIM for ontology
definition supporting knowledge representation languages that represent fragments of predicate logic was requested.
The continuum from highly constrained description logics to a language as expressive as CL is fairly rich, in fact.
Thus, we have developed:

• a Platform Independent Model (PIM) representing the abstract syntax of the Web Ontology Language (OWL),
which actually consists of three distinct dialects. Each dialect can be considered a platform specific variant. The
DL dialect of OWL is the most generally accepted standard representing the description logics family of lan-
guages.

• a Platform Independent Model (PIM) representing the abstract syntax of Common Logic (CL), which represents a
family of knowledge representation languages that are first order in nature.

• a non-normative metamodel representing many of the features common to a family of knowledge representation
languages called Description Logics (the DL in OWL DL), which we include as Appendix B for reference and
educational purposes.

Constraints on the OWL Full metamodel that will restrict it to support OWL DL are in work and will be included
during the finalization phase of this specification. A PSM for XCL, which is an XML surface syntax for CL, will also
be included during the finalization phase of this specification. Others, such as PSMs for Conceptual Graphs [CGS] or
the Knowledge Interchange Format [KIF], may be considered as resources permit. In addition, axioms for mapping
both OWL Full and OWL DL to CL are included in Chapter 21, highlighting some of the distinctions between the
two dialects of OWL considered important for the purposes of the ODM.

The following mandatory requirements are taken from Section 6.5 in the RFP.

Table 2 Response to RFP Mandatory Requirements

6.5.1. Ontology Definition
Metamodel representing the
semantics of ontologies including but
not necessarily limited to OWL
ontologies.

The metamodels for ontology definition specified herein support ontology
development in the Web Ontology Language (OWL) and Common Logic
(CL), which supports expressivity to the level of first order logic.

6.5.1.1. Depict using UML. The ODM metamodels are depicted using constructs from UML.

6.5.1.2. Use v2.x of MOF, UML and
OCL.

This submission is based on v2.0 of MOF, UML and OCL. However,
prototyping of some capabilities has been limited by the lack of availability of
tools conformant to these specifications. In practice, the ODM is based on the
EMOF subset of MOF 2.0.
Ontology Definition Metamodel 31

6.7 Optional Requirements
This section describes how this submission meets the mandatory and optional requirements identified in the RFP. The
following optional requirements are taken from Section 6.6 in the RFP.

6.5.2. UML2 profile UML2 Profiles for ontology definition for RDF Schema, OWL, and Topic
Maps are included.

6.5.3. Mapping between meta-model
and profile

Two-way, bounded mappings from the appropriate metamodels to OWL,
supporting forward and reverse engineering, are given in Chapter 18 through
Chapter 20. A one-way mapping from RDF Schema and OWL to CL is
provided in Chapter 21. The region covered by these mappings reflects the
spectrum of knowledge representation formalisms identified in Chapter 7,
Usage Scenarios and Goals as important for the purposes of this specification.

6.5.3.1. Support for forward and
reverse engineering between
ontologies

Mappings from the appropriate metamodels to OWL that are two-way and
bounded, supporting forward and reverse engineering, are given in Chapter 18
through Chapter 20.

6.5.4 A mapping from ODM to OWL
DL that is two-way and bounded.

The RFP called for a PSM for OWL DL and a mapping from the ODM
metamodel to this PSM. This submission does not include a single ODM
metamodel for ontology modeling. Rather, metamodels reflecting the abstract
syntax of several ontology definition and conceptual modeling languages are
included. Thus, a mapping from “ODM” to OWL DL doesn’t necessarily
make sense. Constraints that extend the metamodel for OWL that will enable
vendors to restrict their implementations to OWL DL or OWL Full, if desired,
will be provided in the next revision of the specification, and the mapping from
UML to OWL provided in Chapter 18 will be augmented to show how a two-
way, bounded mapping from UML to OWL DL is supported.

6.5.5 XMI XSD for ODM XMI XSD for the set of normative ODM metamodels will be provided during
finalization due to the lack of availability of tools conforming to the XMI2
specification.

Table 3 Response to RFP Optional Requirements

6.6.1. Mapping multiple ontologies
into a single UML model

It is possible to map multiple ontologies into a single UML model, by
coalescing those elements identified as representing the same concepts using
the mapping facilities of Chapter 18.

6.6.2 Support for round-trip
engineering

Discussed in Chapter 8.

Table 2 Response to RFP Mandatory Requirements
32 Ontology Definition Metamodel

6.8 Issues To Be Discussed
The following issues have been taken from Section 6.7 in the RFP.

6.6.3 Mapping to DAML+OIL or
other ontology languages

Mappings from the ODM to the language described by each metamodel are
given in the chapter containing the relevant metamodel.

6.6.4 Support for OWL Full The metamodels, mappings, and profiles provided herein support both OWL
DL and OWL Full, including support for RDF Schema. In fact, limiting
support to RDF Schema is possible, including mapping an RDF description
(vocabulary, graph) to CL without reference to OWL.

6.6.5 Metadata to define context and
scope of an ontology.

The ODM provides facilities for representing limited metadata for ontologies,
such as defining the scope of an ontology (i.e., limiting that scope to a
particular RDF graph or set of graphs, to an OWL ontology, or to a CL
module). Support for additional metadata may include OWL annotation
properties or CL text, but support for specific metadata standards, such as
Dublin Core, ISO 11179, or others is not explicitly provided. This level of
metadata support could be implemented in ontologies, topic maps, or other
conceptual models representing those standards that leverage ODM concepts,
however.

Table 4 Response to RFP Issues

Strategy for mapping names between
ODM and OWL

Discussed in Chapter 10.

Properties in OWL not supported in
UML

Discussed in Chapter 10.

Iterative development across mapped
environments

Round-trip transformation issues are discussed in Chapter 8.

Exclusive use of UML profiling The submitters do not believe that the exclusive use of UML profiling is
sufficient for the expressive power needed for ODM; rather, full MOF meta-
models, and in some cases, profiles, are presented. Use of a full MOF meta-
model enables the use of many MDA tools such as repositories, XMI
generators, HUTN generators, and Query/View/Transformation tools.

Relationship to Business
Nomenclature in CWM

The relationship between the Business Nomenclature in the Common
Warehouse Metamodel and the ODM will be explored during finalization, in
collaboration with the CWM2 working group.

Table 3 Response to RFP Optional Requirements
Ontology Definition Metamodel 33

6.9 Evaluation Criteria
The following Evaluation Criteria are taken from Section 6.8 of the RFP.

6.10 Proof of Concept
DSTC Pty Ltd. is currently engaged in a seven year research programme into Enterprise Distributed Systems
Technology with major projects devoted to knowledge representation. DSTC Pty Ltd. has extensive experience in the
standardization, implementation and use of MOF, XMI and UML. The DSTC has been developing MOF-based tools
since 1996. DSTC has developed the following prototypes to validate parts of this specification:

• Web-KB is a non-MOF-based implementation of many of the concepts represented in this specification. It is avail-
able for live demonstration on the Internet at www.webkb.org.

• Parts of the model presented in this specification has been implemented using DSTC’s dMOF product (MOF 1.3)
and DSTC’s TokTok product (HUTN 1.0) to validate the expressive power of the model.

IBM has developed the following tools which in part validate portions of this specification:

• IBM Semantics Toolkit is a toolkit for storage, manipulation, query, and inference of ontologies and correspond-
ing instances. It is available for download at http://alphaworks.ibm.com/tech/semanticstk.

• EODM is a tool for manipulation of and inference over OWL ontologies and RDF vocabularies, using EMF-based
Java APIs generated from the OWL and RDFS metamodels. EODM is currently being proposed as an open-
source Eclipse subproject (contact: dtchang@us.ibm.com).

Sandpiper Software has been developing technologies and tools to support UML-based knowledge representation
since 1999. Sandpiper has developed the following products that validate parts of this specification:

• Visual Ontology Modeler (VOM) v1.5 is a UML 1.x/MOF 1.x compliant add-in to IBM Rational Rose, enabling
component-based ontology modeling in UML with support for forward and reverse engineering of OWL ontolo-
gies.

• Next generation support for UML2, MOF2, and ODM compliance for RDFS/OWL and CL ontologies, and a CL
constraint editor are under development, including migration to Eclipse/EMF, IBM Rational Software Architect
(RSA) and IBM Rational Software Modeler (RSM), as well as integration with other UML2-compliant modeling
environments such as No Magic’s MagicDraw tool.

Table 5 Response to RFP Evaluation Criteria

Compactness and clarity The model presented here has been selected to minimise the number of
concepts and relationships within the bounds of achieving a desired level of
expressive power. In modeling, there is always a trade-off between elaborating
more concepts and relationships in a very precise way versus overloading
concepts and using a smaller set in a less precise way (compensating with
constraints or additional natural language semantics).

Extent of mapped regions The mappings between ODM and OWL are provided in Chapter 18. Since the
ODM includes OWL Full, the mapping is complete.

Expressiveness of ODM The CL metamodel presented in this submission has an expressive power
greater than that of OWL. Support for expression of types and statements
across multiple ontologies enables the co-existence of divergent beliefs, but
with support to detect and resolve such divergences.
34 Ontology Definition Metamodel

7 Usage Scenarios and Goals

7.1 Introduction
The usage scenarios presented herein highlight characteristics of ontologies that represent important design
considerations for ontology-based applications. They also motivate some of the features and functions of the ODM
and provide insight into when users can limit the expressivity of their ontologies to a description logics based
approach, as well as when additional expressivity, for example from first order logic, might be needed. This set of
examples is not intended to be exhaustive. Rather, the goal is to provide sufficiently broad coverage of the kinds of
applications the ODM is intended to support so that ODM users can make informed decisions when choosing what
parts of the ODM to implement to meet their development requirements and goals.

This analysis can be compared with a similar analysis performed by the W3C Web Ontology Working Group (W3C
2003). We believe that the six use cases and eight goals considered in W3C (2003) provide additional, and in some
cases overlapping, examples, usage scenarios and goals for the ODM.

7.2 Perspectives
In order to ensure a relatively complete representation of usage scenarios and their associated example applications,
we evaluated the coverage by using a set of perspectives that characterize the domain. Table 6 provides an overview
of these perspectives.

Table 6 Perspectives of Applications that Use Ontologies Considered in this Analysis

Perspective One Extreme Other Extreme

Level of Authoritativeness Least authoritative, broader,
shallowly defined ontologies

Most authoritative, narrower, more deeply
defined ontologies

Source of Structure Passive (Transcendent) – structure
originates outside the system

Active (Immanent) – structure emerges
from data or application

Degree of Formality Informal, or primarily taxonomic Formal, having rigorously defined types,
relations, and theories or axioms

Model Dynamics Read-only, ontologies are static Volatile, ontologies are fluid and
changing.

Instance Dynamics Read-only, resource instances are
static

Volatile, resource instances change
continuously

Control / Degree of
Manageability

Externally focused, public (little or no
control)

Internally focused, private (full control)

Application Changeability Static (with periodic updates) Dynamic

Coupling Loosely-coupled Tightly-coupled

Integration Focus Information integration Application integration

Lifecycle Usage Design Time Run Time
Ontology Definition Metamodel 35

An ontology is a component of the design of a software system, produced as part of a software development process.
The ontology itself is a specification of a conceptualization in some area. Different areas have different sorts of
conceptualizations. They also differ in the costs and benefits associated with different specifications. The perspectives
associated with the conceptualizations and the organization that produce the specifications are called model centric.

On the other hand, the ontology is used in the software development process in different ways. The perspectives that
take account of how the ontology participates in the software development process are called application centric.

7.2.1 Model-Centric Perspectives

The model centric perspectives characterize the ontologies themselves and are concerned with the structure,
formalism and dynamics of the ontologies, they are:

• Level of Authoritativeness

• Source of Structure

• Degree of Formality

• Model Dynamics

• Instance Dynamics

Each of these are discussed, in turn, below.

Level of Authoritativeness

The conceptualization from which an ontology is developed is always produced by someone. If the ontology is
developed by the institution which is responsible for producing the conceptualization, then it is definitive, therefore
highly authoritative. If the ontology is developed by an organization distant from the producing institution, it is
generally not very authoritative.

Highly authoritative ontologies are part of the institutional environment of the organizations which will use them. If
the conceptualization is complex, it often pays to develop the specification in great depth. But the authority of the
responsible institution is limited, so the specification will generally have sharp boundaries, so will be relatively
narrow. Ontologies which are not authoritative are often broad, since the creator can pick the most accessible
concepts from many conceptualizations, but generally not very deep. The creator may not have access to the detail,
or to the current definitive detail. The ontology cannot be relied upon by its users, so will generally not attract the
resources to be developed in great detail.

SNOMED1 is a very large and authoritative ontology. The periodic table of the elements is very authoritative, but
small. However, it can be safely used as a component of larger ontologies in physics or chemistry. Ontologies used
for demonstration or pedagogic purposes, like the Wine Ontology2, are not very authoritative. Table 6 can be seen as
an ontology which at present is not very authoritative. Should the classifications gain wide use in the ontology
community, the ontology in Table 6 would become more authoritative.

Source of Structure

An ontology is a structure eventually implemented in software of some kind. In some cases, the structure is
essentially the rules of the game. It is impossible to interoperate without using the published structure, and there are
no actions which allow the structure to be changed. If the organization responsible for the ontology decides a change

1. http://www.snomed.org
2. http://www.w3.org/2001/sw/WebOnt/guide-src/wine.owl
36 Ontology Definition Metamodel

is needed, it will be made as a software update and published as a new version of the ontology. An ontology that
defines the rules of the game is called transcendent. SNOMED is a transcendent ontology defined by the various
governing bodies of medicine. E-commerce exchanges are generally supported by transcendent ontologies.

On the other hand, the structure can be defined by patterns arising from the data produced by the interoperations,
inferred using applications. This sort of ontology is called immanent. There are many applications where the
ontologies are immanent. For example, consider a news feed. A useful structure to the users of the news feed is the
topics a news item relates to. These topics arise from the news itself. Most changes in the structure of topics are fairly
minor. A new person is elected as the head of government, but the government stays the same, for example. But when
something new happens, the structure of the topics can change radically. The outbreak of a war can do this, as can the
introduction of a new technology like the World-Wide Web or mobile telephones.

The applications extracting the structure from ongoing interoperations are generally statistical, often called some
form of data mining. Besides news they are widely used in customer relationship management (think of the
suggestions Amazon.com makes), search engines, and security applications. An example of the last is the detection of
unusual patterns of credit card activity which may be indicators of fraudulent use.

Degree of Formality

Degree of formality refers to the level of formality of the specification of the conceptualization, ranging from highly
informal or taxonomic in nature, where the ontologies may be tree-like, involving inheritance relations, to semantic
networks, which may include complex subclass/superclass relations but no formal axiom expressions, to ontologies
containing both subclass/superclass relations and highly formal axioms that explicitly define concepts. SNOMED is
taxonomic, as is the Standard Industrial Classification system (SIC) used by the US Department of Labor Statistics,
while engineering ontologies like Gruber and Olsen (1994) are highly formal.

Model Dynamics

All ontologies have structure. It is often necessary to change the structure. If the ontology is transcendent, the
responsible organization may decide to make a change, while if the ontology is immanent, new patterns may arise in
the interoperation data. The question is, how often is the structure changed? One extreme in the model dynamics
dimension is stable or read-only. The ontology rarely changes its structure. The Periodic Table is very stable in its
structure, as are generally the rules to any game. SNOMED is pretty stable, as is the SIC (the SIC is in process of
being replaced by the North American Industry Classification System or NAICS, after 60 years, due to structural
changes in the American economy in that period).

The other extreme in model dynamics is ontologies whose structure is volatile, changing often. An ontology
supporting tax accounting in Australia would be volatile at the model level, since the system of taxation institutional
facts can change, sometimes quite radically, with any Budget.

Instance Dynamics

An ontology is generally specified as a system of classes and properties (the structure) which is populated by
instances (the extents). As with model dynamics, the instances in an ontology can be stable (read-only) or volatile.
The Periodic Table is stable at the instance level (e.g. particular elements) as well as the model level (e.g. classes like
noble gasses or rare earths). New elements are possible but rarely discovered. On the other hand, an ontology
supporting an e-commerce exchange would be volatile at the instance level but possibly not at the model level.
Z39.50 based applications are very stable in their model dynamics, but very volatile in their instance dynamics.
Libraries are continually turning over their collections.

7.2.2 Application-Centric Perspectives

Application centric perspectives are concerned with how applications use and manipulate the ontologies, they are:

• Control / Degree of Manageability
Ontology Definition Metamodel 37

• Application Changeability

• Coupling

• Integration Focus

• Lifecycle Usage

Control / Degree of Manageability

An ontology, like any piece of software, is subject to change. The issue in this dimension is who decides when and
how much change to make. One extreme is when the body responsible for the ontology has sole decision on change
(internally focused). The SIC is internally focused. Change is required because the structure of the US economy has
changed over the years, but the Bureau of Labor Statistics makes the decision as to how to change and when the
change is introduced.

The other extreme is when changes to the ontology are mandated by outside agencies (externally focused). In the US,
ontologies in the finance industry were required to change by the Sarbanes-Oxley Act of 2002, and changes in
ontologies in many areas were mandated by the Patriot Act, passed shortly after the World Trade Center attacks in
2001. An ontology on taxation matters managed by a trade association of accountants is subject to change as the
relevant taxation acts are changed by governments.

Application Changeability

An ontology is eventually implemented in applications. The applications may be developed once, as for an e-
commerce exchange (static). Of course there may be periodic updates. On the other extreme the applications may be
constructed dynamically on the fly (dynamic), as in an application that composes web services at run time. In this
case, the applications available to the end user come and go according to user requests.

Coupling

An ontology is generally implemented many times in many applications. The issue in this dimension is how closely
coupled the applications are to each other. The applications in an e-commerce exchange are tightly coupled to each
other, since they must interoperate at run time. At the other extreme, the applications using the Periodic Table or the
Engineering Mathematics ontology may have nothing in common at run time. They are loosely coupled, solely
because they share a component.

Integration Focus

Some ontologies specify the structure of interoperation but not the content. Z39.50 exclusive of the use attribute sets
is a good example. The MPEG-21 multimedia framework is another example. It specifies the structure of multimedia
objects without regard for their content. This extreme is called application integration, because they can be used to
link programs together so that the output of one is a valid input for the other.

Other ontologies specify content. The ontology may be used to specify the structure of a shared database, so that the
different players can exchange information about shared objects by withdrawing them from the shared database,
updating them, and replacing them in the shared database. This extreme is called information integration.

An application can have both application and information focus.

Lifecycle Usage

An ontology is implemented in application software. In some cases, the application is used in the specification or
design phases of the software life cycle and never again referred to explicitly. Use of the Periodic Table or
Engineering Mathematics ontology in the specification of an engineering or scientific application is an example of
38 Ontology Definition Metamodel

thi plication. In a large e-commerce exchange, the
ex sent to the recipient with a certification, therefore
rel

7.
As ith similar characteristics. Our analysis,
su

al control relative to nearly all users.

ad-only instance data.

pplications their users control them primarily inter-
s extreme. The ontology is used at design time. In other cases, the ontology is used continually in the operation of the ap
change may check every message to see whether it conforms to the ontology and if so, what version. The message is then
ieving the players from having to do the checks themselves. In this case, the ontology is used at run time.

3 Usage Scenarios
 might be expected, some of these perspectives tend to correlate across different applications, forming application areas w
mmarized in Table 7, has identified three major clusters of application types that share some set of perspective values:

• Business Applications are characterized by having transcendent source of structure, a high degree of formality and extern

• Analytic Applications are characterized by highly changeable and flexible ontologies, using large collections of mostly re

• Engineering Applications are characterized by again having transcendent source of structure, but as opposed to business a
nally and they are considered more authoritative.

entric

hange-
ility

atic

atic

atic

ynamic

ynamic

ynamic

hangeable

hangeable
Table 7 Usage Scenario Perspective Values

Use Case Clusters Characteristic Perspective Values

Model Centric Application C

Description Authoritativeness Structure Formalit
y

Model
Dynamics

Instance
Dynamics

Control C
ab

7.4 Business Applications From
Outside

Formal External

7.4.1 Run-time
Interoperation

Least/Broad From
Outside

Formal Read-
Only

Volatile External St

7.4.2 Application Generation Most/Deep From
Outside

Formal Read-
Only

Read-Only External St

7.4.3 Ontology Lifecycle Middle/Broad&
Deep

From
Outside

Semi-
Formal /
Formal

Read-
Only

Read-Only External St

7.5 Analytic Applications Volatile Read-Only D

7.5.1 Emergent Property
Discovery

Broad & Deep From
Inside

Informal Volatile Read-Only Internal
&
External

D

7.5.2 Exchange of Complex
Data Sets

Broad & Deep From
Inside

Informal Volatile Read-
Only/
Volatile

Internal
&
External

D

7.6 Engineering
Application

Broad & Deep From
Outside

Internal

7.6.1 Information System
Development

Broad & Deep From
Outside

Semi-
Formal /
Formal

Read-
Only

Volatile Internal C

7.6.2 Ontology Engineering Broad & Deep From
Outside

Semi-
Formal /
Formal

Volatile Volatile Internal C
40 Ontology Definition Metamodel

7.4 Business Applications

7.4.1 Run Time Interoperation

Externally focused information interoperability applications are typically characterized by strong de-coupling of the
components realizing the applications. They are focused specifically on information rather than application
integration (and here we include some semantic web service applications, which may involve composition of
vocabularies, services and processes but not necessarily APIs or database schemas). Because the community using
them must agree upon the ontologies in advance, their application tends to be static in nature rather than dynamic.

Perspectives that drive characterization of these scenarios include:

• The ontology must be sufficiently authoritative to support the investment.

• Whether the control is external to the community members.

• Whether or not there is a design time component to ontology development and usage

• Whether or not the knowledge bases and information resources that implement the ontologies are modified at run
time (since the source of structure remains relatively unchanged in these cases, or the ontologies are only changed
in a highly controlled, limited manner).

These applications may require mediation middleware that leverages the ontologies and knowledge bases that
implement them, potentially on either side of the firewall – in next generation web services and electronic commerce
architectures as well as in other cross-organizational applications, for example:

• For semantically grounded information interoperability, supporting highly distributed, intra- and inter-organiza-
tional environments with dynamic participation of potential community members, (as when multiple emergency
services organizations come together to address a specific crisis), with diverse and often conflicting organizational
goals.

• For semantically grounded discovery and composition of information and computing resources, including Web
services (applicable in business process integration and grid computing).

In electronic commerce exchange applications based on state-full protocols such as EDI or Z39.50, where there are
multiple players taking roles performing acts by sending and receiving messages whose content refers to a common
world.

In these cases, we envision a number of agents and/or applications interoperating with one another using fully
specified ontologies. Support for query interoperation across multiple, heterogeneous databases is considered a part
of this scenario.

While the requirements for ontologies to support these kinds of applications are extensive, key features include:

• the ability to represent situational concepts, such as player/actor – role – action – object – state,

• the necessity for multiple representations and/or views of the same concepts and relations, and

• separation of concerns, such as separating the vocabularies and semantics relevant to particular interfaces, proto-
cols, processes, and services from the semantics of the domain.

• Service checking that messages commit to the ontology at run time. These communities can have thousands of
autonomous players, so that no player can trust any other to send messages properly committed to the ontology.
Ontology Definition Metamodel 41

7.4.2 Application Generation

A common worldview, universe of discourse, or domain is described by a set of ontologies, providing the context or
situational environment required for use by some set of agents, services, and/or applications. These applications
might be internally focused in very large organizations, such as within a specific hospital with multiple, loosely
coupled clinics, but are more likely multi- or cross-organizational applications. Characteristics include:

• Authoritative environments, with tighter coupling between resources and applications than in cases that are less
authoritative or involve broader domains, though likely on the “looser side” of the overall continuum.

• Ontologies shared among organizations are highly controlled from a standards perspective, but may be specialized
by the individual organizations that use them within agreed parameters.

• The knowledge bases implementing the ontologies are likely to be dynamically modified, augmented at run time
by new metadata, gathered or inferred by the applications using them.

• The ontologies themselves are likely to be deeper and narrower, with a high degree of formality in their definition,
focused on the specific domain of interest or concepts and perspectives related to those domains.

For example:

• Dynamic regulatory compliance and policy administration applications for security, logistics, manufacturing,
financial services, or other industries.

• Applications that support sharing clinical observation, test results, medical imagery, prescription and non-pre-
scription drug information (with resolution support for interaction), relevant insurance coverage information, and
so forth across clinical environments, enabling true continuity of patient care.

Requirements:

• The ontologies used by the applications may be fully specified where they interoperate with external organizations
and components, but not necessarily fully specified where the interaction is internal.

• Conceptual knowledge representing priorities and precedence operations, time and temporal relevance, bulk
domains where individuals don’t make sense, rich manufacturing processes, and other complex notions may be
required, depending on the domain and application requirements.

7.4.3 Ontology Lifecycle

In this scenario we are concerned with activity, which has as its principle objectives conceptual knowledge analysis,
capture, representation, and maintenance. Ontology repositories should be able to support rich ontologies suitable for
use in knowledge-based applications, intelligent agents, and semantic web services. Examples include:

• Maintenance, storage and archiving of ontologies for legal, administrative and historical purposes,

• Test suite generation, and

• Audits and controllability analysis.

Ontological information will be included in a standard repository for management, storage and archiving. This may
be to satisfy legal or operations requirements to maintain version histories.

These types of applications require that Knowledge Engineers interact with Subject Matter Experts to collect
knowledge to be captured. UML models provide a visual representation of ontologies facilitating interaction. The
existence of meta-data standards, such as XMI and ODM, will support the development of tools specifically for
Quality Assurance Engineers and Repository Librarians.

Requirements implications:
42 Ontology Definition Metamodel

• Full life-cycle support will be needed to provide managed and controlled progression from analysis, through
design, implementation, test and deployment, continuing on through the supported systems maintenance period.

• Part of the lifecycle of ontologies must include collaboration with development teams and their tools, specifically
in this case configuration and requirements management tools. Ideally, any ontology management tool will also be
ontology aware.

• It will provide an inherent quality assurance capability by providing consistency checking and validation.

• It will also provide mappings and similarity analysis support to integrate multiple internal and external ontologies
into a federated web.

7.5 Analytic Applications

7.5.1 Emergent Property Discovery

By this we mean applications that analyze, observe, learn from and evolve as a result of, or manage other applications
and environments. The ontologies required to support such applications include ontologies that express properties of
these external applications or the resources they use. The environments may or may not be authoritative; the
ontologies they use may be specific to the application or may be standard or utility ontologies used by a broader
community. The knowledge bases that implement the ontologies are likely to be dynamically augmented with
metadata gathered as a part of the work performed by these applications. External information resources and
applications are accessed in a read-only mode.

• Semantically grounded knowledge discovery and analysis (e.g., financial, market research, intelligence opera-
tions)

• Semantics assisted search of data stored in databases or content stored on the Web (e.g., using domain ontologies
to assist database search, using linguistic ontologies to assist Web content search)

• Semantically assisted systems, network, and / or applications management.

• Conflict discovery and prediction in information resources for self-service and manned support operations (e.g.,
technology call center operations, clinical response centers, drug interaction)

What these have in common is that the ontology is typically not directly expressed in the data of interest, but
represents theories about the processes generating the data or emergent properties of the data. Requirements include
representation of the objects in the ontology as rules, predicates, queries or patterns in the underlying primary data.

7.5.2 Exchange of Complex Data Sets

Applications in this class are primarily interested in the exchange of complex (multi-media) data in scientific,
engineering or other cooperative work. The ontologies are typically used to describe the often complex multimedia
containers for data, but typically not the contents or interpretation of the data, which is often either at issue or
proprietary to particular players. (The OMG standards development process is an example of this kind of
application.)

Here the ontology functions more like a rich type system. It would often be combined with ontologies of other kinds
(for example an ontology of radiological images might be linked to SNOMED for medical records and insurance
reimbursement purposes).

Requirements include

• Representation of complex objects (aggregations of parts)

• Multiple inheritance where each semantic dimension or facet can have complex structure.
Ontology Definition Metamodel 43

• Tools to assemble and disassemble complex sets of scientific and multi-media data.

• Facilities for mapping ontologies to create a cross reference. These do not need to be at the same level of granular-
ity. For the purposes of information exchange, the lower levels of two ontologies may be mapped to a higher level
common abstraction of a third, creating a sort of index.

7.6 Engineering Applications
The requirements for ontology development environments need to consider both externally and internally focused
applications, as externally focused but authoritative environments may require collaborative ontology development.

7.6.1 Information Systems Development

The kinds of applications considered here are those that use ontologies and knowledge bases to support enterprise
systems design and interoperation. They may include:

• methodology and tooling, where an application actually composes various components and/or creates software to
implement a world that is described by one or more component ontologies.

• Semantic integration of heterogeneous data sources and applications (involving diverse types of data schema for-
mats and structures, applicable in information integration, data warehousing and enterprise application integra-
tion).

• Application development for knowledge based systems, in general.

In the case of model-based applications, extent-descriptive predicates are needed to provide enough meta-information
to exercise design options in the generated software (e.g., describing class size, probability of realization of optional
classes). An example paradigm might reflect how an SQL query optimizer uses system catalog information to
generate a query plan to satisfy the specification provided by an SQL query. Similar sorts of predicates are needed to
represent quality-type meta-attributes in semantic web type applications (comprehensiveness, authoritativeness,
currency).

7.6.2 Ontology Engineering

Applications in this class are intended for use by an information systems development team, for utilization in the
development and exploitation of ontologies that make implicit design artifacts explicit, such as ontologies
representing process or service vocabularies relevant to some set of components. Examples include:

• Tools for ontology analysis, visualization, and interface generation.

• Reverse engineering and design recovery applications.

The ontologies are used throughout the enterprise system development life cycle process to augment and enhance the
target system as well as to support validation and maintenance. Such ontologies should be complementary to and
augment other UML modeling artifacts developed as part of the enterprise software development process. Knowledge
engineering requirements may include some ontology development for traditional domain, process, or service
ontologies, but may also include:

• Generation of standard ontology descriptions (e.g., OWL) from UML models.

• Generation of UML models from standard ontology descriptions (e.g., OWL).

• Integration of standard ontology descriptions (e.g., OWL) with UML models.

Key requirements for ontology development environments supporting such activities include:

• Collaborative development
44 Ontology Definition Metamodel

• Concurrent access and ontology sharing capabilities, including configuration management and version control of
ontologies in conjunction with other software models and artifacts at the atomic level within a given ontology,
including deprecated and deleted ontology elements

• Forward and reverse engineering of ontologies throughout all phases of the software development lifecycle

• Ease of use, with as much transparency with respect to the knowledge engineering details as possible from the
user perspective

• Interoperation with other tools in the software development environment; integrated development environments

• Localization support

• Cross-language support (ontology languages as opposed to natural or software languages, such as generation of
ontologies in the RDF(S)/OWL family of description logics languages, or in the Knowledge Interchange Format
(KIF) where first or higher order logics are required)

• Support for ontology analysis, including deductive closure; ontology comparison, merging, alignment and trans-
formation

• Support for import/reverse engineering of RDBMS schemas, XML schemas and other semi-structured resources
as a basis for ontology development

7.7 Goals for Generic Ontologies and Tools
The diversity of the usage scenarios illustrates the wide applicability of ontologies within many domains. Table 8
brings these requirements together. To address all of these requirements would be an enormous task, beyond the
capacity of the ODM development team. The team is therefore concentrating on the most widely applicable and most
readily achievable goals. The resulting ODM will be not a final solution to the problem, but will be intended as a
solid start which will be refined as experience accumulates.

Table 8 Summary of Requirements

Requirement Section

Structural features

Support ontologies expressed in existing description logic, (e.g. OWL/DL) and higher
order logic languages (e.g. OWL Full and KIF), as well as emerging and new
formalisms.

7.4.2
7.5.1
7.6.2

Represent complex objects as aggregations of parts 7.5.2

Multiple inheritance of complex types 7.5.2

Separation of concerns 7.4.1

Full or partial specification 7.4.2

Model-based architectures require extent-descriptive predicates to provide a description
of a resource in an ontology, then generating a specific instantiation of that resource.

7.6.1

Efficient mechanisms will be needed to represent large numbers of similar classes or
instances.

7.4.1

Generic content

Support physical world concepts, including time, space, bulk or mass nouns like ‘water’,
and things that do not have identifiable instances.

7.4.2
Ontology Definition Metamodel 45

The table classifies the requirements into

• structural features – knowledge representation requirements

• generic content – aspects of the world common to many applications

• run-time tools – use of the ontology during interoperation

• design-time tools – needed for the design of ontologies

Associated with each requirement are the usage scenario from which it mainly arises.

Support object concepts that have multiple facets of representations, e.g., conceptual
versus representational classes.

7.4.1

Provide a basis for describing stateful representations, such as finite state automaton to
support an autonomous agent’s world representation.

7.4.1

Provide a basis for information systems process descriptions to support interoperability,
including such concepts as player, role, action, and object.

7.4.1

Other generic concepts supporting particular kinds of domains 7.4.2

Run-time tools

Tools to assemble and disassemble complex sets of scientific and multi-media data. 7.5.2

Service to check message commitment to ontology 7.4.1

Design-time tools

Full life-cycle support 7.4.3
7.6.2

Support for collaborative teams 7.4.3
7.6.2

Ease of use, transparency with respect to details 7.6.2

Support for modules and version control. 7.4.3

Consistency checking and validation, deductive closure 7.4.3
7.6.2

Mappings and similarity analysis 7.4.3
7.5.2
7.6.2

Interoperation with other tools, forward and reverse engineering 7.6.2

Localization support 7.6.2

Table 8 Summary of Requirements
46 Ontology Definition Metamodel

8 Design Rationale

8.1 Design Principles
The ODM uses the design principles, such as modularity, layering, partitioning, extensibility and reuse, that are
articulated in the UML Infrastructure document [UML Infra].

8.2 Why Not Simply Use or Extend the UML 2.0 Metamodel?
An ontology is a conceptual model, and shares characteristics with more traditional data models. The UML Class
Diagram is a rich representation system, widely used, and well-supported with software tools. Why not simply use
UML for representing ontologies?

OWL concepts, particularly those of OWL DL, represent an implementation of a subset of traditional first order logic
called Description Logics (DL), and are largely focused on sets and mappings between sets in order to support
efficient, automated inference. UML class diagrams are also based in set semantics, but these semantics are not as
complete; additionally, in UML, not as much care is taken to ensure the semantics are followed sufficiently for the
purposes of automatic inference. This can potentially be rectified with OCL, which is part of UML 2.0. The issues
can be categorized by cases where UML is overly restrictive, not restrictive enough, or simply doesn't provide the
explicit construct necessary. For example:

• UML disjointedness requires disjoint classes to have a common super-type, which is not the case in OWL (aside
from the fact that all OWL classes are ultimately subclasses of owl:Thing, and similarly that all classes in RDF
Schema are resources).

• To model set intersection in UML one might consider using multiple inheritance, but this still allows an instance
of both super-classes to be omitted from the subclass, which is not permitted in OWL.

• There is no UML construct for set complement.

The lack of reliable set semantics and model theory for UML prevents the use of automated reasoners on UML
models. Such a capability is important to applying Model Drive Architecture to systems integration. A reasoner can
automatically determine if two models are compatible, assuming they have a rigorous semantics and axioms are
defined to relate concepts in the various systems.

Another distinction is in the ability to fully specify individuals apart from classes, and for individuals to have properties
independently of any class they might be an instance of in OWL. In this regard, UML shows it software heritage, in
which it is not possible for an instance to exist without a class to define its structure, a characteristic that derives from
classes used as abstractions of memory layout. It is not hard to work around this using singleton classes as proposed
in the profile, but for methodologies that start with instances and derive classes from them, this is clutter obviously
introduced from a practice in which the reverse is the norm.

In OWL Full, it is also common to reify individuals as classes. OWL Full allows classes to have instances which are
themselves classes or properties; classes and properties can be the domains of other properties. Elements of an ontology
frequently cross meta-levels, and may represent the equivalent of multiple meta-levels depending on the domain,
application, usage model, and so forth. Ontologists frequently want to see a combination of these classes and
individuals on the same diagram, and find it unnatural if they cannot. Many software languages reify classes, but
UML has been only half-hearted in supporting this mechanism. One can also work around this, however, as shown in
the profile. The four-layer meta level architecture that UML resides in does not restrict class reification, even though
it is often confused with reification. Classes and instances can reside on a single level of the architecture, at least if
UML is used to describe that layer.
Ontology Definition Metamodel 47

Additionally, while some claim that UML would need to support properties independently of classes to be used in the
OWL style, this is not actually the case. In fact, independent properties in OWL are semantically equivalent to
properties on owl:Thing, which is directly translatable to UML using a model library, corresponding to the one
proposed in the Foundation Ontology given in Appendix A. OWL does not require the use of owl:Thing for
properties without defined domains, but this is really just syntactic sugar. Note that the same is true when RDF
vocabularies are developed without using any OWL constructs; for the purposes of this specification, the model
library should be used in either case.

The above problems could potentially be addressed in a revision of UML. However, the RFP to which this
submission is responding did not call for that.

8.3 Component Metamodel Selection
A trigger for the call for development of an ODM was the development by the World-Wide Web Consortium of a set
of languages that form the foundation of the Semantic Web, including the Resource Description Framework (RDF),
RDF Schema, and the Web Ontology Language (OWL). In addition, there have been many other ontology language
development efforts, including International Standards Organization (ISO) projects for Topic Maps and Common
Logic (CL). Topic Maps is a metalanguage designed to express the “aboutness” of an information structure with key
model elements topic and association. Common Logic represents a family of knowledge representation languages.
Common Logic, or CL, is a first order logic, analogous to predicate calculus, and is the successor to KIF (Knowledge
Interchange Format). Both Topic Maps and CL have XML serializations, and were designed to express semantics for
knowledge exchanged over the World Wide Web. These languages overlap with some parts of OWL as might be
expected, but are used for different purposes and have different or no requirements for automated reasoning. CL is
more expressive than OWL, and is better suited to applications involving declarative representation of rules and
formulas, for example.

As an initial part of the ODM development process, the team determined that understanding the requirements for
ontology development using ODM metamodels was essential to establishing the ODM architecture and selecting an
appropriate set of languages to be incorporated in the specification. The results of this requirements analysis are
summarized in Chapter 7, Usage Scenarios and Goals. The set of languages represented, the architecture, and
potential extensions currently envisioned developed as a direct consequence of this effort. This includes the notion
that organizations developing ontologies may need to leverage pre-existing data and process models represented in
UML, Entity-Relationship (ER), or another modeling language, even if the development effort itself is conducted
using an ODM metamodel. For some possible extensions to better support some classes of ontologies, see
Appendix C, Extending the ODM.

A significant exception is immanent ontologies, whose structure is derived from the information being exchanged as
distinguished from transcendent ontologies, whose structure is provided a priori by schemas and the like. News feeds,
results of data mining, and intelligence applications are examples of immanent ontologies, while e-commerce
exchanges, engineering applications, and controlled vocabularies generally are transcendent. Immanent ontologies are
represented by at least collections of terms, but often also by some numeric representation of the relationship among
terms: co-occurrence matrices, conditional probabilities of co-occurrence, and eigenvectors of co-occurrence
matrices, for example. These kinds of applications have not attracted the development of standardized representation
structures as have transcendent ontologies. The ODM team considered that it was outside the scope of the RFP to
innovate in areas such as immanent ontology development without existing standard representations.
48 Ontology Definition Metamodel

8.4 Relationships among Metamodels

8.4.1 The Need for Translation

The various metamodels in the ODM are treated equally, in that they are generally independent of each other. It is not
necessary to understand or be aware of the others to understand any one in particular. The one exception to this is that
the metamodel for OWL extends the metamodel for RDF/S, as the OWL language itself extends the RDF/S language.

However, in an ontology development project it might be necessary to use several of the metamodels, and to
represent a given fragment of an ontology component in more than one. For example, consider a large e-commerce
exchange project. The developers might choose to represent the ontology specifying the shared world governing the
exchange in OWL. But the exchange might have evolved from a single large company’s electronic procurement
system (as was the case for example with the General Electric Global Exchange Service [GE]). The original
procurement system might have been designed using UML, so that it would be a significant saving in development
cost to be able to translate the UML specification to OWL as a starting point for development of the ontology.

Once such an exchange is operating, it may have thousands of members, each of which will have its own information
system performing a variety of tasks in addition to interoperating through the exchange. These systems are all
autonomous, and the exchange has no interest in how they generate and interpret the messages they use to
interoperate so long as they commit to the ontology. Let us assume that the various members have systems with data
models in UML or dialects of the ER model. A given member will need to subscribe to at least a fragment of the
ontology and make sure its internal data model conforms to the fragment. It would therefore be an advantage to be
able to translate a fragment of the ontology to UML or ER to facilitate the member making any changes to its internal
operations necessary for it to commit to the ontology. Alternatively, a member might have a large investment in UML
and would like the development to leverage UML experience and UML tools to make at least a first approximation
to alignment with the OWL model.

It is extremely important for those leveraging existing artifacts for ontology development to understand that "what
makes a good object-oriented software component model" does not necessarily make a good ontology. Once a
particular UML or ER model has been translated to RDFS/OWL, for example, care needs to be taken to ensure that
the resultant model will result in the desired assertions in a knowledge base. Significant restructuring is often
required, in other words.

The ODM therefore needs to provide facilities for making relationships among instances of its metamodels, including
UML. There are two ways to accomplish this: UML profiles and mappings.

8.4.2 UML Profiles

The goal of a UML profile from the ODM perspective is to provide a bridge between the UML and knowledge
representation communities on a well-grounded, semantic basis, with a broader goal of relating software and logical
approaches to representing information. Profiles facilitate implementation using common notation on existing UML
tools. They support renaming and specializing UML model elements in consistent ways, so that an instance of a UML
model can be seen as an extended metamodel. Profiles allow a developer to leverage UML experience and tools
while moving to integrating with an ontology represented in another metamodel.

We have provided such profiles for the Topic Maps, RDFS and OWL metamodels, as one of the primary goals that
emerged from our use case development work was to enable use of existing UML tools for ontology modeling. The
profiles provided in Chapter 16, UML Profiles for RDF Schema and OWL, and in Chapter 17, The Topic Map
Profile, were designed specifically for use in UML 2.0 tools. A profile for Common Logic is under consideration as
an extension to this specification, as potential applications for its use in business semantics and production rules
applications were identified late in the specification development process.
Ontology Definition Metamodel 49

8.4.3 Mappings

Working with multiple metamodels will often require a model element by model element translation of model
instances from one metamodel to another. We have seen that UML profiling has limited capability in representing
ODM metamodels in UML. We therefore need to specify mappings from one metamodel to another.

There is a parallel RFP in the OMG called QVT (Query/View/Transform) which will provide a standardized MOF-
based platform for mapping instances of MOF metamodels from one metamodel to another [QVT]. Although the
QVT specification is not yet final, it appears to be sufficiently mature that we have used it to define the mappings in
the ODM.

Translation between metamodels has the fundamental problem that there may not be a single and separate model
element in the target corresponding to each model element in the source (indeed, if the metamodels are not simply
syntactic variations, this would be the normal situation). We will call this situation structure loss. Some of the issues
involved with structure loss and what to do about it using one of the earlier QVT proposals are discussed in
[MSDW].

An overview of the mapping strategy used in the ODM is illustrated in Chapter 9. Note that there are mappings from
each metamodel to and from OWL Full, except for Common Logic (CL) for which there is only a mapping from
OWL Full. A lossy, reverse mapping defined in QVT from CL to OWL, and bi-directional mappings between UML
and CL are planned, and will be added either during finalization or through an RFP/RFC process.

8.4.4 Mappings Are Informative, Not Normative

The RFP (Section 6.2) calls for a language mapping from the ODM to OWL. In chapter 9, The ODM is shown as
having metamodels for several languages (RDFS/OWL, Topic Maps, Common Logic and Entity-Relationship
Models) tied together by mappings to and from OWL (including UML to and from OWL). Common Logic is the
exception, with mappings from OWL to CL only.

An argument for the infeasibility of normative mappings is presented in Appendix M. In a nutshell, the mappings the
ODM can provide are very general. Due to the very different scope and structure of the systems metamodeled,
mappings based solely on the general structure of the languages will often lead to less than ideal choices for mapping
some structures. Any particular mapping project will have additional constraints arising from the structure of the
particular models to be mapped and the purposes of the project, so will very likely make different mapping choices
than those in the ODM. An industry of consultants will likely arise, adding value by exactly this activity. They can
use the ODM mappings as a takeoff point, and as an aid to understanding the comparative model structure, so the
ODM mappings have value as informative, but not as normative.

8.5 Why Common Logic over OCL?
Common Logic (CL) is qualitatively different from some of the other metamodels in that it represents a dialect of
traditional first order logic, rather than a modeling language. UML already supports a constraint (rule) language,
which includes similar logic features, OCL [OCL], so why not use it?

The short answer to that question is that the ODM does include OCL in the same way it includes UML.
Unfortunately, just as UML lacks a formal model theoretic semantics, OCL also has neither a formal model theory
nor a formal proof theory, and thus cannot be used for automated reasoning (today). Common Logic, on the other
hand, has both, and therefore can be used either as an expression language for ontology definition or as an ontology
development language in its own right.
50 Ontology Definition Metamodel

CL represents work that has been ongoing in the knowledge representation and logic community for a number of
years. It is a second-generation language intended to have an extremely concise kernel for efficient reasoning, has a
surface syntax for use with Semantic Web applications, and is rooted in the Knowledge Interchange Format (KIF
Reference Manual v3.0 was published in 1992) as well as in other knowledge representation formalisms. It is also a
committee draft standard (24707) in JTC 1 / SC32 of the ISO/IEC standards community.

Our original work with regard to the metamodel was done with active participation of the CL language authors, and
sought to be true to the abstract syntax of the CL language to the extent possible. Our intent was to enable ontologies
developed using the ODM to be operated on by DL and CL reasoners downstream. There are a number of such
reasoners available today, including FaCT, Racer, Cerebra, and others from the DL community, as well as KIF-based
reasoners such as Stanford's Java Theorem Prover (JTP), OntologyWorks, and so forth, which ODM users can
leverage for model consistency checking, model validation, and for applications development.

Finally, given that the ODM includes mappings among the metamodels for the modeling languages, why not include
mappings between OCL and CL? Such a mapping should in principle be possible, but both languages are very rich.
A mapping between them must deal with concerns about issues related to unintended semantics, the ability to write
complex expressions involving multiple variables that preserve quantifier scope, and so forth. These issues are very
important from a reasoning perspective, and thus our approach needs to be well developed and tested using both OCL
and CL reasoners if we are to go down that path. This represents a longer term activity that may be taken up in the
Ontology PSIG if there is sufficient commercial interest in doing so.

8.6 Why EMOF?
The RFP called for a MOF 2 metamodel for the ODM. MOF 2 has two flavors, EMOF (Essential MOF) and CMOF
(Complete MOF), with EMOF being equivalent to a subset of CMOF. We have used EMOF for the ODM for two
reasons:

• The advantage of using EMOF is that the modeling tools available during ODM development, such as IBM Ratio-
nal Rose, support EMOF (or close to it) but not CMOF. It was therefore possible to use such tools to define ODM
metamodels. At present, the newness of CMOF means that CMOF facilities are not supported by most tools.
Therefore use of CMOF facilities imposes a significant burden.

• The ODM metamodels can be represented in EMOF without sacrificing major syntactic or semantic consider-
ations.

On the other hand, some of the possible extensions discussed in Appendix C do require CMOF facilities. Use of
EMOF in the development of the ODM does not preclude extensions to CMOF as might be advantageous, and as the
tools evolve to support it.

8.7 M1 Issues
The ODM team encountered some issues in developing MOF-based metamodels for the W3C languages RDF, RDFS
and OWL, and to a lesser extent the ISO language Topic Maps. A MOF-based metamodel has a strict separation of
meta-levels. The number and designation of meta-levels is changed in MOF2 from MOF 1.4, but the issue can be
described in the MOF1.4 designations:

• M3 – the MOF

• M2 – a MOF class model, specifying the classes and associations of the system being modeled, the structure of
OWL for example.

• M1 – an instance of an M2 model, describing a particular instance of the system being modeled, a particular OWL
ontology, for example.

• M0 – ground individuals. A population of instances of the classes in a particular OWL ontology, for example.
Ontology Definition Metamodel 51

RDFS and OWL are defined as specializations of RDF. RDF has natively a very simple model. There are resources
and properties. The entire structure of RDF, RDFS and OWL is defined in terms of instances of resources, properties,
and other structures like classes, which are defined in terms of built-in resources and properties. In fact, even
property is formally defined as an instance of resource, and resource (the set of resources) is itself an instance of
resource. These languages are self-referential in a way that a native MOF metamodel could never be.

The same is true to a lesser degree of Topic Maps. Although the ISO standard provides a Topic Map Data Model,
some important constructs like class and subclass are defined as published subjects, which are instances of topics.
Topics are defined at the M2 level, so published subjects are M1 objects.

The Topic Maps metamodel in the ODM deals with the M1 problem by having an M2 structure following the
published Topic Map Data Model, with a note detailing the built-in M1 published subjects, but this approach does not
suit the W3C languages. In the ODM we have modeled RDF, RDF Schema, and OWL at the M2 level, following the
published abstract syntax for them. Certain built-in RDF/S and OWL constructs have relevance at multiple MOF
meta-levels. Some of these, such as annotation properties including rdfs:seeAlso, are included as M2 elements in the
RDFS Metamodel; others, such as ontology properties including owl:priorVersion, are included as M2 elements in the
OWL Metamodel.

Some important constructs, however, are not appropriate to model at all at the M2 level. These are provided in an
ontology as an M1 model library (given in Appendix A, Foundation Ontology (M1) for RDFS and OWL), and
include:

• Two built-in classes - owl:Thing and owl:Nothing

• The built-in empty list - rdf:Nil

• The set of XML Schema datatypes that are supported in RDF/S and OWL - xsd:string, xsd:boolean, xsd:decimal,
xsd:float, xsd:double, xsd:dateTime, xsd:time, xsd:date, xsd:gYearMonth, xsd:gYear, xsd:gMonthDay, xsd:gDay,
xsd:gMonth, xsd:hexBinary, xsd:base64Binary, xsd:anyURI, xsd:normalizedString, xsd:token, xsd:language,
xsd:NMTOKEN, xsd:Name, xsd:NCName, xsd:integer, xsd:nonPositiveInteger, xsd:negativeInteger, xsd:long,
xsd:int, xsd:short, xsd:byte, xsd:nonNegativeInteger, xsd:unsignedLong, xsd:unsignedInt, xsd:unsignedShort,
xsd:unsignedByte and xsd:positiveInteger
52 Ontology Definition Metamodel

9 ODM Overview
As introduced briefly in the RFP [ODM RFP], ontology is a discipline rooted in philosophy and formal logic, introduced
by the Artificial Intelligence community in the early to mid-80s to describe real world concepts that are independent of
specific applications. Over the past two decades, knowledge representation methodologies and technologies have subse-
quently been used in other branches of computing where there is a need to represent and share contextual knowledge inde-
pendently of applications.

The following definition was adopted from the RFP:

An ontology defines the common terms and concepts (meaning) used to describe and represent an area
of knowledge. An ontology can range in expressivity from a Taxonomy (knowledge with minimal hier-
archy or a parent/child structure), to a Thesaurus (words and synonyms), to a Conceptual Model (with
more complex knowledge), to a Logical Theory (with very rich, complex, consistent and meaningful
knowledge).

This definition, and the analysis presented in Chapter 7, led to the determination that the ODM would ultimately include
six metamodels (five that are normative, and one that is informative). These are grouped logically together according to
the nature of the representation formalism that each represents: formal first order and description logics, structural and
subsumption / descriptive representations, and traditional conceptual or object-oriented software modeling.

At the core are two metamodels that represent formal logic languages: DL (Description Logics, which, although it is non-
normative, is included as informative for those unfamiliar with description logics, [BCMNP]) and CL (Common Logic,
[ISO 24707]), a declarative first-order predicate language. While the heritage of these languages is distinct, together they
cover a broad range of representations that lie on a continuum ranging from higher order, modal, probabilistic and inten-
tional representations to very simple taxonomic expression.

There are three metamodels that represent more structural or descriptive representations that are somewhat less expressive
in nature than CL and some DLs. These include metamodels of the abstract syntax for RDFS [RDF Schema], OWL
[OWL Reference; OWL S&AS], and TM (Topic Maps, [TMDM]). RDFS, OWL and TM are commonly used in the
semantic web community for describing vocabularies, ontologies and topics, respectively.

Two additional metamodels considered essential to the ODM represent more traditional, software engineering approaches
to conceptual modeling: UML2 [UML2, UML Infra] and ER (Entity Relationship) diagramming. UML and ER methodol-
ogies are the two most widely used modeling languages in software engineering today, particularly for conceptual or log-
ical modeling. Interoperability with and use of intellectual capital developed in these languages as a basis for ontology
development and further refinement is a key goal of the ODM. Since UML2 is an adopted OMG standard, we simply ref-
erence it in the ODM.

Three UML profiles have been identified for use with the ODM: UML4RDFS, UML4OWL and UML4TM. These enable
the use of UML notation (and tools) for ontology modeling and facilitate generation of corresponding ontology descrip-
tions in RDFS, OWL and TM, respectively.

In addition, in order to support the use of legacy models as a starting point for ontology development, and to enable ODM
users to make design trade-offs in expressivity based on application requirements, mappings among a number of the meta-
models are provided. As discussed in Section 8.4.3, these mappings are expressed in the MOF QVT Relations Language.
To avoid an n-squared set of mappings, the ODM includes direct mappings to and from OWL for UML, ER and Topic
Ontology Definition Metamodel 53

Maps.

CL is an exception to this strategy. CL is much more expressive than the other metamodels, and is therefore much more
difficult to map into the other metamodels. CL can be used to define constraints and predicates that cannot be expressed
(or are difficult to express) in the other metamodels. Some predicates might be specified in a primary metamodel, for
example, in OWL, and refined or further constrained in CL. The relevant elements of the M1 model expressed in the pri-
mary metamodel will be mapped into CL. Thus, uni-directional mappings (to CL), only, are included or planned at this
time.

Figure 1 shows the organization of the metamodels, with the current and intended mapping components indicated, with
RDFS and OWL grouped, as shown, for mapping purposes.

Figure 1 ODM Metamodels: Structure and Mappings

TM
<<metamodel>>

DL
<<metamodel>>

ER
<<metamodel>>

SCL
<<metamodel>>

RDFS
<<metamodel>>

OWL
<<metamodel>>

Ontology Definition Metamodel

Completed/Included Mapping Planned Mapping

UML
<<metamodel>>

(nonnormative)

CL
<<metamodel >>

TM
<<metamodel>>

DL
<<metamodel>>

ER
<<metamodel>>

SCL
<<metamodel>>

RDFS
<<metamodel>>

OWL
<<metamodel>>

Ontology Definition Metamodel

Completed/Included Mapping Planned Mapping

UML
<<metamodel>>

(nonnormative)

CL
<<metamodel >>
54 Ontology Definition Metamodel

10 The UML2 Metamodel

10.1 Introduction
This chapter is intended to show how UML compares with the mandated ontology representation language OWL,
partly to motivate the development of the ODM as opposed to a blanket recommendation that people use UML for
ontology representation. It compares the features of OWL Full (as summarized in OWL Web Ontology Language
Overview [OWL OV]) with the features of UML 2.0 [UML2]. It first looks at the features the two have in common,
although sometimes represented differently, then the features in one but not the other. Little attempt is made to
distinguish the features of OWL Lite or OWL DL from those of OWL Full. This overview ignores secondary features
such as headers, comments and version control. In the features in common, a sketch is given of the translation from
a model expressed in UML to an OWL expression. In several cases, there are alternative ways to translate UML
constructs to OWL constructs. This chapter selects a particular way in each case, but the translation is not intended to
be normative. In particular applications other choices may be preferable.

The possible translation of OWL to UML is not considered in this chapter, but is covered in Chapter 18.

UML models are organized in a series of metalevels: M3, M2, M1 and M0, as follows:

• M3 is the MOF, the universal modeling language in which modeling systems are specified.

• M2 is the model of a particular modeling system. The UML metamodel is an M2 construct, as it is specified in the
M3 MOF.

• M1 is the model of a particular application represented in a particular modeling system. The UML Class diagram
model of an order entry system is an M1 construct expressed in the M2 metamodel for the UML Class diagram.

• M0 is the population of a particular application. The population of a particular order entry system at a particular
time is an M0 construct.

10.2 Features in Common (More or Less)

10.2.1 UML Kernel

Figure 2 Key Aspects of UML Class Diagram

 memberEnd

 ownedEnd

 specific

 general

 Class

Property

 Association

 ownedAttribute
 * *

 0..1 0..1

 2..*

 0..1

 Abstracted from UML Superstructure [UML2] Figure 12, Section 7.2 page 29

 Type Classifier generalization

 type 0..1
Ontology Definition Metamodel 55

The structure of UML is formally quite different from OWL. What we are trying to do is to understand the
relationship between an M1/M0 model in UML and the equivalent model in OWL, so we need to understand how the
M1 model is represented in the M2 structure shown. First, a few observations from Figure 2.

• Most of the content of a UML model is in the M1 specification. The M0 model can be anything that meets the
specification of the M1 model.

• There is no direct linkage between Association and Class. The linkage is mediated by Property.

• A Property is a structural feature (not shown), which is typed. The M1 model is built from structural features.

• Both Class and Association are types.

• A class can have a property which is the structural feature that implements it.

• A property may or may not be owned by one or more classes. A property owned by at least one class is called nav-
igable3. A property owned by no class is called not navigable4. Associations can have navigable ends.

It will help if we represent a simple M1 model in this structure (Figure 3).

Figure 3 Simple M1 Model

The properties with their types are:

The classes are: Course, Student.

3. Called a member end in the Classes diagram of the UML superstructure
4. Called an owned end in the Classes diagram of the UML superstructure

Table 9 Properties and Types in Simple Model

Property Type

code CourseIdentifier

description string

NumEnrolled integer

ID StudentIdentifier

name string

 Course
 code
 description

NumEnrolled

 Student
 ID
 name

 enrolled
56 Ontology Definition Metamodel

Classes are represented by sets of ownedAttribute properties:

Associations are: enrolled

The association can be modeled in a number of different ways, depending on how classes are implemented. If classes
are implemented as in Table 10, one way is as the disjoint union of the owned attributes of the two classes.

But there are other ways to implement a class. If it is known that the property code identifies instances of Course and
that the property ID identifies instances of Student, then an alternative implementation of enrolled is:

In this case, the properties code and ID would be of type Course and Student respectively.

10.2.2 Class and Property - Basics
Both OWL and UML are based on classes. A class in OWL is a set of instances. A class in UML is a more general
construct, but one of its uses is as a set of instances. The set of instances associated at a particular time with a class
is called the class’ extent. There are subtle differences between OWL classes and UML classes which represent sets.

In UML the extent of a class is an M0 object consisting of instances. (Instances may be specified at the M1 level in
a model library, but they are equivalent to M0 objects.) An instance consists of a set of slots each of which contains
a value drawn from the type of the property of the slot. The instance is associated with one or more classifiers. An
instance of the class Course might be:

But the M0 implementation of a class is not fully constrained. An equally valid instance of Course would be the
name INFS3101, if it were decided that the name would identify an instance of the class. The remainder of the slots
could be filled dynamically from other properties of the class.

In OWL, the extent of a class is a set of individuals, which are concretely represented. Individual is defined
independently of classes. There is a universal class Thing whose extent is all individuals in a given OWL model, and
all classes are subclasses of Thing. The main difference between UML and OWL in respect of instances is that in

Table 10 Classes and Owned Properties in Simple Model

Class ownedAttribute Properties

Course code, description, NumEnrolled

Student ID, name

Table 11 Implementation of Association in Simple Model

Association Implementation

enrolled code, description, NumEnrolled, ID, name

Table 12 Alternative Implementation of Association in Simple Model

Association Implementation

enrolled code, ID

Table 13 Example Course Instance

Classifier code title NumEnrolled

Course INFS3101 Ontology and the Semantic Web 0
Ontology Definition Metamodel 57

OWL an individual may be an instance of Thing and not necessarily any other class, so could be outside the system
in a UML model. It is of course possible to include a universal class in an M1 model library, but this would be
sufficiently unusual to be problematic, whereas the concept is central to OWL.

An OWL class is declared by assigning a name to the relevant type. For example

<owl:Class rdf:ID=”Course”/>

An individual is at bottom an RDFS resource, which is essentially a name, so the individual INFS3101 will be
declared with something like

<owl:Thing rdf:ID=“INFS3101”/>

Relationships among classes in OWL are called properties. That the class course has the relationship with the class
student called enrolled, which was represented in the UML model as the association enrolled, is represented in OWL
as a property

<owl:ObjectProperty rdf:ID = “enrolled”/>

Properties are not necessarily tied to classes. By default, a property is a binary relation between Thing and Thing.

So, in order to translate the M1 model of Figure 3 to OWL, UML Class goes to owl:Class.

The relationships among classes represented in OWL by owl:ObjectProperty and owl:DatatypeProperty come from
two different sources in the UML model. One source is the M2 association ownedAttribute between Class and
Property, which generates the representation of a class as a bundle of owned attributes as in Table 10. A M1 instance
of Class ownedAttribute Property would translate as properties whose domain is Class and whose range is the type of
Property. The UML ownedAttribute instance would translate to owl:ObjectProperty if the type of Property were a
UML Class, and owl:DatatypeProperty otherwise. The translation ofTable 10 is shown in Table 15. Note that UML
ownedAttribute M2 associations are distinct, even if ownedAttributes have the same name associated with different
classes. The owl property names must therefore be unique. One way to do this is to use a combination of the class
name and the owned property name. Note also that since instances of ownedAttribute are always relationships among
types, the equivalent OWL properties all have domain and range specified.

Table 14 Simple Model Classes Translated to OWL

Class Owned attributes OWL equivalent

Course code, description, NumEnrolled <owl:Class rdf:ID="Course"/>

Student ID, name <owl:Class rdf:ID="Student"/>
58 Ontology Definition Metamodel

An alternative way to give domain and range to OWL properties is to use restriction to allValuesFrom the range class
when the property is applied to the domain class. This is probably a more natural OWL specification. However, since
all OWL properties arising from a UML model are distinct, the method employed in this chapter is adequate. Should
a translation of a UML model be intended as a base for further development in OWL, an appropriate translation can
be employed (see section 18 UMLtoOWL translation???).

Note that the translation in Table 15 assumes that a single name is an identifier for instances of the corresponding
class. This is not always true. That is there are cases in which a relational database implementation would use a
compound key to identify an instance of a class. Since OWL individuals are always unitary names, the translation of
the UML class would construct a unitary name from the values of the individual properties. For example, if the
association enrolled were treated as a class (UML association class), its representing property might be a
concatenation of Course.code and Student.id, so that the link for student 1234 enrolled in course INFS3101 might be
translated to an OWL individual with name a globalized equivalent of 1234.INFS3101. Alternatively, a system-
defined name could be assigned, linked to each name in the compound key by system-defined properties.

Table 15 Simple Model Associations Translated to OWL

Class Owned
property

Type of
owned
property

OWL equivalent

Course code CourseID <owl:ObjectProperty rdf:ID="CourseCode">
<rdfs:domain rdf:resource="Course"/>
<rdfs:range rdf:resource="CourseID"/>

</owl:ObjectProperty>

description string <owl:DatatypeProperty rdf:ID="CourseDescription">
<rdfs:domain rdf:resource="Course"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

Num
Enrolled

integer <owl:DatatypeProperty rdf:ID="CourseEnrolled">
<rdfs:domain rdf:resource="Course"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>

</owl:DatatypeProperty>

Student ID StudentIdent <owl:ObjectProperty rdf:ID="StudentID">
<rdfs:domain rdf:resource="Student"/>
<rdfs:range rdf:resource="StudentIdent"/>

</owl:ObjectProperty>

name string <owl:DatatypeProperty rdf:ID="StudentName">
<rdfs:domain rdf:resource="Student"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
Ontology Definition Metamodel 59

The second source of owl properties in a UML M1 model is the M1 population of the M2 class association. A binary
UML association translates directly to an owl:ObjectProperty. The translation of Table 12 is given in Table 16. Note
that since associations in UML are always between types, the OWL property always has domain and range specified.
If the association name occurs more than once in the same model, it must be disambiguated in the OWL translation,
for example by concatenating the member names to the association name.

Both languages support the subclass relationship (OWL rdfs:subClassOf, UML generalization). Both also support
subproperties (UML generalization of association or meta-associations among properties like subsetting or
redefining). UML defines generalization at the supertype classifier, while in OWL subtype and subproperty are
separately but identically defined.

The translation from UML to OWL is straightforward. If <S, G> is an M1 instance of the UML M2 association
generalization (S is a subclassifier of G), then if both S and G are classes and TS, TG are respectively the types of
the identifying owned property of S, G respectively, the OWL equivalent is the addition of the clause

<rdfs:subClassOf rdf:resource="TG"/>

to the definition of the OWL class TS. Similarly if S and G are both associations, the owl equivalent is the addition
of the clause

<rdfs:subPropertyOf rdf:resource="G"/>

Table 16 Sample Associations Translated to OWL

Association Member 1
Property Type

Member 2
Property Type

OWL equivalent

enrolled Course Student <owl:ObjectProperty rdf:ID="enrolled">
<rdfs:domain rdf:resource="Course"/>
<rdfs:range rdf:resource="Student"/>

</owl:ObjectProperty>
60 Ontology Definition Metamodel

to the definition of the OWL object property S. Note that subassociations can be defined in a number of ways,
including by OCL.

Figure 4 M1 Model with Association Class

An association in UML can be N-ary. It can have a possibly non-navigable end (ownedEnd). An association can also
be a class (association class), so can participate in further associations. In OWL DL, classes and properties are
disjoint, but in OWL Full they are overlapping. However, there is limited syntactic mechanism in the documents so
far published to support this overlap. There is an advantage in translating these more complex associations to
structures supported by OWL DL. In any case, the translations proposed are not normative, so those responsible for
a particular application can use more powerful features of OWL if there is an advantage to doing so.

Our proposal takes advantage of the fact that an N-ary relation among types T1 ... TN, or an association class with
attributes, is formally equivalent to a set R of identifiers together with N projection functions P1, ..., PN, where Pi:R
-> Ti. Thereby N-ary UML associations are translated to OWL classes with bundles of binary functional properties.

Figure 4 extends the model of Figure 3 by making enrolled an association class whhich owns an attribute grade. The
association class enrolled is a member end of an association instructor, whose other member end is staff. Some
students enrolled in a given course may be assigned to one staff member as instructor, some as another.

 Course
 code
 description
NumE nrolled

 Studen t
 ID
 name

 enrolled

 enrolled

 grade

 Staff
 ID
 name

 instructor
Ontology Definition Metamodel 61

The model of Figure 4 is represented in table form in Table 17. The association class enrolled is represented by its

two end classes, Course and Student, the attribute of the association class Grade, and by an owned attribute enrolledR
which implements the association class as a class, in the same way as in Table 11 and Table 12.

The implementation of enrolled and Instructor in Table 17 is translated into OWL as follows:

<owl:Class rdf:ID="enrolled" / >
<owl:FunctionalProperty rdf:ID="enrolledCourse">

<rdfs:domain rdf:resource="enrolled/>
<rdfs: range rdf:resource="Course"/>

</owl:FunctionalProperty >
<owl:FunctionalProperty rdf:ID="enrolledStudent">

<rdfs:domain rdf:resource=enrolled/>
<rdfs: range rdf:resource="Student"/>

</owl:FunctionalProperty >
<owl:FunctionalProperty rdf:ID="enrolledGrade">

<rdfs:domain rdf:resource=enrolled/>
<rdfs: range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:FunctionalProperty >
<owl:FunctionalProperty rdf:ID="enrolledenrolledR">

<rdfs:domain rdf:resource=enrolled/>
<rdfs: range rdf:resource=enrolledR/>

</owl:FunctionalProperty >
<owl:FunctionalProperty rdf:ID="instructor">

<rdfs:domain rdf:resource=enrolledR/>
<rdfs: range rdf:resource=Staff/>

</owl:FunctionalProperty >

10.2.3 More Advanced Concepts
There are a number of more advanced concepts in both UML and OWL. In the cases where the UML concept occurs
in OWL, the translation is often quite straightforward, so will not always be shown.

Both languages support a module structure, called package in UML and ontology in OWL. The translation of
package to ontology is straightforward. Both languages also support namespaces.

Both UML and OWL support a fixed defined extent for a class (OWL oneOf, UML enumeration). Note that in UML
enumeration is a datatype rather than a class.

Table 17 Sample Model Association Classes

Association Parts Type

enrolled end 1 Course

end 2 Student

attri-
bute

Grade

Reifi-
cation

enrolledR

instructor end 1 enrolledR

end 2 Staff
62 Ontology Definition Metamodel

UML has the option for associations to have distinguished ends which can be navigable or non-navigable. A
navigable property is one which is owned by a class or optionally an association, while a non-navigable is not (an
integer, say). OWL properties always are binary and have distinguished ends called domain and range. A UML
binary association with one navigable end and one non-navigable end will be translated into a property whose domain
is the navigable end. A UML binary association with two navigable ends will be translated into a pair of OWL
properties, where one is inverseOf the other.

A key difference is that in OWL a property is defined by default as having range and domain both Thing. A given
property therefore can in principle apply to any class. So a property name has global scope and is the same property
wherever it appears. In UML the scope of a property is limited to the subclasses of the class on which it is defined.
A UML association name can be duplicated in a given diagram, with each occurrence having a different semantics. It
is possible, though not customary, to include a universal superclass in an M1 model library. This is sufficiently
unusual that it is not clear what the current toolsets would do with it.

An OWL individual can therefore be problematic a UML model. UML has a facility dynamic classification which
allows an instance of one class to be changed into an instance of another, which captures some of the features of
Individual, but an object must always be an instance of some class. UML models rarely include universal classes.

Both languages allow a class to be a subclass of more than one class (multiple inheritance). Both allow subclasses
of a class to be declared disjoint. (In OWL, all classes are subclasses of Thing, so any pair of classes can be declared
disjoint.) UML allows a collection of subclasses to be declared to cover a superclass, that is to say every instance of
the superclass is an instance of at least one of the subclasses. The corresponding OWL construct is the declare the
superclass to be the union of the subclasses, using the construct unionOf.

UML has a strict separation of metalevels, so that the population of M1 classes is distinct from the population of M0
instances and also the M1 model libraries. OWL Full permits classes to be instances of other classes. UML only
models classes of classes in the context of declaration of disjoint or covering powersets.

In OWL, a property when applied to a class can be constrained by cardinality restrictions on the domain giving the
minimum (minCardinality) and maximum (maxCardinality) number of instances which can participate in the
relation. In addition, an OWL property can be globally declared as functional (functionalProperty) or inverse
functional (inverseFunctional). A functional property has a maximum cardinality of 1 on its range, while an inverse
functional property has a maximum cardinality of 1 on its domain. In UML an association can have minimum and
maximum cardinalities (multiplicity) specified for any of its ends. OWL allows individual-valued properties
(objectProperty) to be declared in pairs, one the inverse of the other.

So if a binary UML association has a multiplicity on a navigable end, the corresponding OWL property will have the
same multiplicity. If a binary UML association has a multiplicity on its both ends, then the corresponding OWL
property will be an inverse pair, each having one of the multiplicity declarations.

For an N-ary UML association, multiplicities are more problematic. For example, in Figure 5, the multiplicities show
that given instances of event, Olympiad and competitor, there is at most one instance of result; given instances of
event, Olympiad and result there is at most one instance of competitor; given instances of Olympiad, competitor and
result there may be many instances of event (an athlete may compete at several events in the same Olympiad and
finish in the same place in each); and given instances of event, competitor and result there may be many instances of
Olympiad (an athlete may compete in the same event at several Olympiads and finish in the same place in each). For
an N-ary UML association, any multiplicity associated with one of its end classes will apply to the OWL property
translating the corresponding projection from the association class to the translated end class.
Ontology Definition Metamodel 63

Figure 5 Example N-ary Association with Multiplicity

The N-ary association in Figure 5 would be translated as a class competes whose instances are instances of links in
the association, and four properties whose domain is competes and whose ranges are the classes attached to the
member ends of the association. Since one instance of a link includes only one instance of the class at each member
end, all the properties are functional. The multiplicities on the UML diagram do not translate to OWL in a
straightforward way.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
]>
<rdf:RDF xmlns:rdf="&rdf;"
 xmlns:rdfs="&rdfs;"

 xmlns:owl="&owl;"
 xmlns:xsd="&xsd;"/>

<owl:Class rdf:ID="competes">
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="competesEvent"/>
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="competesCompetitor"/>
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#competesOlympiad"/>
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 <owl:subClassOf>
 <owl:Restriction>

 0..1

 Event
 eventID

 Olympiad
year

 Result

 position Competitor
 name

 0..*

 0..*

 0..1

 competes
64 Ontology Definition Metamodel

 <owl:onProperty rdf:resource="#competesResult"/>
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#competesResult"/>
 <owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
</owl:Class>
<owl:FunctionalProperty rdf:ID="competesEvent">
 <rdfs:domain rdf:resource="#competes"/>
 <rdfs:range rdf:resource="#Event"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesCompetitor">
 <rdfs:domain rdf:resource="#competes"/>
 <rdfs:range rdf:resource="#Competitor"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesOlympiad">
 <rdfs:domain rdf:resource="#competes"/>
 <rdfs:range rdf:resource="#Olympiad"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesResult">
 <rdfs:domain rdf:resource="#competes"/>
 <rdfs:range rdf:resource="&xsd;string> >
</owl:FunctionalProperty>
</rdf:RDF>

In UML, multiplicities can be defined on both ends of an association. In OWL, general multiplicities apply to the
range instances associated with a given domain instances. In both cases, multiplicities can be strengthened when
associations/properties are applied to subclasses.

Note that the class might be the domain of a property for which the individual might not have a value. This can
happen if the mincardinality of the domain of the property is 0, in which case the property is optional (or partial) for
that class. The same can happen in UML. An instance of a class is constrained to participate only in properties which
are mandatory, minimum cardinality > 0. So an instance can lack optional properties. (The somewhat strange construct
maxCardinality < minCardinality is syntactically correct in OWL and has the semantics that the property has no
instances. It can occur where multiple autonomous ontologies are merged, for example.)

However, even if the property is mandatory (mincardinality > 0 and maxcardinality >= mincardinality), there may not
be definite values for the property. Consider a class (K) for which a property (P) is mandatory. In this case, the
individual (I) must satisfy the predicate

[M]: I instance of K -> exists X such that P(I) = X.

It is not required in OWL that there be a constant C such that X = C. All horses have color, but we may not know
what color a particular horse has.

In UML, there is a strict separation between the M1 and M0 levels. At the M1 level, that an association is mandatory
(minimum cardinality greater than 0) is exactly the predicate [M]. Any difference between UML and OWL must
come from the treatment of the model of the M1 theory at the M0 level. In practice, M0 models in UML applications
tend to be Herbrand models implemented by something like an SQL database manager. For these cases, if we know
a horse has a color, then we know what color it has. To the extent that UML tools and modelling build this
expectation into products, conflict can occur when interoperating with an OWL ontology.
Ontology Definition Metamodel 65

But UML does not mandate M0 models to be Herbrand models. In particular SQL-92 supports the Null value
construct, which has multiple interpretations, including “value exists but is not known”. Some years ago, CJ Date
proposed a zoo of nulls with specific meanings, including “value exists but is not known”, and there have been
proposals by Ray Reiter and others for databases with either existentially quantified variables in the data or which
reason with the M1 theory for existentially quantified queries. It is possible for a particular application to introduce a
special constant “unknown” into a class, which is treated specially by the programs. UML does not forbid an
implementation of a class model in one of these ways. So there is no difference in principle between UML and OWL
for properties which are declared to have minCardinality greater than 0 (and maxCardinality >= minCardinality) for
a class.

Note that a consequence of this possible indeterminacy, it may not be possible to compute a transitive closure for a
property across several ontologies, even if they share individuals.

An OWL property can have its range restricted when applied to a particular class, either that the range is limited to a
class (subclass of range if declared) (allValuesFrom) or that the range must intersect a class (someValuesFrom).
UML permits these and other restrictions using the facilities specializes or refines.

OWL allows properties to be declared symmetric (SymmetricProperty) or transitive (TransitiveProperty). In both
cases, if the domain and range are not type compatible, the property is empty. UML uses OCL for this purpose.

OWL permits declaration of a property whose value is the same for all instances of a class, so the property value is
in effect attached to the class (OWL DL property declared as allValuesFrom a singleton set for that class). OWL full
allows properties to be directly assigned to classes without special machinery. If class A is an instance of class B,
then a property P whose domain includes B will designate a value P(A) which applies to the class A so can be
derived for all instances of A.

UML allows a property to be derived from other model constructs, for example a composition of associations or
from a generalization. That a property is derived can be represented as an annotation in OWL. The actual derivation
rule is problematic. Derivation rules in UML are expressed in OCL, and there is no general translation of OCL to
OWL.

A classifier in UML can be declared abstract. An abstract classifier typically cannot be instantiated, but may be a
superclass of concrete classifiers. There is no OWL equivalent for this.

Two different objects modeled in UML may have dependencies which are not represented by UML named (model)
elements, so that a change in one (the supplier) requiring a change in the other (the client) will not be signaled by for
example association links. Two such objects may be declared dependent. There are a number of subclasses of
dependency, including abstraction, usage, permission, realization and substitution. OWL does not have a comparable
feature except as annotations, but RDF, the parent of OWL, permits an RDF:property relation between very general
elements classified by RDFS:Class. Therefore, a dependency relationship between a supplier and client UML model
element will be translated to a reserved name RDF:Property relation whose domain and range are both RDF:Class.
Population of the property will include the individuals which are the target of the translation of the supplier and client
named elements.
66 Ontology Definition Metamodel

10.2.4 Summary of More-or-Less Common Features

This section has described features of UML and OWL which are in most respects similar. Table 18 summarizes the
features of UML in this feature space, giving the equivalent OWL features. UML features are grouped in clusters
which translate to a single OWL feature or a cluster of related OWL features. The column Package shows the section
of the UML Superstructure document [UML2] where the relevant features are documented.

Table 18 Common Features of UML and OWL

UML features Package OWL features Comment

class, property ownedAttribute,
typea

a. This cell summarizes the relationship between UML class and OWL class mediated by property, own-
edAttribute and type. It does not signify that the latter three are themselves translated to OWL class.

7.3.7 Classes
7.3.8 Classifiers
7.3.32 Multiplicities

class

instance 7.3.22 Instances individual OWL individual
independent of class

ownedAttribute,
binary association

7.3.7 Classes property OWL property can be
global

subclass,
generalization

7.3.7 Classes
7.3.8 Classifiers

subclass
subproperty

N-ary association, association class 7.3.7 Classes
7.3.4 Association Classes

class, property

enumeration 7.3.11 Datatypes oneOf

navigable, non-navigable 7.3.7 Classes domain, range

disjoint, cover 7.3.21 Generalization sets disjointWith,
unionOf

multiplicity 7.3.32 Multiplicities minCardinality
maxCardinality
inverseOf

OWL cardinality
declared only for range

derived 7.3.7 Classes no equivalent

package 7.3.37 Packages ontology

dependency 7.3.12 Dependencies reserved name
RDF:property

abstract classifier 7.3.8 Classifiers no equivalent
Ontology Definition Metamodel 67

All of the UML features considered in the scope of the ODM have more-or-less satisfactory OWL equivalents. Some
OWL features in this feature space have no UML equivalent, so are omitted from Table 18. They are summarized in
Table 19. Besides the small differences in the features in the feature space common to UML and OQL, there are some

more general differences described in the next section.

10.3 OWL but not UML

10.3.1 Predicate Definition Language

OWL permits a subclass to be declared using subClassOf or to be inferred from the definition of a class in terms of
other classes. It also permits a class to be defined as the set of individuals which satisfy a restriction expression.
These expressions can be a boolean combination of other classes (intersectionOf, unionOf, complementOf), or
property value restriction on properties (requirement that a given property have a certain value – hasValue). The
property equivalentClass applied to restriction expressions can be used to define classes based on property
restrictions.

For example, the class definition5

<owl:Class rdf:ID=”TexasThings”>
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource=”#locatedIn” />
<owl:allValuesFrom rdf:resource=”#TexasRegion” />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

Defines the class TexasThings as a subclass of the domain of the property locatedIn. These individuals are precisely
those for which the range of locatedIn is in the class TexasRegion. Given that we know an individual to be an
instance of TexasThings, we can infer that it has the property locatedIn, and all of the values of locatedIn associated
with it are instances of TexasRegion. Conversely, if we have an individual which has the property locatedIn and all of
the values of locatedIn associated with that individual are in TexasRegion, we can infer that the individual is an
instance of TexasThings.

Because it is possible to infer from the properties of an individual that it is a member of a given class, we can think
of the complex classes and property restrictions as a sort of predicate definition language.

UML provides but does not mandate the predicate definition language OCL. Note that a subsumption reasoner could
be built for UML. But because UML is strongly typed, it could work in the way mandated for OWL only if there
were a universal superclass provided in the model library, which is rarely provided in practice.

Table 19 OWL Features with No UML Equivalent

OWL features with no UML equivalent

Thing, global properties, autonomous individual

allValuesFrom, someValuesFrom

SymmetricProperty, TransitiveProperty

Classes as instances

5. OWL Web Ontology Language Guide http://www/w3/org/TR/2003/PR-owl-guide-20031215/ section
3.4.1
68 Ontology Definition Metamodel

OCL and CL (Common Logic) are two predicate definition languages which are relevant to the ODM. Both are more
expressive than the complex class and property restriction expressions of OWL Full. There are also other predicate
definition languages of varying expressive powers which particular applications might wish to use.

The ODM does not mandate any particular predicate definition language, but will provide a place for a package
enabling the predicate definition language of choice for an application. In particular, the ODM includes a metamodel
for CL.

10.3.2 Names

A common assumption in computing applications is that within a namespace the same name always refers to the
same object, and that different names always refer to different objects (the unique name assumption). As a
consequence, given a set of names, one can count the names and infer that the names refer to that number of objects.

Names in OWL do not by default satisfy the unique name assumption. The same name always refers to the same
object, but a given object may be referred to by several different names. Therefore counting a set of names does not
warrant the inference that the set refers to that number of objects. Names, however, are conceptually constants, not
variables.

OWL provides features to discipline names. The unique name assumption can be declared to apply to a set of names
(allDifferent). One name can be declared to refer to the same object as another (sameAs). One name can be declared
to refer to something different from that referred to by any of a set of names (differentFrom).

Two classes can be stated to be equivalent (equivalentClass) and two properties can be stated to be equivalent
(equivalentProperty). Equivalent classes have the same extents, equivalent properties link the same pairs.

UML supports named elements with namespaces at the M1 level. Although a UML class may be defined to contain a
definite collection of names, names at the M0 level are not prescribed except their namespaces are inherited from the
M1 declarations. Applications modeled in UML are frequently implemented using systems like SQL which default
the unique name assumption, but this is not mandated. UML places no constraints on names at the M0 level.

In particular, it is permitted for applications modeled in UML to be implemented at the M0 level using names which
are variables. Note that the UML constraint language OCL uses variables. OWL does not support variables at all.

10.3.3 Other OWL Developments
There are a number of developments related to OWL which are not yet finalized, including SWRL Semantic Web
Rule Language and OWL services. These are considered out of scope for the ODM. A translation of an out-of-scope
model element will be to a comment in the OWL target.

10.4 In UML But Not OWL

10.4.1 Behavioral and Related Features

UML allows the specification of behavioral features, which declare capabilities or resources. One use of behavioral
features is to calculate property values. Behavioral features can be used in the OCL that derives properties. Facilities
of UML supporting programs include operations, which describe the parameters of methods; responsibilities, which
specify which class is responsible for what action; static operations, which are operations attached to a class like
static attributes; interface classes, which specify among other things operation features; qualified associations,
which are a special kind of ternary relation; and active classes, which are classes each instance of which controls its
own thread of execution control.

ODM omits these features of UML.
Ontology Definition Metamodel 69

10.4.2 Complex Objects

UML supports various flavors of the part-of relationship between classes. In general, a class (of parts) can have a
part-of relationship with more than one class (of wholes). One flavor (composition) specifies that every instance of a
given class (of parts) can be a part of at most one whole. Another (aggregation) specifies that instances of parts can
be shared among instances of wholes.

Composite structures defined in classes specify runtime instances of classes collaborating via connectors. They are
used to hierarchically decompose a class into its internal structure which allows a complex objects to be broken down
into parts. These diagrams extend the capabilities of class diagrams, which do not specify how internal parts are
organized within a containing class and have no direct means of specifying how interfaces of internal parts interact
with its environment.

Ports model how internal instances are to be organized. Ports define an interaction point between a class and its
environment or a class and its contents. They allow you to group the required and provided interfaces into logical
interactions that a component has with the outside world. Collaboration provides constructs for modeling roles
played by connectors.

Although not strictly part of the complex object feature set, the feature template (parameterized class) is most useful
where the parameterized class is complex. One could for example define a multimedia object class for movies, and
use it as a template for a collection of classes of genres of movie, or a complex object giving the results of the
instrumentation on a fusion reactor which would be a template for classes containing the results of experiments with
different objectives.

Although it is recognized that there is a need for facilities to model mereotopological relationships in ontologies,
there does not seem to be sufficient agreement on the scope and semantics of existing models for inclusion of specific
mereotopological modeling features into the ODM at this stage.

These modeling elements will be translated to properties or classes as ownedAttributes or association ends. The target
elements will be annotated with appropriate comments.

10.4.3 Access Control
UML permits a property to be designated read-only. It also allows classes to have public and private elements.

ODM omits access control features.

10.4.4 Keywords
UML has keywords which are used to extend the functionality of the basic diagrams. They also reduce the amount of
symbols to remember by replacing them with standard arrows and boxes and attaching a <<keyword>> between
guillements. A common feature that uses this is <<interfaces>>.

ODM omits this feature.
70 Ontology Definition Metamodel

11 The RDF Schema Metamodel

11.1 Overview
The RDF Schema (RDFS) Metamodel is a MOF2 compliant metamodel that allows a user to define ontology models
using the same terminology and concepts as those defined in RDF Schema [RDF Schema].

RDF Schema is the vocabulary description language for RDF (Resource Definition Framework) which is a language
for representing information about resources in terms of properties. RDF properties may be thought of as attributes of
resources and in this sense correspond to traditional attribute-value pairs. RDF properties also represent relationships
between resources. RDF Schema specifies mechanisms that may be used to name and describe properties and the
classes of resource they describe. It defines classes and properties that may be used to describe classes, properties and
other resources.

11.1.1 Organization of the RDFS Metamodel

The RDFS Metamodel uses diagrams to control complexity and promote understanding.

The classes and associations are grouped and illustrated in the following diagrams:

• Classes
Contains classes and associations that can be used to define RDF classes and datatypes.

• Properties
Contains classes and associations that can be used to define RDF properties.

• Containers
Contains classes and associations that can be used to define RDF containers and their members.

• Collections
Contains classes and associations that can be used to define RDF collections (i.e., lists) and their members.

• Reification
Contains classes and associations that can be used to define RDF statements.

• Utilities
Contains classes and associations that can be used to define utility RDF properties.

• Ontology
Contains classes and associations that can be used to define the scope of an RDFS ontology.

11.1.2 Design Considerations

Metamodel Constructs

Classes defined in RDF Schema are represented by MOF classes. Properties defined in RDF Schema are represented
by MOF associations.

Note:

RDF properties are first-class entities with unique identifiers. In addition, an RDF property can be a subproperty of
another RDF property. MOF associations, on the other, are not first-class entities. They are defined between two
MOF classes and their role names are locally scoped. In addition, in EMOF, a MOF association cannot be a
subassociation of another MOF association. Therefore, there is an inherent impedance mismatch between RDF
Schema and EMOF. Naming and textual description are used to overcome this impedance mismatch.
Ontology Definition Metamodel 71

Naming

Classes and properties defined in RDF Schema have URI based unique names (e.g., rdfs:Class, rdf:Property,
rdfs:subClassOf, rdf:type). Names of MOF classes are package qualified rather than globally scoped, as is the case
with conventional XML uniform resource identifiers (URIs). In fact, rdfs:Class, rdf:Property, and other names
specified in the RDF specifications are actually abbreviations for URIs using conventional namespace prefixes and
concatenation. To make matters worse, names of MOF association roles are local to the MOF classes where they are
defined. To overcome this impedance mismatch, prefixes are used in naming MOF classes and MOF properties that
directly represent RDFS classes and RDFS properties, respectively. For example, RDFSClass represents rdfs:Class
and RDFProperty represents rdf:Property. Vocabulary, which does not have a prefix, represents something which is
not explicitly defined in RDF Schema. An optional, explicit approach to representing URIs and URI references, per
the RDF and XML specifications, is given in Chapter 16, UML Profiles for RDF Schema and OWL.

11.2 The Classes and Utilities Diagrams
The Classes diagram is shown in Figure 6. The Utilities diagram is shown in Figure 7. These two diagrams are shown
together to facilitate the specification of RDFSResource.

Figure 6 The Classes Diagram of the RDF Schema Metamodel

RDFXMLLiteral

RDFSDatatype

RDFSClass

0..*

+RDFSsubClassOf

0..*

RDFSLiteral

lexicalForm : String

TypedLiteral

datatypeURI : String

RDFSResource

namespace : String
localName : String
uri : String

0..*+RDFtype 0..*

PlainLiteral

language : String0..*

0..*

+RDFScomment

0..*

0..*

+RDFSlabel
72 Ontology Definition Metamodel

Figure 7 The Utilities Diagram of the RDF Schema Metamodel

11.2.1 PlainLiteral

This is the class of plain literal values such as strings.

Description

This is the class of plain literal values such as strings. Plain literals consist of a Unicode string in Normal Form C and
an optional language tag.

Attributes

• language: String [0..1]
The optional language tag used for plain literals.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See description.

11.2.2 RDFSClass

This is the class of resources that are classes.

Description

This is the class of resources that are classes. Classes provide an abstraction mechanism for grouping resources with
similar characteristics

RDFSResource

0..*

+RDFSisDefinedBy

0..*

0..*+RDFvalue 0..*

0..*

+RDFSseeAlso

0..*
Ontology Definition Metamodel 73

Attributes

No additional attributes.

Associations

• subClassOf: RDFSClass [0..*]
This is an instance of RDFProperty that is used to state that all the instances of one class are instances of another.
If the class C1 is defined as a subclass of class C2, then the set of instances of C1 should be a subset of the set of
instances of C2. This property is transitive.

Constraints

No additional constraints.

Semantics

The purpose of a class is to provide an abstraction mechanism for grouping resources. A resources can be an instance
of more than one class.

11.2.3 RDFSDatatype

This is the class of datatypes.

Description

This is the class of datatypes. It is needed to convert typed literals between lexical and value forms.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

 [1] The inherited URI attribute is obligatory for members of RDFSDatatype.

Semantics

Instances of datatypes are typed literals, i.e., each is a subclass of RDFSLiteral. The following XML Schema simple
types [XML Schema Datatypes] can be used as built-in datatypes: string, boolean, decimal, float, double, dateTime,
time, date, gYearMonth, gYear, gMonthDay, gDay, gMonth, hexBinary, base64Binary, anyURI, normalizedString,
token, language, NMTOKEN, Name, NCName, integer, nonPositiveInteger, negativeInteger, long, int, short, byte,
nonNegativeInteger, unsignedLong, unsignedInt, unsignedShort, unsignedByte, and positiveInteger. The URI
reference of these datatypes is of the form:

http://www.w3.org/2001/XMLSchema#NAME

11.2.4 RDFSLiteral

This is the class of literal values such as strings and integers.
74 Ontology Definition Metamodel

Description

This is the class of literal values such as strings and integers. Literals may be plain or typed. Plain literals consist of
a Unicode string in Normal Form C and an optional language tag. Typed literals consist of a lexical representation,
but without the optional language tag.

Attributes

• lexicalForm: String
A Unicode string in Normal Form C.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See description.

11.2.5 RDFSResource

All things described by RDF are called resources.

Description

All things described by RDF are called resources. This is the class of everything. All other classes are subclasses of
this class.

Attributes

• localName: String [0..1]
The local name of the RDF resource.

• namespace: String [0..1]
The namespace of the RDF resource.

• uri: String [0..1]
The unique identifier of the RDF resource. It may be constructed from the namespace and localName of the RDF
resource (if both are present), and, in most cases, the namespace and localName can be derived from the uri.

Associations

• RDFScomment: PlainLiteral [0..*]
This is an instance of RDFProperty that may be used to provide a human-readable description of a resource.

• RDFSisDefinedBy: RDFSResource [0..*]
This is an instance of RDFProperty that is used to indicate a resource defining this resource. It is a subproperty of
RDFSseeAlso.

• RDFSlabel: PlainLiteral [0..*]
This is an instance of RDFProperty that may be used to provide a human-readable version of a resource’s name.

• RDFSmember: RDFSResource [0..*]
This is an instance of RDFProperty that is a super-property of all the container membership properties. (See Fig-
ure 9.)
Ontology Definition Metamodel 75

• RDFSseeAlso: RDFSResource [0..*]
This is an instance of RDFProperty that is used to indicate a resource that might provide additional information
about this resource.

• RDFtype: RDFSClass [0..*]
This is an instance of RDFProperty that is used to state that a resource is an instance of a class.

• RDFvalue: RDFSResource [0..*]
This is an instance of RDFProperty that may be used in describing structured values.

Constraints

None.

Semantics

The localName attribute is used for identification of an RDF resource within the namespace in which it is defined.
The uri attribute is used for unique identification of an RDF resource globally. In general, the uri attribute is
constructed from the namespace and localName attributes, or vice versa. Note that these attributes have a multiplicity
of [0..1] which provides for the possibility of the absence of an identifier.

11.2.6 RDFXMLLiteral

This is the class of XML literal values.

Description

This is the class of XML literal values. It is an instance of RDFSDatatype.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See description.

11.2.7 TypedLiteral

This is the class of typed literal values such as integers.

Description

This is the class of typed literal values such as integers. Typed literals consist of a lexical representation and an
optional datatype URI. A typed literal is an instance of a RDFSDatatype.

Attributes

• datatypeURI: String [0..1]
The optional datatype URI for typed literals.
76 Ontology Definition Metamodel

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See description.

11.3 The Properties Diagram
The Properties diagram of the RDF Schema metamodel is shown in Figure 8.

Figure 8 The Properties Diagram of the RDF Schema Metamodel

11.3.1 RDFProperty

This is the class of properties.

Description

This is the class of properties. A property relates resources to resources or literals. Every property is associated with
a set of instances, called the property extension. Instances of properties are subject-object pairs or subject-value pairs.

Attributes

No additional attributes.

Associations

• RDFSdomain: RDFSClass [0..*]
This is an instance of RDFProperty that is used to state that any resource that has a given property is an instance of
one or more classes.

• RDFSrange: RDFSClass [0..*]

RDFSResource

RDFSClassRDFProperty

0..*

+RDFSsubPropertyOf

0..*

0..*

+RDFSdomain

0..*

0..*

+RDFSrange

0..*
Ontology Definition Metamodel 77

This is an instance of RDFProperty that is used to state that the values of a property are instances of one or more
classes.

• RDFSsubPropertyOf: RDFProperty [0..*]
This is an instance of RDFProperty that is used to state that all resources related by one property are also related
by another. If a property P1 is a subproperty of property P2, then all pairs of resources which are related by P1 are
also related by P2. The term super-property is often used as the inverse of subproperty.

Constraints

 No additional constraints.

Semantics

A property relates resources to resources or literals. A property can be declared with or without specifying its domain
(i.e., classes which the property can apply to) or range (i.e., classes or datatypes that the property may have value
from).

Properties may be specialized (subPropertyOf). The existence of an instance of a specializing property implies the
existence of an instance of the specialized property, relating the same set of resources.

11.4 The Containers Diagram
The Containers diagram of the RDF Schema metamodel is shown in Figure 9.

Figure 9 The Containers Diagram of the RDF Schema Metamodel

11.4.1 RDFAlt

This is the class of RDF “Alternative” containers.

RDFSContainer

RDFAlt RDFBag RDFSeq RDFSContainerMembershipProperty

RDFSResource

0..*

+RDFSmember

0..*

RDFProperty
78 Ontology Definition Metamodel

Description

This is the class of RDF “Alternative” containers. It is used conventionally to indicate that typical processing will be
to select one of the members of the container. The first member of the container is the default choice.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See Description.

11.4.2 RDFBag

This is the class of RDF “Bag” containers.

Description

This is the class of RDF “Bag” containers. It is used conventionally to indicate that the container is intended to be
unordered.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See Description.

11.4.3 RDFSContainer

This is a super-class of RDF container classes.

Description

This is a super-class of RDF container classes. RDF containers are resources that are used to represented containers.

Attributes

No additional attributes.
Ontology Definition Metamodel 79

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

The same resource may appear in a container more than once. A property of a container is not necessarily a property
of all of its members.

11.4.4 RDFSContainerMembershipProperty

This class has as instances the properties that are used to state that a resource is member of a container.

Description

This class has as instances the properties that are used to state that a resource is a member of a container. Each
instance of this class is a subproperty of the RDFSmember property.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

Container membership properties may be applied to resources other than containers.

11.4.5 RDFSeq

This is the class of RDF “Sequence” containers.

Description

This is the class of RDF “Sequence” containers. It is used conventionally to indicate that the numerical ordering of
the container membership properties of the container is intended to be significant.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.
80 Ontology Definition Metamodel

Semantics

See Description.

11.5 The Collections Diagram
The Collections diagram of the RDF Schema metamodel is shown in Figure 10.

Figure 10 The Collections Diagram of the RDF Schema Metamodel

11.5.1 RDFList

This class represents descriptions of lists and other list-like structures.

Description

This class represents descriptions of lists and other list-like structures.

Attributes

No additional attributes.

Associations

• RDFfirst: RDFSResource [0..1]
The first element of this list.

• RDFrest: RDFList [0..1]
The list that consists of the rest of the elements of this list.

Constraints

No additional constraints.

Semantics

rdf:Nil is a predefined instance of rdf:List which explicitly denotes the termination of an rdf:List. Since rdf:Nil is at
the model level, it is not explicitly represented.

11.6 The Reification Diagram
The Reification diagram of the RDF Schema metamodel is shown in Figure 11.

RDFSResourceRDFList

0..1

+RDFrest

0..1 0..1

+RDFfirst

0..1
Ontology Definition Metamodel 81

Figure 11 The Reification Diagram of the RDF Schema Metamodel

11.6.1 RDFStatement

This class is intended to represent the class of RDF statements.

Description

This class is intended to represent the class of RDF statements.

Attributes

No additional attributes.

Associations

• RDFobject: RDFSResource [1]
The is an instance of RDFProperty that is used to state the object of a statement.

• RDFpredicate: RDFProperty [1]
The is an instance of RDFProperty that is used to state the predicate of a statement.

• RDFsubject: RDFSResource [1]
The is an instance of RDFProperty that is used to state the subject of a statement.

Constraints

No additional constraints.

Semantics

See Description.

11.7 The Ontology Diagram
The Ontology diagram of the RDF Schema metamodel is shown in Figure 12.

RDFSResource

RDFStatement

1

+RDFsubject

1 1

+RDFobject

1

1 +RDFpredicate1
82 Ontology Definition Metamodel

Figure 12 The Description Diagram of the RDF Schema Metamodel

11.7.1 Ontology

An ontology consists of the various classes and properties that can be used to describe and represent a domain of
knowledge.

Description

An ontology consists of the various classes and properties that can be used to describe and represent a domain of
knowledge. Classes represent concepts within a domain or across domains, and properties represent the relationships
among them.

Attributes

None.

Associations

• contains: RDFSResource [0..*]
The resources owned by this ontology.

Constraints

None.

Semantics

An ontology provides a container and a namespace for resources. If an ontology is removed, so are the resources
owned by it.

11.8 Language Mappings
This section specifies the mappings of the constructs in the RDFS metamodel to elements of the RDF Schema
language syntax [RDF Primer].

Ontology

RDFSResource

0..*

+contains

0..*
Ontology Definition Metamodel 83

11.8.1 Classes and Utilities

11.8.2 Properties

Table 20 Mapping Classes and Utilities

RDFS Metamodel [RDF Schema]

RDFSResource rdfs:Resource

 RDFScomment rdfs:comment

 RDFSisDefinedBy rdfs:isDefinedBy

 RDFSlabel rdfs:label

 RDFSmember rdfs:member

 RDFSseeAlso rdfs:seeAlso

 RDFtype rdf:type

 RDFvalue rdf:value

RDFSClass rdfs:Class

 RDFSsubClassOf rdfs:subClassOf

RDFSDatatype rdfs:Datatype

RDFSLiteral rdfs:Literal

PlainLiteral rdfs:Literal

TypedLiteral rdfs:Literal

RDFXMLLiteral rdf:XMLLiteral

Table 21 Mapping Properties

RDFS Metamodel [RDF Schema]

RDFProperty rdf:Property

 RDFSdomain rdfs:domain

 RDFSrange rdfs:range

 RDFSsubPropertyOf rdfs:subPropertyOf
84 Ontology Definition Metamodel

11.8.3 Containers

11.8.4 Collections

11.8.5 Reification

Table 22 Mapping Containers

RDFS Metamodel [RDF Schema]

RDFSContainer rdfs:Container

RDFSContainer
 MembershipProperty

rdfs:Container
 MembershipProperty

RDFAlt rdf:Alt

RDFBag rdf:Bag

RDFSeq rdf:Seq

Table 23 Mapping Collections

RDFS Metamodel [RDF Schema]

RDFList rdf:List

 RDFfirst rdf:first

 RDFrest rdf:rest

Table 24 Mapping Reification

RDFS Metamodel [RDF Schema]

RDFStatement rdf:Statement

 RDFpredicate rdf:predicate

 RDFobject rdf:object

 RDFsubject rdf:subject
Ontology Definition Metamodel 85

11.8.6 Ontology
Table 25 Mapping Description

RDFS Metamodel [RDF Schema]

Ontology rdf:RDF
86 Ontology Definition Metamodel

12 The OWL Metamodel

12.1 Overview
The OWL Metamodel is a MOF2 compliant metamodel that allows a user to define ontology models using the same
terminology and concepts as those defined in OWL [OWL S&AS] [OWL S&AS]. The OWL Metamodel is an
extension of the RDF Schema metamodel.

OWL is a semantic markup language for publishing and sharing ontologies on the World Wide Web. OWL is a
language extension of RDF Schema. OWL provides three increasingly expressive sublanguages designed for use by
specific communities of users and implementors:

• OWL Lite
It supports those users primarily needing a classification hierarchy and simple constraint features. For example,
OWL Lite only permits cardinality constraint values of 0 or 1.

• OWL DL
It supports those users who want the maximum expressiveness without losing computational completeness and
decidability of reasoning systems. OWL DL includes all OWL language constructs with restrictions such as type
separation (a class cannot also be an individual or property, a property cannot also be a class or individual). OWL
DL is so named because of its correspondence with description logics.

• OWL Full
It is meant for users who want maximum expressiveness and the syntactic freedom of RDF with no computational
guarantees. For example, in OWL Full a class can be treated simultaneously as a collection of individuals and as
an individual in its own right.

12.1.1 Organization of the OWL Metamodel

The OWL Metamodel uses diagrams to control complexity and promote understanding.

The classes and associations are grouped and illustrated in the following diagrams:

• Classes
Contains classes and associations that can be used to define OWL classes.

• Restrictions
Contains classes and associations that can be used to define OWL restrictions.

• Properties
Contains classes and associations that can be used to define OWL properties.

• Individuals
Contains classes and associations that can be used to define OWL individuals.

• Datatypes
Contains classes and associations that can be used to define OWL datatypes.

• Utilities
Contains classes and associations that can be used to define utility OWL classes.

• Ontology
Contains classes and associations that can be used to define the properties of an OWL ontology.
Ontology Definition Metamodel 87

12.1.2 Design Considerations

Metamodel Constructs

Classes defined in OWL are represented by MOF classes. Properties defined in OWL are represented by MOF
associations.

Note:

See the corresponding note in the RDF Schema metamodel.

Naming

As in the RDF Schema metamodel, prefixes are used in naming MOF classes and MOF properties that directly
represent OWL classes and OWL properties, respectively. For example, OWLClass represents owl:Class and
OWLimports represents owl:imports. Instance, which does not have a prefix, represents something which is not
explicitly defined in OWL.

12.2 The Classes and Restrictions Diagrams
The Classes diagram of the OWL metamodel is shown in Figure 13. The Restrictions diagram is shown in Figure 14.
These two diagrams are logically related and, therefore, are grouped together here for discussion.
88 Ontology Definition Metamodel

Figure 13 The Classes Diagram of the OWL Metamodel

OWLRestriction

RDFSClass
(from RDFS)

OWLClass

deprecated : Boolean

0..*

+OWLdisjointWith

0..*0..*

+OWLequivalentClass

0..*

Individual

EnumeratedClass

0..*+OWLoneOf 0..*

IntersectionClass UnionClass

OWLClass

0..*+OWLintersectionOf 0..*

0..*

+OWLunionOf

0..*

ComplementClass

1

+OWLcomplementOf

1

Ontology Definition Metamodel 89

Figure 14 The Restrictions Diagram of the OWL Metamodel

12.2.1 AllValuesFromRestriction

A specific kind of value constraint restriction that describes a class of all individuals for which all values of the
property under consideration are members of the class extension of the specified class.

Note: AllValuesFromRestriction is not an explicit OWL language construct. Therefore, its name is not prefixed with
OWL.

Description

A specific kind of value constraint restriction that describes a class of all individuals for which all values of the
property under consideration are members of the class extension of the specified class.

Attributes

No additional attributes.

Associations

• OWLallValuesFrom: OWLClass [1]
This is an instance of RDFProperty that is used to describe a class of all individuals for which all values of the
property under consideration are members of the class extension of the specified class.

Constraints

No additional constraints.

12.2.2 CardinalityRestriction

A specific kind of cardinality constraint restriction that describes a class of all individuals that have exactly N
semantically distinct values (individuals or data values) for the property under consideration, where N is the value of
the cardinality constraint.

RDFSResource

HasValueRestriction

1

0..*

+OWLhasValue
1

0..*

RDFProperty OWLRestriction

1 0..*
+OWLonProperty
1 0..*

CardinalityRestriction MaxCardinalityRestriction MinCardinalityRestriction

RDFSLiteral
1

0..*

+OWLcardinality

1

0..*

1

0..*

+OWLmaxCardinality
1

0..*

1

0..*

+OWLminCardinality

1

0..*

AllValuesFromRestriction SomeValuesFromRestriction

OWLClass

1

0..*

1

0..*

+OWLallValuesFrom

1

0..*

+OWLsomeValuesFrom
1

0..*
90 Ontology Definition Metamodel

Note: CardinalityRestriction is not an explicit OWL language construct. Therefore, its name is not prefixed with
OWL.

Description

A specific kind of cardinality constraint restriction that describes a class of all individuals that have exactly N
semantically distinct values (individuals or data values) for the property under consideration, where N is the value of
the cardinality constraint.

Attributes

No additional attributes.

Associations

• OWLcardinality: RDFSLiteral [1]
This is an instance of RDFProperty that is used to describe a class of all individuals that have exactly N semanti-
cally distinct values (individuals or data values) for the property under consideration, where N is the value of the
cardinality constraint.

Constraints

• The datatype of the RDFSLiteral for “OWLcardinality” associations must be TypedLiteral, and further must be of
type xsd:NonNegativeInteger.

12.2.3 ComplementClass

A class description that describes the complement of another class description.

Note: ComplementClass is not an explicit OWL language construct. Therefore, its name is not prefixed with OWL.

Description

A class description that describes the complement of another class description.

Attributes

No additional attributes.

Associations

• OWLcomplementOf: OWLClass [1]
This is an instance of RDFProperty that defines this class to be one whose class extension contains exactly those
individuals that do not belong to the class extension of the specified class.

Constraints

No additional constraints.

Semantics

See description.

12.2.4 EnumeratedClass

Description

A class description that describes an exhaustive enumeration of individuals.
Ontology Definition Metamodel 91

Note: EnumeratedClass is not an explicit OWL language construct. Therefore, its name is not prefixed with OWL.

Attributes

No additional attributes.

Associations

• OWLoneOf: Individual [0..*]
This is an instance of RDFProperty that is used to define a class description of the “enumeration” kind. The speci-
fied individuals are the instances of this class. This enables a class to be described by exhaustively enumerating its
instances.

Constraints

No additional constraints.

Semantics

See description. Note that the elements of an enumerated class are not necessarily unique and no unique names
assumption applies.

12.2.5 HasValueRestriction

A specific kind of value constraint restriction that describes a class of all individuals for which the property under
consideration has at least one value semantically equivalent to the specified resource.

Note: HasValueRestriction is not an explicit OWL language construct. Therefore, its name is not prefixed with OWL.

Description

A specific kind of value constraint restriction that describes a class of all individuals for which the property under
consideration has at least one value semantically equivalent to the specified resource.

Attributes

No additional attributes.

Associations

• OWLhasValue: RDFSResource [1]
This is an instance of RDFProperty that is used to describe a class of all individuals for which the property under
consideration has at least one value semantically equivalent to the specified resource.

Constraints

No additional constraints.

12.2.6 IntersectionClass

A class description that describes the intersection of two or more class descriptions.

Note: IntersectionClass is not an explicit OWL language construct. Therefore, its name is not prefixed with OWL.

Description

A class description that describes the intersection of two or more class descriptions.
92 Ontology Definition Metamodel

Attributes

No additional attributes.

Associations

• OWLintersectionOf: OWLClass [0..*]
This is an instance of RDFProperty that defines this class to be one whose class extension contains precisely those
individuals that are members of the class extension of all specified classes.

Constraints

No additional constraints.

Semantics

See description.

12.2.7 MaxCardinalityRestriction

A specific kind of cardinality constraint restriction that describes a class of all individuals that have at most N
semantically distinct values (individuals or data values) for the property under consideration, where N is the value of
the cardinality constraint.

Note: MaxCardinalityRestriction is not an explicit OWL language construct. Therefore, its name is not prefixed with
OWL.

Description

A specific kind of cardinality constraint restriction that describes a class of all individuals that have at most N
semantically distinct values (individuals or data values) for the property under consideration, where N is the value of
the cardinality constraint.

Attributes

No additional attributes.

Associations

• OWLmaxCardinality: RDFSLiteral [1]
This is an instance of RDFProperty that is used to describe a class of all individuals that have at most N semanti-
cally distinct values (individuals or data values) for the property under consideration, where N is the value of the
cardinality constraint.

Constraints

• The datatype of the RDFSLiteral for “OWLmaxCardinality” association must be TypedLiteral, and further must
be of type xsd:NonNegativeInteger.

12.2.8 MinCardinalityRestriction

A specific kind of cardinality constraint restriction that describes a class of all individuals that have at least N
semantically distinct values (individuals or data values) for the property under consideration, where N is the value of
the cardinality constraint.

Note: MinCardinalityRestriction is not an explicit OWL language construct. Therefore, its name is not prefixed with
OWL.
Ontology Definition Metamodel 93

Description

A specific kind of cardinality constraint restriction that describes a class of all individuals that have at least N
semantically distinct values (individuals or data values) for the property under consideration, where N is the value of
the cardinality constraint.

Attributes

No additional attributes.

Associations

• OWLminCardinality: RDFSLiteral [1]
This is an instance of RDFProperty that is used to describe a class of all individuals that have at least N semanti-
cally distinct values (individuals or data values) for the property under consideration, where N is the value of the
cardinality constraint.

Constraints

• The datatype of the RDFSLiteral for OWLminCardinality” association must be TypedLiteral, and further must be
of type xsd:NonNegativeInteger.

12.2.9 OWLClass

Description

Classes provide an abstraction mechanism for grouping individuals with similar characteristics. Every class is
associated with a set of individuals, called the class extension. The individuals in the class extension are called the
instances of the class. Classes are described through “class descriptions”, which can be combined into “class
axioms”. There are six types of class descriptions:

1. a class identifier

2. an exhaustive enumeration of individuals

3. a property restriction

4. the complement of a class description

5. the intersection of two or more class descriptions

6. the union of two or more class descriptions

Attributes

• deprecated: Boolean
This specifies if this class is deprecated. A deprecated class denotes a class that is preserved for backward compat-
ibility purposes, but may be phased out in the future. Deprecated classes should not be used in new instances that
commit to the ontology. This allows an ontology to maintain backward compatibility while phasing out an old
vocabulary. Deprecation should be used in combination with backward compatibility. That is, in addition to indi-
cating the class (the old version) that has been deprecated, one should further indicate the class (the new version)
that should be used in its place (e.g., by specifying an “OWLequivalentClass”).

Associations

• OWLdisjointWith: OWLClass [0..*]
This is an instance of RDFProperty that asserts the class extensions of this class and any of the specified classes
have no individuals in common. Declaring two classes to be disjoint is a partial definition: it imposes a necessary
94 Ontology Definition Metamodel

but not sufficient condition on this class.

• OWLequivalentClass: OWLClass [0..*]
This is an instance of RDFProperty that asserts the specified classes have the same class extension as this class.

Constraints

No additional constraints.

Semantics

The purpose of a class is to provide an abstraction mechanism for classifying individuals. Common characteristics of
individuals can be specified on the class using property restrictions.

Individuals of a class do not have to have values for each property that can apply to that class. Also, individuals can
be an instance of more than one class.

owl:Thing and owl:Nothing are two predefined instances of owl:Class. owl:Thing represents all individuals and
owl:Nothing is the complement of owl:Thing. Since these are at the model level, they are not explicitly represented
in the metamodel but are given in the model library provided in Appendix A, Foundation Ontology (M1) for RDFS
and OWL.

12.2.10 OWLRestriction

Description

A restriction is a special kind of class. It is frequently, though not always anonymous, and represents a class of all
individuals that satisfy certain property restriction.

There are two kinds of property restrictions: value constraints and cardinality constraints. A value constraint puts
constraints on the range of the property when applied to this particular class description. A cardinality constraint puts
constraints on the number of values a property can take, in the context of this particular class description.

Attributes

No additional attributes.

Associations

• OWLonProperty: RDFProperty
This is an instance of RDFProperty that indicates that the specified property is the property under consideration.

Constraints

No additional constraints.

Semantics

See Description, above.

12.2.11 SomeValuesFromRestriction

A specific kind of value constraint restriction that describes a class of all individuals for which at least one value of
the property under consideration is a member of the class extension of the specified class.

Note: SomeValuesFromRestriction is not an explicit OWL language construct. Therefore, its name is not prefixed
with OWL.
Ontology Definition Metamodel 95

Description

A specific kind of value constraint restriction that describes a class of all individuals for which at least one value of
the property under consideration is a member of the class extension of the specified class.

Attributes

No additional attributes.

Associations

• OWLsomeValuesFrom: RDFSClass [1]
This is an instance of RDFProperty that is used to describe a class of all individuals for which at least one value of
the property under consideration is a member of the class extension of the specified class.

Constraints

No additional constraints.

12.2.12 UnionClass

A class description that describes the union of two or more class descriptions.

Note: UnionClass is not an explicit OWL language construct. Therefore, its name is not prefixed with OWL.

Description

A class description that describes the union of two or more class descriptions.

Attributes

No additional attributes.

Associations

• OWLunionOf: OWLClass [0..*]
This is an instance of RDFProperty that defines this class to be one whose class extension contains precisely those
individuals that are members of at least one of the specified classes.

Constraints

No additional constraints.

Semantics

See description.

12.3 The Properties Diagram
The Properties diagram of the OWL metamodel is shown in Figure 15.
96 Ontology Definition Metamodel

Figure 15 The Properties Diagram of the OWL Metamodel

12.3.1 OWLDatatypeProperty

A datatype property relates individuals to data values.

Description

A datatype property relates individuals to data values. Datatype properties provide relationships between instances of
classes and instances of data ranges.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

In OWL DL, datatype properties must be disjoint with object properties, annotation properties, and ontology
properties. The values of datatype properties are data values, which may or may not be typed. The values of object
properties are individuals.

12.3.2 OWLObjectProperty

An object property relates individuals to individuals.

RDFProperty
(from RDFS)

OWLObjectProperty

inverseFunctional : Boolean
symmetric : Boolean
transitive : Boolean

0..1

+OWLinverseOf

0..1

OWLDatatypeProperty

Property

deprecated : Boolean
functional : Boolean

0..*

+OWLequivalentProperty

0..*
Ontology Definition Metamodel 97

Description

An object property relates individuals to individuals. Object properties provide relationships between instances of two
classes.

Attributes

• inverseFunctional: boolean
This specifies if this property is inverse functional. An inverse-functional property is an object property whose
value uniquely determines some individual. Inverse-functional properties resemble the notion of a key in data-
bases.

• symmetric: boolean
This specifies if this property is symmetric. A symmetric property is an object property for which holds that if the
pair (x, y) is an instance of the property, then the pair (y, x) is also an instance of the property.

• transitive: boolean
This specifies if this property is transitive. A transitive property is an object property for which holds that if the
pair (x, y) is an instance of the property, and the pair (y, z) is also instance of the property, then the pair (x, z) is
also an instance of the property.

Associations

• OWLinverseOf: OWLObjectProperty [0..1]
This is an instance of RDFProperty that states the specified object property is the inverse of this object property.
This association is symmetric. That is, if A is an inverse of B, then B is an inverse of A.

Constraints

No additional constraints.

Semantics

In OWL DL, datatype properties must be disjoint with object properties, annotation properties, and ontology
properties. The values of datatype properties are data values, which may or may not be typed. The values of object
properties are individuals. A symmetric property is its own inverse.

12.3.3 Property

A property relates individuals to data values or individuals.

Description

A property relates individuals to data values or individuals. Property is an abstract class.

Attributes

• deprecated: Boolean
This specifies if this property is deprecated. A deprecated property denotes a property that is preserved for back-
ward compatibility purposes, but may be phased out in the future. Deprecated properties should not be used in
new instances that commit to the ontology. This allows an ontology to maintain backward compatibility while
phasing out an old vocabulary. Deprecation should be used in combination with backward compatibility. That is,
in addition to indicating the property (the old version) that has been deprecated, one should further indicate the
property (the new version) that should be used in its place (e.g., by specifying an “OWLequivalentProperty”).

• functional: boolean
This specifies if this property is functional. A functional property is a property that can have only one (unique)
value for each individual.
98 Ontology Definition Metamodel

Associations

• OWLequivalentProperty: OWLDatatypeProperty [0..*]
This is an instance of RDFProperty that states the specified datatype properties have the same property extension
with this datatype property. It is a sub-property of RDFSsubPropertyOf.

Constraints

No additional constraints.

Semantics

See Description.

12.4 The Individuals Diagram
The Individuals diagram of the OWL metamodel is shown in Figure 16.
Ontology Definition Metamodel 99

Figure 16 The Individuals Diagram of the OWL Metamodel

12.4.1 DatatypeSlot

A datatype slot of an individual.

Note: DatatypePropertyValue is not an explicit OWL language construct. Therefore, its name is not prefixed with
OWL.

IndividualOWLAllDi fferent

...

+OWLdistinctMembers

...

RDFSResource
(from RDFS)

RDFSResource
(from RDFS)

RDFSLi teral
(from RDFS)

OWLDatatypeProperty
DatatypeSlot

1..*+content 1..*

1

+property

1
Individual

0..*

+OWLsameAs

0..*

0..*

+OWLdi fferentFrom

0..*

0..*

+datatypeSlot

0..*

OWLObjectPropertyObjectSlot
0..*

+objectSlot

0..*1..*

+content

1..*

1

+property

1

100 Ontology Definition Metamodel

Description

A datatype slot of an individual.

Attributes

No additional attributes.

Associations

• content: RDFLiteral [1..*]
This identifies the content of this value.

• property: OWLDatatypeProperty
This identifies the datatype property that this value is for.

Constraints

None.

Semantics

See description.

12.4.2 Individual

An instance of a class.

Note: Individual is not an explicit OWL language construct. Therefore, its name is not prefixed with OWL.

Description

An instance of a class.

Attributes

No additional attributes.

Associations

• datatypeSlot: DatatypeSlot [0..*]
This identifies the datatype slots of this individual.

• objectSlot: ObjectSlot [0..*]
This identifies the object slots of this individual.

• OWLdifferentFrom: Individual [0..*]
This is an instance of RDFProperty that links this individual to an individual on the specified list and indicates that
the two individuals refer to two different things: the individuals are different.

• OWLsameAs: Individual [0..*]
This is an instance of RDFProperty that links this individual to an individual on the specified list and indicates that
the two individuals refer to the same thing: the individuals are identical.

Constraints

The RDFtype of an individual must be an OWLClass.
Ontology Definition Metamodel 101

Semantics

An individual may be an instance of zero or more classes.

12.4.3 ObjectSlot

An object slot of an individual.

Note: ObjectSlot is not an explicit OWL language construct. Therefore, its name is not prefixed with OWL.

Description

An object slot of an individual.

Attributes

No additional attributes.

Associations

• content: Individual [1..*]
This identifies the content of this value.

• property: OWLObjectProperty
This identifies the datatype property that this value is for.

Constraints

None.

Semantics

See description.

12.4.4 OWLAllDifferent

A special construct which links an instance of AllDifferent to a list of individuals. The intended meaning is that all
individuals in the list are all different from each other.

Description

A special construct which links an instance of AllDifferent to a list of individuals. The intended meaning is that all
individuals in the list are all different from each other.

Attributes

No additional attributes.

Associations

• OWLdistinctMembers: OWLThing [2..*]
This is an instance of RDFProperty that specifies all individuals in the specified list are all different from each
other.

Constraints

No additional constraints.
102 Ontology Definition Metamodel

Semantics

AllDifferent provides a convenient way to represent OWLdifferentFrom associations among individuals.

12.5 The Datatypes Diagram
The Datatypes diagram of the OWL metamodel is shown in Figure 17.

Figure 17 The Datatypes Diagram of the OWL Metamodel

12.5.1 OWLDataRange

A data range represents a range of data values.

Description

A data range represents a range of data values. It can be either a datatype or a set of data values.

Attributes

No additional attributes.

Associations

• OWLoneOf: RDFSLiteral [1..*]
This is an instance of RDFProperty that specifies the set of data values of this data range.

Constraints

No additional constraints.

Semantics

Data ranges are used to specify the range of datatype properties.

12.6 The Utilities Diagram
The Utilities diagram of the OWL metamodel is shown in Figure 18.

RDFSLiteral
(from RDFS)

OWLDataRange

1..*

+OWLoneOf

1..*

RDFSClass
(from RDFS)
Ontology Definition Metamodel 103

Figure 18 The Utilities Diagram of the OWL Metamodel

12.6.1 OWLAnnotationProperty

An annotation property relates an ontology, a class, or a property to an annotation.

Description

An annotation property relates an ontology, a class, or a property to an annotation. Annotation properties can be
predefined or user defined. The following are predefined annotation properties: OWLversionInfo.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

An annotation adds no semantics to the annotated resource, but may represent information useful to the user.

12.7 The Ontology Diagram
The Ontology diagram of the OWL metamodel is shown in Figure 19.

OWLAnnotationProperty

RDFProperty
(from RDFS)
104 Ontology Definition Metamodel

Figure 19 The Ontology Diagram of the OWL Metamodel

12.7.1 OWLOntology

An ontology consists of the various classes and properties that can be used to describe and represent a domain of
knowledge.

Description

An ontology consists of the various classes and properties that can be used to describe and represent a domain of
knowledge. Classes represent concepts within a domain or across domains, and properties represent the relationships
among them.

Attributes

No additional attributes.

Associations

• OWLbackwardCompatibleWith: OWLOntology [0..*]
This is an instance of OWLOntologyProperty that identifies the specified ontology as a prior version of this ontol-
ogy, and further indicates that it is backward compatible with the prior version. In particular, this indicates that all
identifiers from the prior version have the same intended interpretations in this version.

• OWLimports: OWLOntology [0..*]
This is an instance of OWLOntologyProperty that identifies the specified ontologies containing definitions whose
meanings are considered to be part of the meaning of this ontology. This association is transitive. That is, if ontol-

OWLOntologyPropertyOWLOntology

0..*

+OWLimports

0..*

0..*

+OWLpriorVersion

0..*0..*

+OWLbackwardCompatibleWith

0..*

0..*

+OWLincompatibleWith

0..*

RDFSLi teral
(from RDFS)

0..*+OWLversionInfo 0..*

RDFProperty
(from RDFS)

Ontology
(from RDFS)
Ontology Definition Metamodel 105

ogy A imports B, and B imports C, then A imports both B and C. Importing an ontology into itself is considered a
null action, so if ontology A imports B and B imports A, then they are considered to be equivalent.

• OWLincompatibleWith: OWLOntology [0..*]
This is an instance of OWLOntologyProperty that indicates this ontology is a later version of the specified ontol-
ogy, but is not backward compatible with it.

• OWLpriorVersion: OWLOntology [0..*]
This is an instance of OWLOntologyProperty that identifies the specified ontology as a prior version of this ontol-
ogy.

• OWLversionInfo: RDFSLiteral [0..*]
This is an instance of OWLAnnotationProperty that indicates the version information of this ontology.

Constraints

• For any two ontologies, only one of the two associations OWLincompatibleWith and OWLbackwardCompable-
With may relate them together.

Semantics

An ontology provides a container and a namespace for resources. If an ontology is removed, so are the resources
owned by it.

12.7.2 OWLOntologyProperty

An ontology property relates ontologies to other ontologies.

Description

Ontology properties relate ontologies to other ontologies. The following are built-in ontology properties:
OWLbackwardCompatibleWith, OWLimports, OWLincompatibleWith, and OWLpriorVersion.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

• The uri of an ontology property cannot be the same as that of an annotation property, a datatype property, or an
object property.

Semantics

Except for built-in ontology properties (OWLbackwardCompatibleWith, OWLimports, OWLincompatibleWith, and
OWLpriorVersion), the semantics of ontology properties are user defined.

12.8 Language Mappings
This section specifies the mappings of the constructs in the OWL metamodel to elements of two OWL language
syntax:

• RDF/XML syntax [OWL S&AS]
106 Ontology Definition Metamodel

• XML Presentation syntax [OWL XML Syntax], which is defined as a dialect similar to OWL Abstract Syntax
[OWL S&AS] Note: [OWL XML Syntax] is slightly out-of-date compared to [OWL S&AS].
Ontology Definition Metamodel 107

12.8.1 Classes and Restrictions
Table 26 Classes and Restrictions in the OWL Syntaxes

OWL Metamodel [OWL Reference] [OWL XML Syntax]

OWLClass owl:Class owlx:Class

 deprecated (attribute) owl:DeprecatedClass deprecated (attribute)

 OWLdisjointWith owl:disjointWith owlx:DisjointClasses

 OWLequivalentClass owl:equivalentClass owlx:EquivalentClasses

EnumeratedClass n/a owlx:EnumeratedClass

 OWLoneOf owl:oneOf owlx:OneOf

ComplementClass n/a n/a

 OWLcomplementOf owl:complementOf owlx:ComplementOf

IntersectionClass n/a n/a

 OWLintersectionOf owl:intersectionof owlx:IntersectionOf

UnionClass n/a n/a

 OWLunionOf owl:unionOf owlx:UnionOf

OWLRestriction (abstract) owl:Restriction owlx:DataRestriction
owlx:ObjectRestriction

 OWLonProperty owl:onProperty property (attribute)

AllValuesFrom-Restriction owl:Restriction owlx:DataRestriction
owlx:ObjectRestriction

 OWLallValuesFrom owl:allValuesFrom owlx:allValuesFrom

HasValueRestriction owl:Restriction owlx:DataRestriction
owlx:ObjectRestriction

 OWLhasValue owl:hasValue owlx:hasValue

SomeValuesFrom-
Restriction

owl:Restriction owlx:DataRestriction
owlx:ObjectRestriction

 OWLsomeValuesFrom owl:someValuesFrom owlx:someValuesFrom

CardinalityRestriction owl:Restriction owlx:DataRestriction
owlx:ObjectRestriction

 OWLcardinality owl:cardinality owlx:cardinality
108 Ontology Definition Metamodel

MaxCardinality-Restriction owl:Restriction owlx:DataRestriction
owlx:ObjectRestriction

 OWLmaxCardinality owl:maxCardinality owlx:maxCardinality

MinCardinality-Restriction owl:Restriction owlx:DataRestriction
owlx:ObjectRestriction

 OWLminCardinality owl:minCardinality owlx:minCardinality

Table 26 Classes and Restrictions in the OWL Syntaxes

OWL Metamodel [OWL Reference] [OWL XML Syntax]
Ontology Definition Metamodel 109

12.8.2 Properties

12.8.3 Individuals

Table 27 Properties in the OWL Syntaxes

OWL Metamodel [OWL Reference] [OWL XML Syntax]

OWLDatatypeProperty owl:DatatypeProperty owlx:DatatypeProperty

 deprecated (attribute) owl:DeprecatedProperty deprecated (attribute)

 functional (attribute) owl:FunctionalProperty functional (attribute)

 OWLequivalentProperty owl:equivalentProperty owlx:EquivalentProperties

OWLObjectProperty owl:ObjectProperty owlx:ObjectProperty

 deprecated (attribute) owl:DeprecatedProperty deprecated (attribute)

 functional (attribute) owl:FunctionalProperty functional (attribute)

 inverseFunctional
 (attribute)

owl:InverseFunctionalProperty inverseFunctional
 (attribute)

 symmetric (attribute) owl:SymmetricProperty symmetric (attribute)

 transitive (attribute) owl:TransitiveProperty transitive (attribute)

 OWLequivalentProperty owl:equivalentProperty owlx:EquivalentProperties

 OWLinverseOf owl:inverseOf inverseOf (attribute)

Table 28 Individuals in the OWL Syntaxes

OWL Metamodel [OWL Reference] [OWL XML Syntax]

Individual n/a owlx:Individual

 OWLdifferentFrom owl:differentFrom owlx:DifferentIndividuals

 OWLsameAs owl:sameAs owlx:SameIndividuals

DatatypeSlot n/a owlx:DataPropertyValue

ObjectSlot n/a owlx:ObjectPropertyValue

OWLAllDifferent owl:AllDifferent owlx:DifferentIndividuals

 OWLdistinctMembers owl:distinctMembers n/a
110 Ontology Definition Metamodel

12.8.4 Datatypes

12.8.5 Utilities

12.8.6 Ontology

Table 29 Datatypes in the OWL Syntaxes

OWL Metamodel [OWLReference] [OWL XML Syntax]

OWLDataRange owl:DataRange owlx:OneOf

Table 30 Utilities in the OWL Syntaxes

OWL Metamodel [OWL Reference] [OWL XML Syntax]

OWLAnnotationProperty owl:AnnotationProperty n/a

Table 31 Ontology in the OWL Syntaxes

OWL Metamodel [OWL Reference] [OWL XML Syntax]

OWLOntology rdf:RDF
owl:Ontology

owlx:Ontology

 OWLbackwardCompatibleWith owl:backwardCompatibleWith owlx:BackwardCompatibleWith

 OWLimports owl:imports owlx:Imports

 OWLincompatibleWith owl:incompatibleWith owlx:IncompatibleWith

 OWLpriorVersion owl:priorVersion owlx:PriorVersion

 OWLversionInfo owl:versionInfo owlx:VersionInfo

OWLOntologyProperty owl:OntologyProperty n/a
Ontology Definition Metamodel 111

112 Ontology Definition Metamodel

13 The Common Logic Metamodel

13.1 Overview
Common Logic (CL) is a first-order logical language intended for information exchange and transmission over an
open network [ISO 24707]. It allows for a variety of different syntactic forms, called dialects, all expressible within
a common XML-based syntax and all sharing a single semantics. The language has declarative semantics, which
means that it is possible to understand the meaning of expressions written in CL without requiring an interpreter to
manipulate those expressions. CL is logically comprehensive – at its most general, it provides for the expression of
arbitrary logical expressions. CL has a purely first-order semantics, and satisfies all the usual semantic criteria for a
first-order language, such as compactness and the downward Skolem-Löwenheim property.

Motivation for its consideration as an integral component of the Ontology Definition Metamodel (ODM) includes:

• The potential need by ontologists using the ODM to be able to represent constraints and rules with expressiveness
beyond that supported by description logics (e.g., for composition of semantic web services), as highlighted in
Chapter 7, Usage Scenarios and Goals.

• The availability of normative mappings from CL to syntactic forms for several commonly used knowledge repre-
sentation standards, defined in [ISO 24707], including the Knowledge Interchange Format [KIF] and Conceptual
Graphs [CGS].

• The availability of a normative XML-based surface syntax for CL, called XCL (also defined in [ISO 24707]),
which dramatically increases its potential for use in web-based applications.

• The availability of a direct mapping from the Web Ontology Language (OWL)[OWL S&AS] to CL, such that CL
reasoners can leverage both the ontologies expressed in OWL and constraints written in CL to solve a wider range
of problems than can be addressed by OWL alone (see Chapter 21, Mapping RDFS and OWL to CL).

In general, first order logic provides the basis for most commonly used knowledge representation languages,
including relational databases; more application domains have been formalized using first order logic than any other
formalism – its meta-mathematical properties are thoroughly understood. CL in particular provides a modern form of
first order logic that takes advantage of recent insights in some of these application areas including the semantic web.

First order logic can also provide the formal grounding for business semantics. Although work on the OMG’s
Business Semantics For Business Rules (BSBR) RFP has been done in parallel with the ODM to date, recently, there
has been significant effort to leverage CL as the first order logic basis for the Semantics of Business Vocabulary and
Business Rules (SBVR) submission to this RFP. This revision of the specification supports irregular sentences, a
recent addition to the abstract syntax of CL required for the SBVR modality representations, for example.
Subsequent versions of both specifications will be amended to accommodate additional interoperability requirements
to the extent possible.

13.1.1 Design Considerations

The CL Metamodel is defined per [ISO 24707], and was developed with the help of the CL language authors to be a
comprehensive and accurate representation of the abstract syntax of CL. As indicated in Chapter 8, Design Rationale,
a decision was made not to depend on the OCL 2.0 Metamodel specifically because such a dependency would
introduce unnecessary complexity and semantics that may be inconsistent with the simplicity, efficiency, and formal
semantics of CL. Inconsistencies in the semantics can have unintended consequences for downstream reasoning,
limiting the utility of an ODM-based application that leverages the CL metamodel. A mapping between CL and OCL
may be considered in subsequent versions of the ODM if requirements for such a mapping are identified. Such a
mapping would require validation through the use of CL and OCL-based reasoning engines, which may not be
available prior to finalization of this specification.
Ontology Definition Metamodel 113

To date, although a number of proposals have been put forth to the W3C for a rule language for OWL, there is no
formal recommendation available from the W3C today. Such a standard may be considered for integration with, or as
an additional candidate for mapping to, the CL metamodel through a subsequent RFP.

The complete syntax and formal semantics for CL are documented in [ISO 24707] and are considered essential to
understanding the expressions that might be imported, managed, manipulated, or generated by any ODM/CL-
compliant tool.

13.1.2 Modeling Notes

All of the OCL constraints documented below have been validated using OCL tools.

13.2 The Phrases Diagram
Phrases provide mechanisms for grouping and scoping the elements that constitute an ontology (or set of constraints
associated with an OWL ontology), authored in Common Logic or any of its syntactic variants. An overview of the
top-level elements of the CL metamodel is provided in Figure 20.

Figure 20 Phrases

13.2.1 Comment

Description

A Comment provides the facility for commenting on a particular phrase or set of sentences.

Attributes

• comment: String [1..1] – the character string that is the comment on the phrase

Sentence

LogicalName
name : String

Comment
comment : String

Phrase 0..1

0..*

0..1

0..*
ExclusionSet

0..*

0..*

+excludes
0..*

0..*

Text

0..*

0..*

0..*

0..*

Module
0..1 0..*0..1 0..*

1

0..*

+body
1

0..*

Identifier

0..1

0..*

1

1

+localDomain
1

1

Importation

1

0..*

+assertsContentOf
1

0..*

+identifiedBy

+namedText

0..1

0..*

+context

[1..1]

[1..1]
114 Ontology Definition Metamodel

Associations

• commentedPhrase: Phrase [0..1] in association CommentedPhrase – the phrase about which the comment applies

• Specialize Class Phrase

Constraints

None.

Semantics

None.

13.2.2 ExclusionSet

Description

A module may optionally have an exclusion list of names whose denotations are considered to be excluded from the
domain (i.e., while the names may be considered part of the universe of discourse, they are not considered part of the
local domain of discourse).

Attributes

None.

Associations

• excludes: LogicalName [0..*] in association ExcludedNames – the names that are members of the ExclusionSet

• module: Module [0..*] in association ModuleExcludes – the module(s) that excludes this set of names

Constraints

None.

Semantics

An ExclusionSet essentially represents some set of non-denoting names as they relate to a particular domain of
discourse. See [ISO 24707] for additional detail.

13.2.3 Identifier

Description

Dialects intended for transmission of content on a network should not impose arbitrary or unnecessary restrictions on
the form of names, and must provide for names to be used as identifiers of common logic texts. An identifier is a
name explicitly used to identify a module or piece of common logic text.

Attributes

None.

Associations

• context: Importation [0..*] in association NameForImportation – links an identifier to an importation that refer-
ences it

• module: Module [1] in association ModuleName – links an identifier to the module it names
Ontology Definition Metamodel 115

• namedText: Text [0..1] in association NameForText – links an identifier to the text it names

• Specialize Class LogicalName

Constraints

None.

Semantics

Names used to name texts on a network are understood to be rigid and to be global in scope, so that the name can be
used to identify the thing named – in this case, the Common Logic text or module – across the entire communication
network. (See [RFC2396] for further discussion.) A name which is globally attached to its denotation in this way is
an identifier, and is typically associated with a system of conventions and protocols which govern the use of such
names to identify, locate and transmit pieces of information across the network on which the dialect is used. While
the details of such conventions are beyond the scope of this specification, we can summarize their effect by saying
that the act of publishing a named Common Logic text (or module) is intended to establish the name as a rigid
identifier of the text, and Common Logic acknowledges this by requiring that all interpretations shall conform to such
conventions when they apply to the network situation in which the publication takes place.

Note that in the case of an importation, the name serves to identify the module, which is accomplished through a
double interpretation in the semantics. The 'import' condition is that (import x) is true in I just when I(I(x)) is true.
In other words, interpreting an identifier gets what it denotes. If the name happens to be an CL ontology (I(x) is an
ontology), then interpreting it again I(I(x)) returns a truth-value; thus, (import x) says that x is an ontology which
this ontology (the one doing the importing) asserts to be true.

13.2.4 Importation

Description

An importation contains a name. The intention is that the name identifies a piece of Common Logic content
represented externally to the text, and the importation re-asserts that content in the text.

Attributes

None.

Associations

• assertsContentOf: Identifier [1] in association NameForImportation – the name of the module to be imported; the
name argument of an importation will usually be a URI.

• Specialize Class Phrase

Constraints

None.

Semantics

An import construction requires that we assume the existence of a global module-naming convention, and that
module names refer to entities in formal interpretations. Common Logic uses the same semantic web conventions
used in RDF and OWL, based on W3C recommendation for representing namespaces in XML [XMLNS]. The
meaning of an importation phrase is that the name it contains shall be understood to identify some Common Logic
content, and the importation is true just when that content is true. Thus, an importation amounts to a virtual ‘copying’
of some Common Logic content from one ‘place’ to another. This idea of ‘place’ and ‘copying’ can be understood
116 Ontology Definition Metamodel

only in the context of deploying logical content on a communication network. A communication network, or simply
a network, is a system of agents which can store, publish or process common logic text, and can transmit common
logic text to one another by means of information transfer protocols associated with the network.

13.2.5 LogicalName

Description

A logical name is any lexical token, or character string, which is understood to denote something in the domain of
discourse. Part of the design philosophy of CL is to avoid syntactic distinctions between name types, allowing
ontologies freedom to use names without requiring mechanisms for syntactic alignment. Names are primitive
referring elements in CL, and refer to elements of a particular ontology, such as module names, role names, relations,
or numerals.

Dialects intended for use on the Web should allow Universal Resource Identifiers and URI references [RDF Syntax]
to be used as names. Common Logic dialects should define names in terms of Unicode [ISO 10646] conventions.

Attributes

• name: String [1..1] – the character string symbolizing the name

Associations

• exclusionSet: ExclusionSet [0..*] in association ExcludedNames – the optional exclusion list referring to the name

• quantifiedSentence: QuantifiedSentence [0..1] in association NameBoundByQuantifier – associates an optional
name (variable) in quantified sentences

• Specialize Class Term

Constraints
[1] The lexical syntax for several CL dialects identifies a number of rules for specifying valid names that can-
not be expressed in OCL, and are thus delegated to CL parsers (such as identification of special characters that
cannot be embedded in names, the requirement for conformance to Unicode conventions, additional constraints
on logical names that are URIs or URI references, and so forth).

[2] LogicalName and SequenceVariable are mutually exclusive.

Semantics

The only undefined terms in the CL are name and sequence variable. The only required constraint on these is that
they must be exclusive. Common Logic does not require names to be distinguished from variables, nor does it require
names to be partitioned into distinct classes such as relation, FunctionalTerm or individual names, or impose sortal
restrictions on names. Particular Common Logic dialects may make these or other distinctions between subclasses of
names, and impose extra restrictions on the occurrence of types of names or terms in expressions - for example, by
requiring that bound names be written with a special variable prefix, as in KIF, or with a particular style, as in Prolog;
or by requiring that operators be in a distinguished category of relation names, as in conventional first-order syntax.

A dialect may impose particular semantic conditions on some categories of names, and apply syntactic constraints to
limit where such names occur in expressions. For example, the core syntax treats numerals as having a fixed
denotation, and prohibits their use as identifiers. A dialect may require some names to be non-denoting names. This
requirement may be imposed by, for example, partitioning the vocabulary, or by requiring names which occur in
certain syntactic positions to be non-denoting. A dialect with non-denoting names is called segregated.
Ontology Definition Metamodel 117

13.2.6 Module

Description

A module consists of a name, an optional set of names called an exclusion set, and a text called the body text. The
module name indicates the local domain of discourse in which the text is understood; the exclusion list indicates any
names in the text which are excluded from the local domain (i.e., variables whose scope is external to the local
domain). A module has a global name in the form of a Uniform Resource Identifier [RDF Syntax] or a URI reference.

Attributes

None.

Associations

• body: Text [1] in association ModuleBody – the body, or set of phrases, that are contained in the module

• exclusionSet: ExclusionSet [0..1] in association ModuleExcludes – the optional set of names, or exclusion list,
associated with a given module

• localDomain: Identifier [1] in association ModuleName – the logical name associated with a module (for most
applications, particularly those that are web based, module names must be unique)

• Specialize Class Phrase

Constraints

In cases where CL is used to define ontologies for the Web, module names take the form of Uniform Resource
Identifiers [RDF Syntax] or URI references, and are global (thus must be unique).

Semantics

A module provides the scoping mechanism for an CL ontology, corresponding to an RDF graph [RDF Primer] or
document, or to an OWL ontology. The name of a module should be the name of the corresponding RDF document
in cases where CL constraints are associated with an RDFS/OWL ontology, and has the same URI or URI reference
(i.e., that of the RDFS/OWL ontology).

The CL syntax provides for modules to state an intended domain of discourse, to relate modules explicitly to other
domains of discourse, and to express intended restrictions on the syntactic roles of symbols. This feature is critical to
component-based ontology (or micro-theory) construction, and therefore relevant to any MDA-based authoring
environment.

13.2.7 Phrase

Description

A phrase is either a comment, or a module, or a sentence, or an importation, or a phrase with an attached comment.

Attributes

None.

Associations

• commentForPhrase: Comment [0..*] in association CommentedPhrase – optional comment(s) associated with the
phrase

• text: Text [0..*] in association PhraseForText – the text(s) in which the phrase occurs
118 Ontology Definition Metamodel

Constraints
[1] Module, Importation, Sentence, and Comment are specializations of Phrase and form a disjoint partition, as
follows:

context Phrase inv XOR:

 (self.oclIsKindOf(Module) xor self.oclIsKindOf(Importation)) and
 (self.oclIsKindOf(Module) xor self.oclIsKindOf(Sentence)) and

 (self.oclIsKindOf(Module) xor self.oclIsKindOf(Comment)) and

 (self.oclIsKindOf(Importation) xor self.oclIsKindOf(Sentence)) and

 (self.oclIsKindOf(Importation) self.oclIsKindOf(Comment)) and
 (self.oclIsKindOf(Sentence) xor self.oclIsKindOf(Comment))

Semantics

Sequence variables take Common Logic beyond first-order expressiveness. A sequence variable stands for an
arbitrary sequence of arguments. Since sequence variables are implicitly universally quantified, any expression
containing a sequence variable has the same semantic import as the infinite conjunction of all the expressions
obtained by replacing the sequence variable by a finite sequence of names, all universally quantified at the top (phrase)
level. Significant detail is provided in [ISO 24707] on the use of such variables and their scope.

13.2.8 Sentence

Description

CL provides facilities for expressing several kinds of sentences, including atomic sentences as well as compound
sentences built up from atomic sentences or terms with a set of logical constructors. CL sentences are Phrases, as
stated above and as shown in Figure 20.

The convention used in CL for expressing sentences differs from the approach taken in the informative DL
metamodel. In the DL case, constructors are uniquely defined, whereas in CL the constructors are an integral part of
the sentence, named for the kind of construction used in the sentence.

Attributes

None.

Associations

• biconditional: Biconditional [0..1] in association LvalueForBiconditional – associates a sentence as the “lvalue”
(or left-hand side) of an Biconditional or biconditional relation

• biconditional: Biconditional [0..1] in association RvalueForBiconditional – associates a sentence as the “rvalue”
(or right-hand side) of an Biconditional or biconditional relation

• comment: CommentedSentence [0..1] in association CommentForSentence – provides the facility for commenting
any given CL sentence

• conjunction: Conjunction [0..1] in association Conjunction – associates a sentence to its conjuncts in a conjunc-
tion

• disjunction: Disjunction [0..1] in association Disjunction – associates a sentence to its disjuncts in a disjunction

• implication: Implication [0..1] in association AntecedentForImplication – associates a sentence as the antecedent
of an implication

• implication: Implication [0..1] in association ConsequentForImplication – associates a sentence as the consequent
of an implication
Ontology Definition Metamodel 119

• negation: Negation [0..1] in association NegationSentence – associates a sentence with a negation

• quantification: QuantifiedSentence [0..1] in association QuantificationForSentence – associates a sentence (body)
with a quantifier and optional bound variables

• Specialize Class Phrase

Constraints

The partition formed by the subclasses of Sentence is disjoint:

context Sentence inv DisjointPartition:
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(Disjunction)) and
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(Negation)) and
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(Implication)) and
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(Biconditional)) and
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(UniversalQuantification)) and
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(ExistentialQuantification)) and
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(Atom)) and
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(CommentedSentence)) and

(self.oclIsKindOf(Disjunction) xor self.oclIsKindOf(Negation)) and
(self.oclIsKindOf(Disjunction) xor self.oclIsKindOf(Implication)) and
(self.oclIsKindOf(Disjunction) xor self.oclIsKindOf(Biconditional)) and
(self.oclIsKindOf(Disjunction) xor self.oclIsKindOf(UniversalQuantification)) and
(self.oclIsKindOf(Disjunction) xor self.oclIsKindOf(ExistentialQuantification)) and
(self.oclIsKindOf(Disjunction) xor self.oclIsKindOf(Atom)) and
(self.oclIsKindOf(Disjunction) xor self.oclIsKindOf(CommentedSentence)) and

(self.oclIsKindOf(Negation) xor self.oclIsKindOf(Implication)) and
(self.oclIsKindOf(Negation) xor self.oclIsKindOf(Biconditional)) and
(self.oclIsKindOf(Negation) xor self.oclIsKindOf(UniversalQuantification)) and
(self.oclIsKindOf(Negation) xor self.oclIsKindOf(ExistentialQuantification)) and
(self.oclIsKindOf(Negation) xor self.oclIsKindOf(Atom)) and
(self.oclIsKindOf(Negation) xor self.oclIsKindOf(CommentedSentence)) and

(self.oclIsKindOf(Implication) xor self.oclIsKindOf(Biconditional)) and
(self.oclIsKindOf(Implication) xor self.oclIsKindOf(UniversalQuantification)) and
(self.oclIsKindOf(Implication) xor self.oclIsKindOf(ExistentialQuantification)) and
(self.oclIsKindOf(Implication) xor self.oclIsKindOf(Atom)) and
(self.oclIsKindOf(Implication) xor self.oclIsKindOf(CommentedSentence)) and

(self.oclIsKindOf(Biconditional) xor self.oclIsKindOf(UniversalQuantification)) and
(self.oclIsKindOf(Biconditional) xor self.oclIsKindOf(ExistentialQuantification)) and
(self.oclIsKindOf(Biconditional) xor self.oclIsKindOf(Atom)) and
(self.oclIsKindOf(Biconditional) xor self.oclIsKindOf(CommentedSentence)) and

(self.oclIsKindOf(UniversalQuantification) xor self.oclIsKindOf(ExistentialQuantification)) and
(self.oclIsKindOf(UniversalQuantification) xor self.oclIsKindOf(Atom)) and
(self.oclIsKindOf(UniversalQuantification) xor self.oclIsKindOf(CommentedSentence)) and

(self.oclIsKindOf(ExistentialQuantification) xor self.oclIsKindOf(Atom)) and
(self.oclIsKindOf(ExistentialQuantification) xor self.oclIsKindOf(CommentedSentence)) and

(self.oclIsKindOf(Atom) xor self.oclIsKindOf(CommentedSentence))

Semantics

The semantics of Common Logic is defined in terms of a satisfaction relation between Common Logic text and
structures called interpretations. All dialects must apply these semantic conditions to all common logic expressions,
that is, to any of the forms given in the abstract syntax. They may in addition apply further semantic conditions to
subclasses of common logic expressions, or to other expressions.
120 Ontology Definition Metamodel

A vocabulary is a set of names and sequence variables. The vocabulary of a Common Logic text is the set of names
and sequence variables which occur in the text. In a segregated dialect, vocabularies are partitioned into denoting
names and non-denoting names.

An interpretation I of a vocabulary V is a set UI , the universe, with a distinguished nonempty subset DI, the domain
of discourse, or simply domain, and four mappings: relI from UI to subsets of DI*, funI from UI to FunctionalTerms
DI*->DI, (which we will also consider to be the set DI* x DI), intI from names in V to UI, and seqI from sequence
variables in V to DI*. If the dialect is segregated, then intI(x) is in DI if and only if x is a denoting name. If the dialect
recognizes irregular sentences, then they are treated as names of propositions, and intI also includes a mapping from
the irregular sentences of a text to the truthvalues {true, false}.

Intuitively, DI is the domain of discourse containing all the individual things the interpretation is 'about' and over
which the quantifiers range. UI is a potentially larger set of things which might also contain entities which are not in
the universe of discourse. All names are interpreted in the same way, whether or not they are understood to denote
something in the domain of discourse; this is why there is only a single interpretation mapping applying to all names
regardless of their syntactic role. In particular, relI(x) is in DI* even when x is not in D. When considering only
segregated dialects, the universe outside the domain may be considered to contain names and can be ignored; when
considering only unsegregated dialects, the distinction between universe and domain is unnecessary. The distinction
is required in order to give a uniform treatment of all dialects. Irregular sentences are treated as though they were
arbitrary propositional variables.

Additional details of the semantics of Common Logic are given in [ISO 24707].

13.2.9 Text

Description

Text is a collection of phrases, each of which is a sentence, a module, an importation, or a comment. A module is a
named piece of text with an optional exclusion set containing names considered to be outside the domain of discourse
for the module.

Attributes

None.

Associations

• identifiedBy: Identifier [0..1] in association NameForText – links a text with an identifier in a named text

• phrase: Phrase [0..*] in association PhraseForText – the phrase(s) or sentence(s) that comprise the text

• moduleForBody: Module [0..*] in association ModuleBody – the module(s) owning the text

Constraints

None.

Semantics

The semantics of CL is defined conventionally in terms of a satisfaction relation between CL text and structures
called interpretations. A discussion of the semantics regarding text interpretation is given in the ISO 24707 Common
Logic specification, including distinctions in quantifier scope, features enabling structured relationships among
modules, closed-world and unique naming issues, and so forth.
Ontology Definition Metamodel 121

13.3 The Terms Diagram
The Terms Diagram, shown in Figure 21 provides additional insight into the core syntactic elements of Common
Logic. These include names, commented terms, and term sequences (FunctionalTerms).

Figure 21 Valid Terms in CL

13.3.1 CommentedTerm

Description

Terms may have an attached comment.

Attributes

• comment: String [1] – supports comments on individual terms (or names)

Associations

• term: Term [1] in association CommentForTerm – links the comment to the term

• Specialize Class Term

Constraints

None.

Semantics

None.

13.3.2 FunctionalTerm

Description

A FunctionalTerm consists of a term, called the operator, and a term sequence called the argument sequence,
containing terms called arguments.

Attributes

None.

CommentedTerm
comment : String

SequenceVariable

Term
1

0..1

1

0..1

FunctionalTerm
0..10..* 0..10..*

1

0..*

+operator
1

0..*

0..*

0..*

+arguments
0..*
{ordered}

0..*

LogicalName
name : String[1] [1]
122 Ontology Definition Metamodel

Associations

• arguments: Term [0..*] in association ArgumentSequence – links zero or more additional terms (i.e., arguments) to
a functional term

• operator: Term [1] in association OperatorForTerm – links an operator to a functional term

• sequenceVariable: SequenceVariable [0..1] in association SequenceVariableForFunction – augments the argument
list for the functional term with an optional sequence variable

• Specialize Class Term

Constraints

The argument sequence of a functional term is ordered.

Semantics

See additional discussion of the semantics of functional term in CL in [ISO 24707].

13.3.3 SequenceVariable

Description

A term sequence is a finite sequence of terms and an optional sequence variable. A sequence may be empty or may
consist of a single sequence variable. Only one sequence variable may occur in a term sequence. Finite sequences play
a central role in CL syntax and semantics. Atomic sentences consist of an application of one term, denoting a
relation, to a finite sequence of other terms. Such argument sequences may be empty, but they must be present in the
syntax, as an application of a relation term to an empty sequence does not have the same meaning as the relation term
alone.

Attributes

None.

Associations

• function: FunctionalTerm [0..1] in association SequenceVariableForFunction – links an optional sequence vari-
able to the functional term

• relation: AtomicSentence [0..1] in association SequenceVariableForRelation – links an optional sequence variable
to the relation or atomic sentence

Constraints

None.

Semantics

Sequence variables take Common Logic beyond first-order expressiveness. A sequence variable stands for an
arbitrary sequence of arguments. Since sequence variables are implicitly universally quantified, any expression
containing a sequence variable has the same semantic import as the infinite conjunction of all the expressions
obtained by replacing the sequence variable by a finite sequence of names, all universally quantified at the top
(phrase) level.

This ability to represent infinite sets of sentences in a finite form means that Common Logic with sequence variables
is not compact, and therefore not first-order; for clearly the infinite set of sentences corresponding in meaning to a
simple atomic sentence containing a sequence variable is logically equivalent to that sentence and so entails it, but no
Ontology Definition Metamodel 123

finite subset of the infinite set does. However, the intended use of sentences containing sequence variables is to act as
axiom schemata, rather than being posed as goals to be proved, and when they are restricted to this use the resulting
logic is compact. Also, even without this restriction, Common Logic is finitely complete, in the sense there are
inference schemes which can derive T from S if S entails T and S is finite. Since Common Logic sentences can
express the same content as infinite sets of conventional first-order sentences, the limitation to finite antecedents is
less restrictive than it might seem; in fact, this completeness is a strengthening of Gödel’s classical first-order
completeness result.

A CL dialect which provides only some of the common logic forms may be described as a partial common logic
dialect, or as partially conformant. In particular, a dialect which does not provide for term sequences with a sequence
variable, but is otherwise fully conformant, is a compact dialect, and may be described as a fully conformant compact
dialect if it provides for all other constructions in the abstract syntax. Additional discussion on the semantics and use
of sequence variables in CL is provided in the [ISO 24707] Common Logic specification.

13.3.4 Term

Description

A term is either a name or a functional term, or a term with an attached comment. A term sequence is a finite
sequence of terms and an optional sequence variable. A sequence may be empty or may consist of a single sequence
variable. Only one sequence variable may occur in a term sequence.

Attributes

None.

Associations

• atomicSentence: AtomicSentence [0..*] in association ArgumentsForAtomicSentence – links an argument
sequence to the relation that the arguments participate in

• atomicSentence: AtomicSentence [0..*] in association PredicateForAtomicSentence – links a predicate to the rela-
tion that it is a part of

• commentedTerm: CommentedTerm [0..1] in association CommentForTerm – provides the facility for commenting
any CL term

• function: FunctionalTerm [0..*] in association ArgumentSequence – links an argument sequence to the function
that the arguments participate in

• function: FunctionalTerm [0..*] in association OperatorForFunction – links an operator to the FunctionalTerm that
it is a part of

• equation: Equation [0..*] in association LvalueForIdentity – links the term representing the ‘lvalue’ to an equation

• equation: Equation [0..*] in association RvalueForIdentity – links the term representing the ‘rvalue’ to an equation

Constraints

The LogicalName / CommentedTerm / FunctionalTerm partition is disjoint.

context Term inv DisjointPartion:

(self.oclIsKindOf(LogicalName) xor self.oclIsKindOf(CommentedTerm)) and

(self.oclIsKindOf(LogicalName) xor self.oclIsKindOf(FunctionalTerm)) and
(self.oclIsKindOf(CommentedTerm) xor self.oclIsKindOf(FunctionalTerm))
124 Ontology Definition Metamodel

Semantics

See additional discussion of the semantics of terms in CL in [ISO 24707].

13.4 The Atoms Diagram
Atomic sentences are similar in structure to terms, as shown in Figure 22. Equations are considered to be atomic
sentences. Equations are distinguished as a special category because of their special semantic role and special
handling by many applications.

Figure 22 Atomic Sentences

13.4.1 Atom

Description

An atom is either an equation containing two arguments which are terms, or consists of a term, called the predicate,
and term sequence called the argument sequence, containing terms called arguments of the atom. Dialects which use
a name to identify equality may consider it to be a predicate.

Attributes

None.

Associations

• Specialize Class Sentence

Constraints
[1] The AtomicSentence/Equation partition is disjoint.

context Atom inv DisjointPartition:

(self.oclIsKindOf(AtomicSentence) xor self.oclIsKindOf(Equation))

Semantics

An atom, or atomic sentence, asserts that a relation holds between arguments. Its general syntactic form is that of a
relation term applied to an argument sequence.

Atom

SequenceVariable AtomicSentence
0..1 0..*0..1 0..*

Term

1

0..*

+predicate
1

0..*

0..*

0..*

+arguments
0..*
{ordered}

0..*
Equation

1

0..*

+lvalue
1

0..*

1

0..*

+rvalue
1

0..*
Ontology Definition Metamodel 125

13.4.2 AtomicSentence

Description

An atomic sentence consists of a relation term (predicate) applied to an argument sequence.

Attributes

None.

Associations

• arguments: Term [0..*] in association ArgumentsForAtomicSentence – links an argument sequence to the relation
that they participate in

• predicate: Term [1] in association PredicateForAtomicSentence – links a predicate to the relation (atomic sen-
tence) it participates in

• sequenceVariable: SequenceVariable [0..1] in association SequenceVariableForRelation – augments the argument
list for the relation with an optional sequence variable

• Specialize Class Atom

Constraints

None.

Semantics

See additional discussion of the semantics of relations in CL in [ISO 24707].

13.4.3 Equation

Description

An equation asserts that its arguments are equal and consists of exactly two terms.

Attributes

None.

Associations

• lvalue: Term [1] in association LvalueForIdentity – associates a term as the “lvalue” of the equation (identity rela-
tion)

• rvalue: Term [1] in association RvalueForIdentity – associates a term as the “rvalue” of the equation (identity rela-
tion)

• Specialize Class Atom

Constraints

None.

Semantics

Equations are distinguished as a special category because of their special semantic role and special handling by many
applications. See additional discussion of the semantics of equations in CL in [ISO 24707].
126 Ontology Definition Metamodel

13.5 The Sentences Diagram
As shown in Figure 23, a sentence is either an atom, a boolean or quantified sentence, an irregular sentence, or a
sentence with an attached comment, or an irregular sentence. The current specification does not recognize any
irregular sentence forms. They are included in the abstract syntax to accommodate future extensions to Common
Logic, such as modalities.

Figure 23 Sentences

13.5.1 Biconditional

Description

A Biconditional (or equivalence relation), consisting of (iff s1 s2), asserts that it is

true if I(s1) = I(s2), otherwise false.

Essentially, this means that each of the two sentences implies the other.

Attributes

None.

Associations

• lvalue: Sentence [1] in association LvalueForBiconditional – associates exactly one sentence as the ‘lvalue’ of the
expression

• rvalue: Sentence [1] in association RvalueForBiconditional – associates exactly one sentence as the ‘rvalue’ of the
expression

• Specialize Class BooleanSentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

Sentence

CommentedSentence
comment : String

1

0..1

1

0..1

Conjunction Disjunction Implication BiconditionalNegation

QuantifiedSentenceAtom

ExistentialQuantification UniversalQuantification

[1]
IrregularSentenceBooleanSentence
Ontology Definition Metamodel 127

13.5.2 CommentedSentence

Description

Provides the capability of commenting sentences as well as commented sentences.

Attributes

• comment: String [1] – represents the comment about the sentence

Associations

• sentence: Sentence [1] in association CommentForSentence – associates exactly one sentence as the argument of
the expression

• Specialize Class Sentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in the specification.

13.5.3 Conjunction

Description

A conjunction, consisting of a set of conjuncts, (and s1 ... sn), asserts that it is

false if I(si) = false for some i in 1 … n, otherwise true.

Essentially, a conjunction means that all its components are true. Note that true is defined as the empty case of a
conjunction – there are no explicit definitions of true and false in CL. These definitions are conventional in formal
logic and knowledge representation work.

Attributes

None.

Associations

• conjuncts: Sentence [0..*] in association Conjunction – associates zero or more sentences as conjuncts of the
expression

• Specialize Class BooleanSentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].
128 Ontology Definition Metamodel

13.5.4 Disjunction

Description

A disjunction, consisting of a set of disjuncts, (or s1 ... sn), asserts that it is

true if I(si) = true for some i in 1 … n, otherwise false.

Essentially, a disjunction means that at least one of its components is true. Note that false is defined as the empty
case of a disjunction.

Attributes

None.

Associations

• disjuncts: Sentence [0..*] in association Disjunction – associates zero or more sentences as disjuncts of the expres-
sion

• Specialize Class BooleanSentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

13.5.5 ExistentialQuantification

Description

An existentially quantified sentence, consisting of (exists (var) body), asserts that if for some name map B on
{var}, IB(body) = true, then true; otherwise, false. An existentially quantified sentence means that
its body is true for some interpretation of its variables. It consists of a sequence of bound names and a body that is a
sentence.

Attributes

None.

Associations

• Specialize Class QuantifiedSentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].
Ontology Definition Metamodel 129

13.5.6 Implication

Description

An implication, consisting of (implies s1 s2), asserts that it is

false if I(s1) = true and I(s2) = false, otherwise true.

Essentially, this means that the antecedent implies the consequent.

 Attributes

None.

Associations

• antecedent: Sentence [1] in association AntecedentForImplication – associates exactly one sentence as the ante-
cedent of the expression

• consequent: Sentence [1] in association ConsequentForImplication – associates exactly one sentence as the conse-
quent of the expression

• Specialize Class BooleanSentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

13.5.7 IrregularSentence

Description

Provides the placeholder for irregular sentences in the metamodel, potentially for use with modal sentence
requirements for the Semantics for Business Vocabularies and Rules (SBVR) specification.

Attributes

None.

Associations

• Specialize Class Sentence

Constraints

None.

Semantics

None.
130 Ontology Definition Metamodel

13.5.8 Negation

Description

A negation, consisting of (not s), asserts that it is true if I(s) = false, otherwise false. Essentially,
a negation means that its inner sentence is false.

Attributes

None.

Associations

• sentence: Sentence [1] in association NegationSentence – associates exactly one sentence as the argument of the
expression

• Specialize Class BooleanSentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

13.5.9 QuantifiedSentence

Description

QuantifiedSentence is an abstract class representing quantified sentences – it was introduced primarily as a notational
convenience for the purposes of simplifying the metamodel. Quantifiers may bind any number of variables; bound
variables may be restricted to a named category.

Attributes

None.

Associations

• body: Sentence [1] in association QuantificationForSentence – associates exactly one sentence (body) with the
expression

• boundName: LogicalName [0..*] in association NameBoundByQuantifier – associates zero or more bound vari-
ables with the expression

• Specialize Class Sentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].
Ontology Definition Metamodel 131

13.5.10 UniversalQuantification

Description

A universally quantified sentence, consisting of (forall (var) body), asserts that if for every name map B on
{var}, IB(body) = true, then true; otherwise, false. A universally quantified sentence means that
its body is true for any interpretation of its variables. It consists of a sequence of bound names and a body that is a
sentence.

Attributes

None.

Associations

• Specialize Class QuantifiedSentence

Constraints

None.

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

13.6 The Boolean Sentences Diagram
A Boolean sentence has a type, called a connective, and a number of sentences called the components of the Boolean
sentence, as shown in Figure 24. The number depends on the particular type. Every common logic dialect must
distinguish the conjunction, disjunction, negation, implication and biconditional types with respectively any number,
any number, one, two and two components.

Figure 24 Boolean Sentences

Conjunction Disjunction Negation Implication

Sentence
0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

1

0..1

1

0..1

1

0..1

+antecedent
1

0..1

1

0..1

+consequent
1

0..1

Biconditional

1

0..1

+lvalue
1

0..1

1

0..1

+rvalue
1

0..1

There are no explicit 'true' and 'false' elements in the metamodel. These
are empty cases of Conjunction (true) and Disjunction (false). That is
why a Disjunction or Conjunction of zero sentences is allowed.

BooleanSentence

+conjuncts +disjuncts
132 Ontology Definition Metamodel

13.7 The Quantified Sentences Diagram
A quantified sentence has a type, called a quantifier, and a set of names called the bound names, and a sentence
called the body of the quantified sentence, as shown in Figure 25. Every common logic dialect must distinguish the
universal and the existential types of quantified sentence. Any occurrence of a bound name in the body is said to be
bound in the body; any name which occurs in the body and is not bound in the body is free in the body.

Figure 25 Quantified Sentences

13.8 Summary of CL Metamodel Elements with Interpretation
Table 32 below presents a summary of the elements in the metamodel (not exhaustive) with the corresponding
elements of the core abstract syntax and their interpretation, derived from Table 1 and the summary given in section
6.5 of the [ISO 24707] Common Logic Specification.

Table 32 CL Metamodel Summary with Interpretation

CL Metamodel
Element(s)

CL Core Syntax Interpretation

If E is an expression of the
form

then I(E) =

LogicalName name N intI(N)

SequenceVariable sequence variable s seqI(s)

Term, FunctionalTerm,
AtomicSentence

term sequence t1...tn:
[t1]...[tn]

<I(t1)...I(tn)>

Term, FunctionalTerm,
AtomicSentence

term sequence t1...tn with
sequence variable s:
[t1]...[tn][s]

<I(t1)...I(tn)>;I(s)

Equation term which is an equation
containing terms t1, t2: (=
[t1][t2])

true if I[t1] = I[t2], otherwise
false

FunctionalTerm term with operator o and term
sequence s: ([o][s])

funI(I(o))(I(s)), i.e., the x such
that <(I(s),x)> is in (I(o))

UniversalQuantification ExistentialQuantification

Sentence

LogicalName
name : String

QuantifiedSentence
0..1

1

0..1

+body
1

0..*0..1
+boundName

0..*0..1
Ontology Definition Metamodel 133

Atom, AtomicSentence atom with predicate p and term
sequence s: ([p][s])

true if I(s) is in relI(I(p)),
otherwise false

BooleanSentence,
Negation

boolean sentence of type
negation and component c: (not
[c])

true if I(c) = false, otherwise
false

BooleanSentence,
Conjunction

boolean sentence of type
conjunction and components
c1...cn: (and [c1]...[cn])

true if I(c1) = ... = I(cn) = true,
otherwise false

BooleanSentence,
Disjunction

boolean sentence of type
disjunction and components
c1...cn: (or [c1]...[cn])

false if I(c1) = ... = I(cn) =
false, otherwise true

BooleanSentence,
Implication

boolean sentence of type
implication and components c1,
c2: (implies [c1][c2])

false if I(c1) = true and I(c2) =
false, otherwise true

BooleanSentence,
Biconditional

boolean sentence of type
biconditional and components
c1, c2: (iff [c1][c2])

true if I(c1) = I(c2), otherwise
false

QuantifiedSentence,
UniversalQuantification

quantified sentence of type
universal and set of names N
and body B: (forall ([N])[B])

true if for every name map A on
N, I[A](B) is true; otherwise
false

QuantifiedSentence,
ExistentialQuantification

quantified sentence of type
existential and set of names N
and body B: (exists ([N])[B])

false if for every name map A
on N, I[A](B) is false;
otherwise true

Sentence,
IrregularSentence

irregular sentence [S] intI(S)

Phrase, Sentence phrase which is a sentence:
[S]

true if for every sequence map B
on the set of sequence variables
in S, I[B](S) is true; otherwise
false

Phrase, Importation phrase which is an importation
containing name N: (cl:imports
[N])

true if I(text(I(N))) = true,
otherwise false.

Module, ExclusionSet,
Text

module with name N, exclusion
list L, and body text B:
(cl:module [N] (cl:excludes
[L])[B])

true if [I<L](B) = true and
ext(I(N)) = D[I<L]*, otherwise
false.

Text text containing phrases
s1...sn: [S1]...[sn]

true if I(S1) = … = I(Sn) = true,
otherwise false.

Table 32 CL Metamodel Summary with Interpretation

CL Metamodel
Element(s)

CL Core Syntax Interpretation
134 Ontology Definition Metamodel

14 The ER Metamodel

14.1 Overview
The ER (Entity Relationship) Metamodel is a MOF2 compliant metamodel that allows users to define conceptual or
ontology models using the terminology and concepts of entities and relationships. Conceptual (or Ontology)
modeling deals with the question on how to describe in a declarative and reusable way the domain information of
enterprises/applications, their relevant vocabulary, and how to constrain the use of the data, by understanding what
can be drawn from it.

The ER diagram has been widely used as a means for describing conceptual or logical models. The ER model was a
precursor of today’s object models (e.g., UML) or ontology models (e.g., RDFS, OWL) and is probably the first data
model to have the adjective “semantic” applied to it.

14.1.1 Organization of the ER Metamodel

The ER Metamodel uses diagrams to control complexity and promote understanding.

The classes and associations are grouped and illustrated in the following diagrams:

• Model
Contains classes and associations that can be used to define the scope and elements of an ER model.

• Domain
Contains classes and associations that can be used to define ER domains.

• Entity
Contains classes and associations that can be used to define ER entities, including generalization.

• Relationship
Contains classes and associations that can be used to define ER relationships and roles.

• Key
Contains classes and associations that can be used to define ER keys.

• Instance
Contains classes and associations that can be used to define ER entity instances and relationship instances.

• Inheritance
Shows the inheritance hierarchy among all classes in the ER metamodel.

14.2 The Model Diagram
The Model diagram of the ER metamodel is shown in Figure 26.
Ontology Definition Metamodel 135

Figure 26 The Model Diagram of the ER Metamodel

14.2.1 Model

A model consists of the various modeling elements (entities, relationships and domains) that can be used to describe
and represent things of interest to an enterprise.

Description

A model consists of the various modeling elements (entities, relationships and domains) that can be used to describe
and represent things of interest to an enterprise. Entities represent things within a subject area or across areas, and
relationships represent the associations between them. Domains represent logical data types.

Attributes

No additional attributes.

0..*0..1

Domain RelationshipEntity

Model
0..*

+import

0..*

ModelElement
abbreviation : String

Package
namespace : String = ""

0..1

0..*

+parent

0..1

+children

0..*

1..*

0..1

+package1..*

+model0..1

0..*

1

+content 0..*

+package 1

SubjectArea

0..*

0..1

+subjectArea0..*

+model

0..1

0..*

0..*

+member

0..*

+subjectArea0..*

+package +subjectArea

0..*0..1
136 Ontology Definition Metamodel

Associations

• import: Model [0..*]
This specifies the models that are imported by this model. All model elements in the imported models may be
used in this model for definition of new model elements.

• package: Package [1..*]
This specifies the packages that are owned by this model. A package may contain subpackages.

• subjectArea: SubjectArea [0..*]
This specifies the subject areas that are owned by this model.

Constraints

No additional constraints.

Semantics

A model provides a container for modeling elements. If a model is removed, so are the modeling elements owned by
it. A model owns modeling elements through packages.

14.2.2 ModelElement

A model element is a common superclass of entity, relationship and domain.

Description

A model is a common superclass of entity, relationship and domain. ModelElement is an abstract metaclass.

Attributes

• abbreviation: String
This represents the default abbreviation for the name of this model element.

Associations

• package: Package [1]
This represents the package that owns this model element.

• subjectArea: SubjectArea [0..*]
This specifies the subject areas that this model element is a member of.

Constraints

No additional constraints.

Semantics

See Description.

14.2.3 Package

A package provides a mechanism for organizing model elements in a model.

Description

A package provides a mechanism for organizing model elements in a model. A package may contain subpackages,
organized as a hierarchy.
Ontology Definition Metamodel 137

Attributes

• namespace: String =””
An URI representing the namespace that this package belongs to. All model elements owned by this package
belong to the namespace.

Associations

• children: Package [0..*]
This specifies the packages that are the children of this package.

• model: Model [0..1]
This specifies the model that owns this package. Only root packages are owned by a model

• content: ModelElement [0..*]
This specifies the model elements that are owned by this package.

• parent: Package [0..1]
This specifies the package that is the parent of this package. Root packages (i.e., packages owned by the model)
do not have parent.

• subjectArea: SubjectArea [0..*]
This specifies the subject areas that are owned by this package.

Constraints

No additional constraints.

Semantics

A package provides provides a mechanism for organizing model elements in a model. If a package is removed, so are
the model elements owned by it. A package is either owned by a model (in which case it is a root package) or it has
parent.

14.2.4 SubjectArea

A subject area provides a mechanism for logically grouping or classifying model elements in a model.

Description

A subject area provides a mechanism for logically grouping or classifying model elements in a model.

Attributes

No additional attributes.

Associations

• model: Model [0..1]
This specifies the model that owns this subject area.

• member: ModelElement [0..*]
This specifies the model elements that are members of this subject area.

• package: Package [0..1]
This specifies the package that owns this subject area.
138 Ontology Definition Metamodel

Constraints

No additional constraints.

Semantics

A subject area provides a mechanism for logically grouping or classifying model elements in a model. It is owned by
either a model or a package..

14.3 The Domain Diagram
The Domain diagram of the ER metamodel is shown in Figure 27.

Figure 27 The Domain Diagram of the ER Metamodel

AtomicDomain
baseType : String

ListDomain
itemType : String

UnionDomain
memberTypes : String

DomainConstraintType
totalDigits
fractionDigits
pattern
enumeration
whiteSpace
length
maxLength
minLength
maxInclusive
maxExclusive
minInclusive
minExclusive

<<enumeration>>

DomainConstraint
constraintType : DomainConstraintType
value : String
valueType : String

Domain

1 0..*

+domain

1

+constraints

0..*

0..1

+baseDomain

0..1
Ontology Definition Metamodel 139

14.3.1 AtomicDomain

Atomic domains are those having values which are regarded as being indivisible.

Description

Atomic domains are those having values which are regarded as being indivisible. Atomic domains restrict, in a
manner described by their constraints, the value space of the datatype identified via the baseType attribute.

Attributes

• baseType: String
This identifies the base datatype of this atomic domain. A base datatype is an XML Schema primitive datatype
[XML Schema Datatypes].

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See Description.

14.3.2 Domain

Domain represents user-defined datatypes and can be used as the type of Attributes.

Description

Domain represents user-defined datatypes and can be used as the type of Attributes. Domain is an abstract metaclass.

Attributes

No additional attributes.

Associations

• baseDomain: Domain [0..1]
This identifies the base domain that this domain is derived from.

• constraints: DomainConstraints [0..*]
This specifies the constraints that applies to this domain.

Constraints

No additional constraints.

Semantics

See Description.

14.3.3 DomainConstraint

Domain constraints are used to restrict the value space of datatypes.
140 Ontology Definition Metamodel

Description

Domain constraints are used to restrict the value space of datatypes. Constraining the value space consequently
constrains the lexical space. A value space is the set of values for a given datatype, whereas a lexical space is the set
of valid literals for a datatype.

Attributes

• constraintType: DomainConstraintType
This identifies the type of this domain constraint. There are twelve types of domain constraints: totalDigits, frac-
tionDigits, pattern, enumeration, whiteSpace, length, maxLength, minLength, maxInclusive, maxExclusive, min-
Inclusive, minExclusive. The allowed types depend on the kind of domain (AtomicDomain, ListDomain, or
UnionDomain) and the baseType (in the case of AtomicDomain). See [XML Schema Datatypes] for description.

• value: String [1..*]
This specifies the value(s) of this domain constraint .

• valueType: String
This specifies the datatype of the value(s) of this domain constraint. The allowed datatype must be an XML
Schema primitive datatype and it depends on the type of domain constraint as follows [XML Schema Datatypes]:
 totalDigits - positiveInteger
 fractionDigits - nonNegativeInteger
 pattern - string (regular expression)
 enumeration - baseType of AtomicDomain
 whiteSpace - string (‘preserve’, ‘replace’, ‘collapse’)
 length - nonNegativeInteger
 maxLength - nonNegativeInteger
 minLength - nonNegativeInteger
 maxInclusive - baseType of AtomicDomain
 maxExclusive - baseType of AtomicDomain
 minInclusive - baseType of AtomicDomain
 minExclusive - baseType of AtomicDomain

Associations

• domain: Domain
This identifies the domain that owns this domain constraint.

Constraints

No additional constraints.

Semantics

See Description.

14.3.4 ListDomain

List domains are those having values each of which consists of a finite-length (possibly empty) sequence of atomic
values.

Description

List domains are those having values each of which consists of a finite-length (possibly empty) sequence of atomic
values. The value space of a list domain is a set of finite-length sequences of atomic values. The lexical space of a
list datatype is a set of literals whose internal structure is a space-separated sequence of literals of the type of the
items in the list.
Ontology Definition Metamodel 141

Attributes

• itemType: String
This identifies the datatype of the item(s) that may participate in the list. It may be an XML Schema primitive
datatype or an atomic domain.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See Description. The following types of domain constraint apply to list domain: pattern, enumeration, whiteSpace,
length, maxLength, minLength.

14.3.5 UnionDomain

Union domains are those whose value spaces and lexical spaces are the union of the value spaces and lexical spaces
of one or more other domains.

Description

Union domains are those whose value spaces and lexical spaces are the union of the value spaces and lexical spaces
of one or more other domains.

Attributes

• memberType: String [1..*]
This identifies the datatype of the member(s) that may participate in the union. It may be an XML Schema primi-
tive datatype or an atomic domain..

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See Description.

14.4 The Entity Diagrams
The Entity diagram of the ER metamodel is shown in Figure 28.
142 Ontology Definition Metamodel

Figure 28 The Entity Diagram of the ER Metamodel

14.4.1 Attribute

An attribute represents a common characteristic of some entity instances.

Description

An attribute represents a common characteristic of some entity instances. It captures a single piece of information
about the entity instance.

Attributes

• datatype: String
This specifies the datatype of this attribute.

• defaultValue: String
This specifies the default value of this attribute.

• derived: Boolean
This specifies whether this attribute is derived. The default is “false”, i.e., an attribute is not derived by default.

LanguageType
OCL
XML
ENGLISH

<<enumeration>>

EntityConstraint
languageType : LanguageType
expression : String

Generalization
discriminator : String
disjoint : boolean
complete : boolean

Attribute
dataType : String
defaultValue : String
required : boolean
derived : boolean
surrogateKey : boolean

Entity
0..*1

+constraints

0..*

+entity

1

0..*

1

+specializations 0..*

+supertype 1

0..* 1+generalizations 0..* +subtype 1

0..*

1

+attributes 0..*

+entity

1

Ontology Definition Metamodel 143

Derived attributes are those that are computed from other attributes.

• required: Boolean
This specifies whether this attribute is required. A required attribute must have a value for each entity instance that
has it as a characteristic.

• surrogateKey: Boolean
This specifies whether this attribute is a surrogate key. A surrogate key is an arbitrary number that is assigned to
an entity instance to uniquely identify it within an entity. A surrogate key is often the best choice for a primary
key.

Association

• entity: Entity
This specifies the entity that owns this attribute.

Constraints

No additional constraints.

Semantics

See description.

14.4.2 Entity

Entities represents persons, places, or things that have common characteristics.

Description

Entities represents persons, places, or things that have common characteristics. Entities provide an abstraction
mechanism for grouping things with common characteristics

Attributes

No additional attributes.

Associations

• attribute: Attribute [0..*]
This specifies the attributes that are owned by this entity.

• constraints: EntityConstraint [0..*]
This specifies the constraints that apply to this entity.

• generalizations: Generalization [0..*]
This specifies the generalizations for this entity. These generalizations navigate to more general entities in the gen-
eralization hierarchy.

• keys: Key [0..*]
This specifies the keys that are owned by this entity.

• relationships: Relationship [0..*]
This specifies the relationships that are (logically) owned by this entity.

• role: Role [0..*]
This specifies the roles that this entity plays.

• specializations: Generalization [0..*]
144 Ontology Definition Metamodel

This specifies the specializations for this entity. These specializations navigate to more specific entities in the gen-
eralization hierarchy.

Constraints

No additional constraints.

Semantics

The purpose of an entity is to provide an abstraction mechanism for grouping things with common characteristics. A
thing can be an instance of one and only one entity.

14.4.3 EntityConstraint

Entity constraints are used to restrict the instances of entities.

Description

Entity constraints are used to restrict the instances of entities. All instances of an entity must satisfy its entity
constraints.

Attributes

• expression: String
This specifies the content of this entity constraint.

• languageType: LanguageType
This specifies the language used to express the content of this entity constraint. The allowed languages are:
English, OCL and XML.

Association

• entity: Entity
This specifies the entity that owns this entity constraint.

Constraints

No additional constraints.

Semantics

See description.

14.4.4 Generalization

A generalization is a taxonomic relationship between a more general (supertype) entity and a more specific (subtype)
entity.

Description

A generalization is a taxonomic relationship between a more general (supertype) entity and a more specific (subtype)
entity. Each instance of the subtype entity is also an instance of the supertype entity. Thus, the subtype entity
indirectly has attributes of the supertype entity.

Attributes

• complete: Boolean
This specifies whether this generalization is complete. A complete generalization indicates that all possible sub-
Ontology Definition Metamodel 145

type entities are included in the generalization structure. An incomplete generalization indicates that there may be
other subtype entities that have not yet been discovered.

• discriminator: String
This specifies the subtype discriminator for this generalization. The subtype discriminator is an attribute of the
supertype entity. It may be used to distinguish one subtype entity from another.

• disjoint: Boolean
This specifies whether this generalization is disjoint. In a disjoint generalization, each instance in the supertype
can relate to one and only one subtype. In a non-disjoint generalization, each instance in the supertype can relate
to one or more subtypes.

Association

• subtype: Entity
This references the more specific (subtype) entity in this generalization relationship.

• supertype: Entity
This references the more general (supertype) entity in this generalization relationship.

Constraints

No additional constraints.

Semantics

See description.

14.5 The Relationship Diagram
The Relationship diagram of the ER metamodel is shown in Figure 29.
146 Ontology Definition Metamodel

Figure 29 The Relationship Diagram of the ER Metamodel

14.5.1 Relationship

Relationships represent connections, links, or associations between two or more entities.

Description

Relationships represent connections, links, or associations between two or more entities. Relationships are binary in
nature, and may be bi-directional or uni-directional.

Attributes

• relationshipType: RelationshipType
This specifies the type of this relationship. Allowed relationship types are: IDENTIFYING,
NON_IDENTIFYING, and NON_SPECIFIC. An identifying relationship is one whereby an instance of the child
entity is identified through its association with a parent entity.

Associations

• role: Role [2]

RelationshipType
IDENTIFYING
NON_IDENTIFYING
NON_SPECIFIC

<<enumeration>>

Attribute
Entity

1 0..*

+entity

1

+attributes

0..*

Relationship
relationshipType : RelationshipType 0..10..*

+owningEntity

0..1

+relationships

0..*

Key

0..* +attributes0..*1

0..*

+entity1

+keys0..*
Role

verbPhrase : String
navigable : boolean
<<0..1>> cardinality : Integer
maxCardinality : Integer
minCardinality : Integer

0..*

0..1

+role

0..*

+entity 0..1
1

2

+relationship1

+roles2

0..10..*

+key

0..1

+role

0..*
Ontology Definition Metamodel 147

This specifies the roles owned by this relationship.

• owningEntity: Entity [0..1]
This specifies the entity that owns this relationship.

Constraints

 No additional constraints.

Semantics

See Description.

14.5.2 Role

This represents the role that an entity plays in a relationship.

Description

This represents the role that an entity plays in a relationship.

Attributes

• cardinality: Integer [0..1]
This is used to describe a role that has exactly N distinct entities participating in a relationship, where N is the
value of the cardinality constraint.

• maxCardinality: Integer
This is used to describe a role that has at most N distinct entities participating in a relationship, where N is the
value of the maximum cardinality constraint.

• minCardinality: Integer
This is used to describe a role that has at least N distinct entities participating in a relationship, where N is the
value of the minimum cardinality constraint.

• navigable: Boolean
This specifies whether this role is navigable. For a uni-directional relationship only one of the roles is navigable.

• verbPhrase: String
This specifies a verb phrase that can be used instead of the name of this role in text so that the text will be more
human readable.

Associations

• entity: Entity [0..1]
This specifies the entity that plays this role.

• key: Key [0..1]
This specifies the key that is associated with this role. The key belongs to the entity that plays this role.

• relationship: Relationship
This specifies the owning relationship of this role.

Constraints

 No additional constraints.
148 Ontology Definition Metamodel

Semantics

See Description.

14.6 The Key Diagram
The Key diagram of the ER metamodel is shown in Figure 30.

Figure 30 The Key Diagram of the ER Metamodel

14.6.1 AlternateKey

Alternate keys are keys that meet the requirements for being a primary key.

Description

Alternate keys are keys that meet the requirements for being a primary key. An alternate key is an attribute or
attributes that uniquely identify an instance of an entity.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See Description.

PrimaryKey

InversionEntryAlternateKey

Key

ForeignKey
Ontology Definition Metamodel 149

14.6.2 ForeignKey

A foreign key identifies a set of attributes in one entity instance that uniquely identifies an instance of another entity
containing a matching primary key.

Description

A foreign key identifies a set of attributes in one entity instance that uniquely identifies an instance of another entity
containing a matching primary key.

Attributes

No additional attributes.

Associations

No additional attributes.

Constraints

No additional constraints.

Semantics

See Description.

14.6.3 InversionEntry

An inversion entry is an attribute or attributes that do not uniquely identify an instance of an entity, but nonetheless
are often used to identify instances of the entity.

Description

An inversion entry is an attribute or attributes that do not uniquely identify an instance of an entity, but nonetheless
are often used to identify instances of the entity. Examples are people’s name.

Attributes

No additional attributes.

Associations

No additional attributes.

Constraints

No additional constraints.

Semantics

See Description.

14.6.4 Key

A key is an attribute or attributes that identifies an instance of an entity.
150 Ontology Definition Metamodel

Description

A key is an attribute or attributes that identifies an instance of an entity. A key may or may not be unique. Key is an
abstract class.

Attributes

No additional attributes.

Associations

• attribute: Attribute [0..*]
This specifies the attributes that are members of this key.

• entity: Entity
This specifies the entity that owns this key.

• role: Role [0..*]
This specifies the role that is associated with this key.

Constraints

No additional constraints.

Semantics

See Description.

14.6.5 PrimaryKey

A primary key is an attribute or attributes that uniquely identifies an instance of an entity.

Description

A primary key is an attribute or attributes that uniquely identifies an instance of an entity. An entity has only one
primary key.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

See Description.

14.7 The Instance Diagram
The Instance diagram of the ER metamodel is shown in Figure 31.
Ontology Definition Metamodel 151

Figure 31 The Instance Diagram of the ER Metamodel

14.7.1 AttributeInstance

This is used to represent the value of an attribute.

Description

This is used to represent the value of an attribute.

Attributes

• value: String
This contains the literal value of this attribute instance.

Associations

• attribute: Attribute
This identifies the attribute that this attribute instance is for.

• entityInstance: EntityInstance
This identifies the entity instance that owns this attribute instance.

Constraints

No additional constraints.

Attribute AttributeInstance

value : String
1

+attribute

1

Entity EntityInstance

0..*

1

+attributeInstances 0..*

+entityInstance 1

1

+type

1

Role
RoleInstance

1

+entityInstance

1

1

+role

1

Relationship
RelationshipInstance

2

1

+roleInstances 2

+relationshipInstance 1

1

+type

1

Instance

Model Extent

0..*

1

+content 0..*

+extent 1

1

+model

1

152 Ontology Definition Metamodel

Semantics

See Description.

14.7.2 EntityInstance

This represents an instance of an entity.

Description

This represents an instance of an entity. An entity instance can only be an instance of one entity.

Attributes

No additional attributes.

Associations

• attributeInstances: AttributeInstance [0..*]
This specifies the attribute instances that are owned by this entity instance.

• type: Entity
This specifies the entity that is the type of this entity instance.

Constraints

No additional constraints.

Semantics

See Description.

14.7.3 Extent

This represents the collection of entity instances and relationship instances that have been instantiated from an ER
model.

Description

This represents the collection of entity instances and relationship instances that have been instantiated from an ER
model.

Attributes

No additional attributes.

Associations

• model: Model
This identifies the Model from which the entity instances and relationship instances are instantiated.

• content: Instance [0..*]
This identifies the entity instances and relationship instances that are members of this extent.

Constraints

No additional constraints.
Ontology Definition Metamodel 153

Semantics

See Description.

14.7.4 Instance

This represents an entity instance or a relationship instance.

Description

This represents an entity instance or a relationship instance. Instance is a common superclass of EntityInstance and
RelationshipInstance. It is an abstract metaclass.

Attributes

No additional attributes.

Associations

• extent: Extent
The identifies the extent that owns this instance.

Constraints

No additional constraints.

Semantics

See Description.

14.7.5 RelationshipInstance

This represents an instance of a relationship.

Description

This represents an instance of a relationship. A relationship instance can only be an instance of one relationship.

Attributes

No additional attributes.

Associations

• roleInstances: RoleInstance [2]
This identifies the role instances that are owned by this relationship instance. Role instances are used to reference
the entity instances that participate in a relationship.

• type: Relationship
This specifies the relationship that is the type of this relationship instance.

Constraints

No additional constraints.

Semantics

See Description.
154 Ontology Definition Metamodel

14.7.6 RoleInstance

This is used to represent the value of a role.

Description

This is used to represent the value of a role.

Attributes

No additional attributes.

Associations

• entityInstance: EntityInstance
This identifies the entity instance that plays the role that this role instance is for.

• relationshipInstance: RelationshipInstance
This identifies the relationship instance that owns this role instance.

• role: Role
This identifies the role that this role instance is for.

Constraints

No additional constraints.

Semantics

See Description.

14.8 The Inheritance Diagram
The Inheritance diagram of the ER metamodel is shown in Figure 32.
Ontology Definition Metamodel 155

Figure 32 The Inheritance Diagram of the ER Metamodel

14.8.1 NamedElement

This represents a named model element.

Description

This represents a named model element.

Attributes

• name: String [0..1]
The name of this model element.

• label: String [0..1]
This may be used to provide a human-readable version of this model element’s name.

• description: String [0..1]

NamedElement
name : String
uri : String
label : String
description : String

ModelElement Key

ForeignKey
Relationship

Enti tyConstraint

DomainConstraint

Domain

Generalization

Enti ty

AtomicDomain ListDomain UnionDomain

InversionEntry

Instance

RelationshipInstanceRole

RoleInstance

Enti tyInstance

Attribute

AttributeInstance

AlternateKey

PrimaryKey

Package

Model

Extent
156 Ontology Definition Metamodel

This may be used to provide a human-readable description of this model element.

Associations

No associations.

Constraints

No constraints.

Semantics

See Description.

14.9 Examples
To illustrate the usage of the ER metamodel, two example object diagrams are provided below. The Model Example
diagram is shown in Figure 33. The Instance Example diagram is shown in Figure 34.
Ontology Definition Metamodel 157

Figure 33 The Model Example Diagram of the ER Metamodel

PersonalCar :
Entity

Car : Enti ty

Person : Enti ty

Vehicle : Entity

ownedBy :
Relationship

ownedItem :
Role

owner : Role

color : Attribute

cyl inder :
Attribute

Car is a type of Vehicle, which has color.

A PersonalCar is a Car owned by a Person.

 : Generalization

 : Generalization

fi rstName :
Attribute

roleentity

attributesentity

general izations

subtype

specializations

supertype

roleentity

attributesentity

relationship

roles

relationship

roles

supertype

specializations

subtype

general izations

entity

attributes
158 Ontology Definition Metamodel

Figure 34 The Instance Example Diagram of the ER Metamodel

Carl owns a car that is red and
another car that is blue.

Carl :
EntityInstance

BlueCar :
EntityInstance

RedCar :
EntityInstance

PersonalCar :
Entity

PersonalCar :
Entity

 :
RelationshipInstance

ownedBy :
Relationship

ownedBy :
Relationship

 : RelationshipInstance

Person :
Entity

 :
AttributeInstance

 :
AttributeInstance

 : RoleInstance

BlueCar :
EntityInstance

 : RoleInstance

 : RoleInstance

 : RoleInstance

 : AttributeInstance

ownedItem : Role

Note: Names (Carl , RedCar, BlueCar)
are used as shorthand notation for
identifying entity instances.

color : Attribute

color : Attribute

fi rstName :
Attribute

Carl :
EntityInstance

Carl : EntityInstance

value: "Carl"

value: "RED"

value="BLUE"

owner : Role

ownedItem : Role

owner : Role

RedCar : EntityInstance

attributeInstancesentityInstance

attributeInstancesentityInstance

attributeInstancesentityInstancetype

type

roleInstances

relationshipInstance

roleInstances
relationshipInstancetype

type

roleInstances
relationshipInstance

roleInstances

relationshipInstance

type

attribute

attribute

role

entityInstance

role

entityInstance

role

entityInstance

role

entityInstance

attribute
Ontology Definition Metamodel 159

160 Ontology Definition Metamodel

15 The Topic Map Metamodel
The Topic Maps Meta-Model is defined based primarily upon ISO 13250-2 Data Model [TMDM] and to a lesser
degree ISO 13250-3 XML Syntax. The TMDM provides the most authoritative definition of the abstract syntax for
Topic Maps. The following discussion assumes a basic understanding of Topic Maps.

15.1 Topic Map Constructs
Some of the primary elements in the TM meta-model are shown in Figure 35. Topic Maps are composed of a set of
Topics and a set of Associations defining multi-way relations among those Topics.

Figure 35 Primary Elements in the Topic Map Metamodel

Each Topic is about a single Subject. Subjects in TM may be anything physical or conceptual. A machine addressable
Subject will have a locator (e.g. a URL) while non-machine addressable subjects will have an identifier (e.g. the URL
of a page about the subject or a URN). Topics are roughly equivalent to RDF Resources, describing elements in a
world of discourse. Note that this similarity does not include RDF Literals that in TMs are not normally considered
Topics.

Association

AssociationRole TopicNam eOccurrence

MapItem TopicMap0. .n 1
+content

0. .n
+parent

1

/conta inm ent

Scope_ab leType _ab l e

Characteristic

TopicMapConstruct
item Identifiers : String

Topic

0..n

0..n

+s cope
0..n

+s copeOf
0..n

1

0..n

+type
1

+typeOf
0..n

0..n

1

+cha racteri s tics
0..n

+owner
1

/hasA

0..1

0..1

+re ifi er
0..1

+reified
0..1

/re ification

Variant

1..n

0..n

+s cope
1..n

+s copeOf
0..n

Vscope_topic
Ontology Definition Metamodel 161

15.1.1 TopicMapConstruct

Description

TopicMapConstructs are the abstract collection of elements that are part of any Topic Map. All first class elements
are a sub-type of Topic Map Construct and may optionally have a Source Locator.

Attributes

• itemIdentifiers [0..n] : string. Each instance is identifying.

Associations

• reifier[0..1]: Topic – An optional Topic that reifies a TopicMapConstruct, by having the construct as its subject.
Derived by a Topic subjectIndicator referencing a TopicMapConstruct.

Constraints

• It is an error for two different Topic Map Constructs to have source locators that are equal, expressed as the fol-
lowing OCL

context TopicMapConstruct inv:
TopicMapConstruct.allInstances()->

 forAll(v_tmc1, v_tmc2 | v_tmc1.itemIdentifiers->

 forAll(v_sl1 | not(v_tmc2.itemIdentifiers-> includes(v_sl1)))
)

Semantics

The itemIdentifiers assigned to a TopicMapConstruct allows references to it. ItemIdentifiers may be freely assigned
to TopicMapConstructs based upon source syntax or other implementation defined methods.

15.1.2 TopicMap

Description

A Topic Map represents a particular view of a set of subjects. It is a collection of MapItems.

Similar Terms

RDF Graph, Ontology

Attributes

None.

Associations

• content[0..n]: MapItem – the set of instances of MapItem that are part of this TopicMap, derived from the union of
topics and associations.

• topics [0..n]: Topic – the set of Topics that are contained in this topic map.

• associations [0..n]: Association – the set of Associations that are contained in this topic map.

Constraints

None.
162 Ontology Definition Metamodel

Semantics

A TopicMap itself does not represent anything, and in particular has no subject associated with it. It has no
significance beyond its use as a container for Topics and Associations and the information about subjects they
represent.

15.1.3 MapItem

Description

MapItems are those TopicMapConstructs that make up the contents of a Topic Map; they are those constructs that a
topic map can directly contain.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

MapItems are an abstract class of items that may be part of a topic map.

15.1.4 Topic

Description

Topic is the fundamental MapItem in a Topic Map. The class diagram for Topic is shown in Figure 36. Each Topic
represents a Subject in the domain of discourse.
Ontology Definition Metamodel 163

Figure 36 The Topic Class

Similar Terms

Node, Resource, Entity

Attributes

• subjectLocator[0..1]: string – an optional resource reference that locates a machine addressable subject.

• subjectIdentifiers[0..n]: string – the set of 0 or more resource references that identify a machine addressable indi-
cator of a non-machine addressable subject.

Associations

• parent[1]:TopicMap – the required TopicMap that this Topic is part of.

• roles[0..n]: AssociationRole – the collection of AssociationRoles that are the roles that this Topic plays in Associ-
ations.

• occurrences[0..n]: Occurrence – the set of 0 or more occurrences for this Topic.

• topicNames[0..n]: TopicName – the set of 0 or more topic names for this Topic.

• characteristics[0..n]: Characteristic – the derived set of characteristics for this topic; it is the union of topicNames,
occurrences, and roles

• reified[0..1]: TopicMapConstruct – A TopicMapConstruct may optionally be reified, becoming the subject of a
Topic. A TopicMapConstruct is reified if it is another Topic’s subjectIdentifier.

Association

MapItem Occurrence

AssociationRole

1

1..n

+parent
1

+roles
1..n

Characteristic

TopicName

TopicMap

1

0..n

+parent
1

+associations
0..n

1

0..n

+parent
1

+content
0..n

/containment

Topic
subjectLocator : String
subjectItentifiers : String

1
0..n

+parent
1

+occurrences
0..n

0..n
1

+roles
0..n

+player
1

1

0..n

+owner
1

+characteristics
0..n

/hasA

1
0..n

+parent
1

+topicNames
0..n

1

0..n

+parent
1

+topics
0..n
164 Ontology Definition Metamodel

Constraints

• All topics must have a value for at least one of subject identifiers or subject locator that is neither the empty set nor
null, expressed in the following OCL.

context Topic inv:

self.subjectIdentifiers->notEmpty() or

self.subjectLocator->notEmpty()

Semantics

Each instance of Topic is associated with exactly one Subject. A subject indicator, subject identifier or a subject
locator identifies that subject. The Topic Map Data Model defines these terms in part as:

• A subject indicator is an information resource that is referred to from a topic map in an attempt to unambigu-
ously identify the subject of a topic to a human being.

• A subject identifier is a locator that refers to a subject indicator.

• A subject locator is a locator that refers to the information resource that is the subject of a topic.

Topic maps contain only subject identifiers and subject locators, both of which refer to a subject indicator.

15.1.5 Association

Description

An Association is a multi-way relationship between one or more Topics. Associations must have a type and may be
defined for a specified scope.

Similar Terms

Relation, Property

Attributes

None.

Associations

• parent[1]:TopicMap – the required TopicMap that this Association is part of.

• roles [1..n]:AssociationRole – An instance of Association is required to be linked to at least one instance of Asso-
ciationRole

Constraints

None

 Semantics

The relationship defined by an Association is a relationship among the included Topic’s subjects, rather that the
Topics themselves.

15.2 Scope and Type
These ‘_able’ abstract classes are intended as a concise mechanism to give a specific set of meta-classes in the TM
meta-model the capability to be typed and scoped; those meta-classes are shown in Figure 35.
Ontology Definition Metamodel 165

15.2.1 Scope_able

Description

Scope_able defines an abstract class that provides the TM scoping mechanism. Subclasses of Scope_able may have a
defined scope of applicability.

Similar Terms

Context, Provenance, Qualification

Attributes

None.

Associations

• scope[0..n]: Topic – the topics which define the scope.

Constraints

None.

Semantics

If the scope association is empty, then the Scope_able items have the default scope.

15.2.2 Type_able

Description

Type_able defines an abstract class that provides the typing mechanism. Subclasses of Type_able must define types.
Elements in TM are singly typed. A typed construct is an instance of its type. Type describes the nature of the
represented construct.

Similar Terms

Type, isA, kindOf

Attributes

None.

Associations

• type [1..1]: Topic – the required topic which defines at most a single type.

Constraints

None.

Semantics

Typing is not transitive.

See also: Section 15.4 discussing published subjects.
166 Ontology Definition Metamodel

15.3 Characteristics
Characteristics model the attributes of a Topic. They include the topic’s names, topic occurrences and the roles that a
topic plays in associations.

Each Topic has a set of Characteristics. Characteristics, as shown in Figure 35, include Association Roles,
Occurrences and Topic Names.

Topic Names and Variant Names are human understandable labels for the Topic. While the primary Topic Name,
termed a Base Name, is required to be a UNICODE string, variant names may include many data types not normally
considered as ‘names’ such as icons, images or audio.

15.3.1 Characteristic

Description

Characteristic is the abstract base class of all Topic characteristics. It is a TopicMapConstruct, and must have a type
and may be limited to a defined scope.

Similar Terms

Property, Attribute, Slot

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Characteristic is an abstract class defining those items which may be characteristics of a Topic. It has no additional
semantics.

15.3.2 AssociationRole

Description

An Association is composed of a collection of roles, which are played by Topics. The AssociationRole captures this
relation. A Topic in an Association plays a particular part or role in the Association. This is specified in an
Association Role. The Association and Association Role construct is similar to a UML Association or to an RDF
Property.

Similar Terms

Role, UML Association End, UML Property

Attributes

None.
Ontology Definition Metamodel 167

Associations

• parent[1]: Association – the required Association which the AssociatioRole is part of.

• player[1]: Topic – the required Topic that plays this role in the parent Association.

Constraints

None.

Semantics

An AssociationRole is the representation of the participation of subjects in an association. The association role has a
topic playing the role and a type that defines the nature of the participation of the player in the association. The roles
and associations are representing the relationships between the participating Topic’s subject, rather than the topics
themselves.

15.3.3 Occurrence

Description

An Occurrence is a Characteristic that is very similar to an attribute. Occurrences are Scope_able and Type_able. The
value of the occurrence is specified by the locator role in the association with the abstract meta-class Resource, as
shown in Figure 37 . The interpretation of the Resource is defined by its concrete specializations.

Similar Terms

Attribute, Slot

Attributes

• value[1]:string – If the datatype is IRI, a locator referring to the information resource the occurrence connects with
the subject, otherwise the string is the information resource.

• datatype[1]:string – A locator identifying the datatype of the occurrence value.

Associations

None.

Constraints

None.

Semantics

It may be mistakenly inferred by the name ‘Occurrence’ that this Characteristic refers only to instances of a Topic.
This is not the case. An Occurrence may be any descriptive information about a Topic, including instances, and may
represent any characteristic of a Topic, including an ‘occurrence’ or instance of the subject. Occurrences are
semantically similar to UML Attributes.
168 Ontology Definition Metamodel

.

Figure 37 Topic Name Class

15.3.4 TopicName

Description

 A TopicName is intended to provide a human readable text name for a topic.

Similar Terms

Label, Comment, Description (Brief)

Attributes

• value: String – The Base Name for this Topic; the string is UNICODE.

Associations

• variants[0..n]: VariantName – Zero or more variations of the TopicName.

Constraints

None.

Semantics

The term ‘name’ should not be misconstrued to imply uniqueness. Neither the topic name, nor it variants, are
identifying; they serve only as human readable labels.

15.3.5 VariantName

Description

VariantName allows alternative names for a Topic to be specified. These names may be any format, including text,
documents, images or icons. VariantNames must have scope.

T o p i c N a m e
v a lu e : S t r i n g

V a r i a n t
v a l u e : S t r i n g
d a t a t y p e : S t r i n g

1

0 . . n

+ p a r e n t
1

+ v a r i a n t s
0 . . n

t o p i c N a m e _ v a r ia n t N a m e

O c c u r r e n c e
v a l u e : S t r i n g
d a t a t y p e : S t r i n g
Ontology Definition Metamodel 169

Similar Terms

Label, Comment, Description (Brief), Icon

Attributes

• value[1]:string – If the datatype is IRI, a locator referring to the information resource the occurrence connects with
the subject, otherwise the string is the information resource.

• datatype[1]:string – A locator identifying the datatype of the occurrence value.

Associations

• scope[1..n] : Topic – The topics which define the scope .

Constraints

• A VariantName is restricted to being a composite part of a TopicName. It cannot exist as a standalone construct as
constrained by the topicName_variantName association multiplicity.

Semantics

Like TopicName variant names are not identifying.

15.4 Published Subjects
A Core set of Topic instances, termed Published Subjects, has been defined as part of the TM standard. These topics
represent special instances of the TM meta-model and any implementation of the TM meta-model should handle
these items as special, reserved topics with meanings as defined in Section 7 of the Topic Map Data Model [TMDM].

In summary, they represent five key areas:

• Types and Instance –Types and their instances are related by three subjects representing the type-instance associa-
tion and, the type and instance association roles. A type is an abstraction that captures characteristics common to a
set of instances. A type may itself be an instance of another type, and the type-instance relationship is not transi-
tive.

• Super and Sub Types – Types may be arranged into a type hierarchy using the supertype-subtype association and,
supertype and subtype association roles. The supertype-subtype relationship is the relationship between a more
general type (the supertype) and a specialization of that type (the subtype). The supertype-subtype relationship is
transitive.

• Special Variant Names – Display and Sort are two special types of variant names appropriate for human display
and sorting.

• Uniqueness – A unique topic characteristic can be used to definitively identify a topic.

• Topic Map Constructs –Subjects that represent the reification of topic map constructs, such as association, associ-
ations-role or occurrence.

• These published subjects are identified by uri with base http://psi.topicmaps.com/iso13250/, called in the ODM by
the Qname prefix ‘tmcore:’.

15.5 Example
Figure 38 depicts a simple instance model of the TM meta-model. The model depicted represents the following
statements:
170 Ontology Definition Metamodel

• A Personal Car is a Car (which may be owned by a Person).

• A Car is a Vehicle (which may have a Color).

• Carl is a person that owns a Personal Car that is red.

The parenthetical statements are not directly represented in Topic Maps.

Figure 38 Instance of Topic Map Metamodel

Vehicle :
(Topic)

Car :
(Topic)

or :
pic)

PersonalCar
: (Topic)

Red :
(Topic)

Carl :
(Topic)

Person :
(Topic)

hasColor :
(Topic)

IsColor :
(Topic)

ColorOf :
(Topic)

CarlsRedCar :
(Topic)

type

type

Ownership :
(Topic)

CarlOwnsCar :
(Association)

Owned :
(Topic) Owner :

(Topic)

type

_anon_3 :
(AssociationRole)

_anon_4 :
(AssociationRole)

topicPlayingRole

type
roles roles

type

_anon_2 :
(AssociationRole)

_anon_1 :
(AssociationRole)

CarColorRed :
(Association)

roles roles
type type

topicPlayingRole

type

topicPlayingRole

type

topicPlayingRole

type
type
Ontology Definition Metamodel 171

172 Ontology Definition Metamodel

16 UML Profiles for RDF Schema and OWL
This profile is based on the UML Kernel package defined in “Unified Modeling Language: Superstructure”, version
2 [UML2] as well as on the Profiles section of the same document. It is designed to support modelers developing
vocabularies or taxonomies in RDF Schema, or richer ontologies in the Web Ontology Language, through reuse of
UML notation using tools that support UML2 extension mechanisms. It

• Reuses UML constructs when they have the same semantics as OWL, or, when this is not possible, stereotypes
UML constructs that are consistent and as close as possible to OWL semantics.

• Uses standard UML 2 notation, or, in the few cases where this is not possible (stereotype property notation), fol-
lows the clarifications and elaborations of stereotype notation being proposed by the UML extension for Systems
Engineering6.

• Leverages the model library provided in Appendix A, Foundation Ontology (M1) for RDFS and OWL.

The profile has been partitioned to support users who wish to restrict their vocabularies to RDF Schema, as well as
to reflect the structure of the RDFS and OWL metamodels (and the languages themselves). It leverages stereotypes
extensively and also uses a few tagged values in traditional fashion. It depends on the metamodels defined in Chapter
11, The RDF Schema Metamodel, and in Chapter 12, The OWL Metamodel, respectively, for overall structure,
semantics and language mapping. It also depends on the model libraries included in Appendix A, Foundation
Ontology (M1) for RDFS and OWL, for certain basic definitions, such as the M1 level elements discussed in Chapter
8, Design Rationale.

16.1 UML Profile for RDF Schema
The UML profile for RDF Schema is organized similarly to the structure of the RDFS Metamodel, but with
additional initial sections describing optional extensions to the basic metamodel to support the structure of RDF
documents and the RDF graph model, respectively.

16.1.1 RDF Document Syntax (Optional)

RDF is the place in the Semantic Web “layer cake” where the languages (including RDF and OWL) are fitted to the
Web. As a result, a few elements are included that are really part of the web architecture, including namespaces, for
example, defined in the RDF syntax specification. This may appear to introduce unnecessary overhead or complexity,
but in fact, these elements are necessary for a complete metamodel designed to support interoperability across
modeling paradigms.

Concepts including RDF document, namespaces, the definitions that map namespaces to namespace prefixes, and the
associations between a set of statements and the document that contains them facilitate the systematic exchange of
these definitions across modeling environments, and can be mapped to similar features in a Common Logic ontology,
Topic Map, UML model, or ER conceptual model.

Figure 39 specifies several concepts that link an RDF document to the names and statements it contains. While both
documents and graphs may have sets of statements associated with them, namespace definitions and the mappings
between namespace prefixes and URIs are associated with RDF documents (in this simplified view of XML Schema
- in actuality, they are associated with XML elements), not with RDF graphs.

6. Systems Modelling Language (SysML) Specification, Addendum to SysML v0.9, Profiles and Model Li-
braries Chapter, http://doc.omg.org/ad/05-06-01.pdf.
Ontology Definition Metamodel 173

Note that the model supports multiple graphs within a document, and the notion that a particular graph may cover
multiple documents. While in common practice there can be a one to one correspondence between a document and a
graph, examples of both kinds of exceptions are included in the set of RDF specifications defining the language and
in related W3C documents.

Single graph covering multiple documents

The ability to refer to definitions that are external to a particular document (e.g., XML Schema Datatypes), and in
OWL, the ability to directly import such definitions, naturally extends a graph beyond the boundaries of a single
document. Additionally, in [RDF Primer], there is a discussion of the use of XML Base, such that relative URIs may
be defined based on a base URI other than that of the document in which they occur. This may be appropriate, for
example, when there are mirror sites that share common definitions and extend them at the mirror site, but where it
is not necessary to duplicate all definitions at every such site. In such cases, a graph can span multiple documents,
and the URI of the mirror site document is distinct from that of its base. As a result, the metamodel provides for the
optional definition of an xml:base distinct from the URI of the document.

Multiple graphs in the same document

It is common practice in ontology development to have multiple “main nodes” in the same document - for example,
multiple concepts whose parent class is simply owl:Thing, or classes without a defined “parent class” in RDF.
Some explicit examples are provided in the discussion of Named Graphs (see http://www.w3.org/2004/03/trix/,
particularly those given on the TriG Homepage, at http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/). One can imagine
others such as when defining SKOS-based concept schemes, or thesauri, and managing multiple versions of such
schemes (see the SKOS Core Guide, http://www.w3.org/TR/swbp-skos-core-guide, and http://www.w3.org/TR/swbp-
thesaurus-pubguide, for more information). The ability to name a graph provides a means by which multiple
component graphs defined in the same document can be referenced externally as a unit, enabling graph mapping and
alignment, for example. Thus, the optional name attribute on the Graph class supports naming graphs for those
applications that require this feature. While the notion of a named graph is not yet part of the formal RDF W3C
recommendations, emerging work on SKOS vocabularies and SPARQL confirms that use of named graphs is
becoming increasingly important to applications, and is considered mainstream.

Bounding an RDF vocabulary

The notion of scope is somewhat opaque in the current set of recommendations that together define RDF and its
vocabulary language, RDF Schema. This is, in part, due to the fact that URIs have global scope in RDF. Yet, we need
a way of talking about and modeling the set of resources that describe a particular vocabulary. Each document is
associated with a resource whose URI reference is the primary URL where the document is published. It is good
practice to include this URL in the serialized form of an RDF XML document, as the value of an xml:base on its
root element. The bounds of a particular RDF vocabulary is the collection of statements (triples) sharing a base URI,
or, in the absence of such a URI, a graph, whose base URI is, by default, that of the document that contains it.

Qualified Names and Transformations

Instructions regarding how QNames and rdf:ID attribute values can be transformed into RDF URI references are
defined in [RDF Syntax]. Additionally, RDF/XML allows further abbreviating RDF URI references through the use
of the XML Infoset mechanism for setting a base URI that is used to resolve relative RDF URI references
(xml:base), or by considering the base URI to be that of the document. The base URI applies to all RDF/XML
attributes that deal with RDF URI references, including rdf:about, rdf:resource, rdf:ID and
rdf:datatype. (See http://www.w3.org/TR/xmlbase/ for more on XML Base.)
174 Ontology Definition Metamodel

Secondly, the rdf:ID attribute on a node element (not property element) can be used instead of rdf:about and
gives a relative RDF URI reference equivalent to ‘#’ concatenated with the rdf:ID attribute value. So for example
if rdf:ID=”name”, that would be equivalent to rdf:about=”#name”. rdf:ID provides an additional check
since the same name can only appear once in the scope of an xml:base value (or document, if none is given), so is
useful for defining a set of distinct, related terms relative to the same RDF URI reference.

Both forms require a base URI to be known, either from an in-scope xml:base, or, in the case of a reference to a
definition outside of the current document, from the URI of the RDF/XML document in which the target definition is
specified.

Figure 39 RDF Document Definitions

16.1.1.1 Document

Description

RDF's conceptual model is a graph. RDF also provides an XML syntax for writing down and exchanging RDF
graphs, called RDF/XML. An RDF document is a serialization of an RDF graph into a concrete syntax, as specified
in [RDF Syntax], which provides the container for the graph, and conventionally also contains declarations of the
XML namespaces referenced by the statements in the document.

RDF refers to a set of URI references as a vocabulary. Often, the URI references in such vocabularies are organized
so that they can be represented as sets of QNames using common prefixes. URI references that are contained in the
vocabulary are formed by appending individual local names to the relevant prefix. This practice is also commonly
used in OWL ontology development for improved readability. While the metamodel does not explicitly support
QNames, the elements required to enable such support in vendor implementations are provided.

RDFSResource

UniformResourceIdentifier
name : String

URIReference 0..* 1
+uriRef
0..*

+uri
1

URIForURIReference

Namespace
0..1

1

+namespace
0..1

+namespaceURIRef
1

URIReferenceForNamespace

NamespaceDefinition
namespacePrefix : String

0..*

1

+namespaceDefinition
0..*

+resolvesTo
1

NamespaceDefinitionForNamespace

LocalName
name : String

<<datatype>>

0..*0..1
+uriRef

0..*
+fragmentIdentifier
0..1
FragmentIdentifierForURIRef

Document

1..* 0..*
+document
1..*

+xmlBase
0..*

NamespaceForDocument

1..* 0..*
+document
1..*

+namespaceDefinition
0..*

NamespaceDefinitionForDocument

0..*

0..*

+document
0..*

+localName
0..*

DocumentContainsLocalName

RDFStatement
isReifiedOnly : Boolean1..* 1..*

+document
1..*

+statement
1..*

{ordered}

StatementForDocument

[1]

[1]

[1]

[0..1]
Ontology Definition Metamodel 175

Attributes

None.

Associations

• localName: LocalName [0..*] in association DocumentContainsLocalName - links a document to the set of local
names it contains

• namespaceDefinition: NamespaceDefinition [0..*] in association NamespaceDefinitionForDocument - links a
document to zero or more namespace definitions that may be used in any RDF (or OWL) assertions contained
within the document

• statement: RDFStatement [1..*] in association StatementForDocument - links a document to the set of triples
(statements) it contains

• xmlBase: Namespace [0..*] in association DefaultNamespaceForDocument - links a document to one or more
default namespaces (xml:base namespaces) associated with the statements in the document

• Specialize Class RDFSResource - an RDF/S document is a resource

Constraints
[1] A document must have a URI.

[2] Local names with URIs that match the URI of the document are contained by (local to) the document.

Semantics

An RDF/XML document is only required to be well-formed XML; it is not intended to be validated against an XML
DTD (or an XML Schema).

16.1.1.2 LocalName

Description

RDF uses an RDF URI Reference, which may include a fragment identifier, as a context free identifier for a resource.
The meaning of a fragment identifier depends on the MIME content-type of a document, i.e. is context dependent.

These apparently conflicting views are reconciled by considering that a URI reference in an RDF graph is treated
with respect to the MIME type application/rdf+xml. Given an RDF URI reference consisting of an absolute
URI and a fragment identifier, the fragment identifier identifies the same thing that it does in an application/
rdf+xml representation of the resource identified by the absolute URI component.

The typical practice is to split a URI reference into two parts such that the right is maximal being an NCName as
specified by XML Namespaces, which might best be implemented by vendors as a method on the model. Atypical
(but formally permitted) practice includes allowing multiple LocalNames for each URIReference, i.e. any split as
above, without the right part being maximal. Also note that some URIrefs (specifically those suggested for user
defined datatypes in XML Schema) cannot be split in this way, since they have no rightmost NCName.

The definitions provided in this extension to the RDFS metamodel are also sufficient to generate QNames: split each
URI reference as above (or using LocalName), look the first half up as a namespace, and then form a qname.

Attributes

• name: String [1] - the string representing the local name or fragment identifier
176 Ontology Definition Metamodel

Associations

• document: Document [0..*] in association DocumentContainsLocalName - links local names to the document that
contains them

• uriRef: URIReference [1..*] in association FragmentIdentifierForURIRef - links the fragment identifier to one or
more URIs that reference it

Constraints

None.

Semantics

None.

16.1.1.3 Namespace

Description

An XML namespace is a collection of names, identified by a URI reference, which are used in XML documents as
element types and attribute names.

Attributes

None.

Associations

• document: Document [1..*] in association DefaultNamespaceForDocument - the document(s) for which it is the
default namespace (or xml:base)

• namespaceDefinition: NamespaceDefinition [0..*] in association NamespaceForNamespaceDefinition - links a
namespace definition to the namespace it describes (resolves to)

• namespaceURIRef: URIReference [1] in association URIReferenceForNamespace - links a namespace to the cor-
responding URI reference

Constraints

Namespaces should conform to the specification given in [XMLNS]. While it may not be possible to define
constraints on character strings in OCL to enforce this (and while the namespace recommendation may not explicitly
require enforcement), tools that implement this metamodel will be expected to support the W3C standards and related
RFCs to the extent possible.

Semantics

None.

16.1.1.4 NamespaceDefinition

Description

A namespace is declared using a family of reserved attributes. These attributes, like any other XML attributes, may
be provided directly or by default. Some names in XML documents (constructs corresponding to the nonterminal
Name) may be given as qualified names. The prefix provides the namespace prefix part of the qualified name, and
must be associated with a namespace URI in a namespace declaration.
Ontology Definition Metamodel 177

Namespace definitions are used in RDF and OWL for referencing and/or importing externally specified terms,
vocabularies or ontologies.

Attributes

• namespacePrefix: String [1] - the string representing the namespace prefix

Associations

• document: Document [1..*] in association NamespaceDefinitionForDocument - the document(s) using the
namespace definition

• resolvesTo: Namespace [1] in association NamespaceDefinitionForNamespace - indicates that a namespace defi-
nition, if it exists, resolves to exactly one namespace

Constraints

[1] Namespace definitions should conform to the specification given in [XMLNS].

Semantics

None.

16.1.1.5 RDFStatement (Modified Definition)

Description

An RDF triple contains three components:

• the subject, which is an RDF URI reference or a blank node

• the predicate, which is an RDF URI reference, and represents a relationship

• the object, which is an RDF URI reference, a literal or a blank node

An RDF triple is conventionally written in the order subject, predicate, object. The relationship represented by the
predicate is also known as the property of the triple. The direction of the arc is significant: it always points toward
the object.

Attributes

• isReifiedOnly: Boolean [0..1] - indicates that a particular statement (triple) is reified but not asserted

Associations

• document: Document [1..*] in association StatementForDocument - the document(s) containing the statement

• graph: Graph [1..*] in association StatementForGraph - the graph(s) containing the statement

• isReifiedBy: URIReference [0..*] in association ReificationForStatement - the URI reference that reifies the state-
ment

• RDFsubject: RDFSResource [0..1] in association SubjectForStatement - links a statement (triple) to the resource
(node) that is the subject of the triple

• RDFpredicate: RDFProperty [0..1] in association PredicateForStatement - links a statement (triple) to the property
that is the predicate of the triple

• RDFobject: RDFSResource [0..1] in association ObjectForStatement - links a statement (triple) to the resource
(node) that is the object of the triple
178 Ontology Definition Metamodel

Constraints

[1] The resource representing an RDFsubject can be an URI reference or a blank node but not a literal.

context RDFStatement SubjectNotALiteral inv:

 not self.RDFsubject.oclIsKindOf(RDFSLiteral)

 [2] An RDFpredicate must be a URI reference (i.e., must not be a literal or blank node).

context RDFStatement PredicateNotALiteral inv:
 not self.RDFpredicate.oclIsKindOf(RDFSLiteral)

context RDFStatement PredicateNotABlankNode inv:

 not self.RDFpredicate.oclIsKindOf(BlankNode)

Note: both of these constraints are subject to change (may be relaxed) based on user experience in the Semantic Web
community. However, in any case, the constraint that a predicate must not be a literal is likely to remain.

Semantics

Each triple represents a statement of a relationship between the things denoted by the nodes that it links. The
assertion of an RDF triple says that some relationship, indicated by the predicate, holds between the things denoted
by subject and object of the triple. The subject, predicate, and object of a triple are optional to support reified but
unasserted triples.

16.1.1.6 UniformResourceIdentifier

Description

The RDF abstract syntax is concerned primarily with URI references. The definition of a URI, distinct from URI
reference, is included for mapping purposes. See [RDF Syntax] for definition details.

Note: this class is included primarily for syntactic/mapping/interoperability with other ODM and external
metamodels, and may be considered optional depending on vendor requirements.

Attributes

• name: String [1] – the string representing the URI

Associations

• uriReference: URIReference [0..*] in association URIForURIReference - zero or more URI references associated
with the URI

• Specialize Class URIReference - A UniformResourceIdentifier is a URIReference

Constraints

URIs must conform to the character encoding (including escape sequences and so forth) defined in [RDF Syntax] and
are globally defined. This is in contrast to naming and namespace conventions in UML2, which can be limited to the
package level or to a set of nested namespaces. While it may not be possible to define constraints on character strings
in OCL to enforce this, tools that implement this metamodel will be expected to support the W3C standards and
related RFCs in this regard.

Semantics

None.
Ontology Definition Metamodel 179

16.1.1.7 URIReference

Description

RDF uses URI references to identify resources and properties. A URI reference within an RDF graph (an RDF URI
reference) is a Unicode string conforming to the characteristics defined in [RDF Concepts] and [RDF Syntax].

RDF URI references ([RDF Concepts] Section 3.1) can be either:

• given as XML attribute values interpreted as relative URI references that are resolved against the in-scope base
URI as described in section 5.3 to give absolute RDF URI references

• transformed from XML namespace-qualified element and attribute names (QNames)

• transformed from rdf:ID attribute values.

More on URI references and transformations from QNames is given in the discussion in [RDF Syntax].

Attributes

None.

Associations

• fragmentIdentifier: LocalName [0..1] in association FragmentIdentifierForURIRef - links URIReference to an
optional fragment identifier

• namedGraph: Graph [0..1] in association NameForGraph - links a URI reference to the graph it names

• namespace: Namespace [0..1] in association URIReferenceForNamespace - links a URI reference to a namespace

• reifies: RDFStatement [0..*] in association ReificationForStatement - links URIReference to zero or more state-
ments it reifies

• resource: RDFSResource [0..*] in association URIRefForResource - links a URI reference to a resource

• uri: UniformResourceIdentifier [1] in association URIForURIReference - links URIReference to an in-scope
xml:base or to the URI of the RDF/ XML document that contains the definition referenced

Constraints
[1] URI references must conform to the specifications given under Description, above. While it may not be pos-
sible to define constraints on character strings in OCL to enforce this, tools that implement this metamodel will
be expected to support the W3C standards and related RFCs in this regard.

[2] A non-empty fragmentIdentifier associated with an empty uri implies that the uri is the xml:base (default
namespace) of the document.

Semantics

Two RDF URI references are equal if and only if they compare as equal, character by character, as Unicode strings.

16.1.2 RDF Graph Model (Optional)

For those applications that require use of the RDF graph model, as specified in [RDF Concepts], support for explicit
manipulation of blank nodes may be needed. The definitions provided herein facilitate resolution of blank node
semantics and finer granularity in manipulation of nodes in an RDF graph.
180 Ontology Definition Metamodel

Statements in RDF can be reified and/or asserted. Reification enables us to make statements about statements, and in
fact, we can make multiple statements about a given triple, which is supported through the relationship with URI
reference. If a statement is asserted, its subject, predicate and object roles must be filled. Reification is a difficult
concept to grasp and is not required by all applications, thus is considered optional.

URIReferenceNode, BlankNode and RDFSLiteral form a complete covering of RDFSResource and are pairwise
disjoint.

These definitions require/depend on the extensions given in 16.1.1 (“RDF Document Syntax (Optional)”), above.

Figure 40 RDF Graph, Node & Statement Definitions

16.1.2.1 BlankNode

Description

A blank node is a node that is not a URI reference or a literal. In the RDF abstract syntax, a blank node is simply a
unique node that can be used in one or more RDF statements, but has no intrinsic name.

A convention used to refer to blank nodes by some linear representations of an RDF graph is to use a blank node
identifier, which is a local identifier that can be distinguished from URIs and literals. When graphs are merged, their
blank nodes must be kept distinct if meaning is to be preserved. Blank node identifiers are not part of the RDF
abstract syntax, and the representation of triples containing blank nodes is dependent on the particular concrete
syntax used, thus no constraints are provided here on blank node identifiers. They are included strictly as a
placeholder for tool vendors whose applications require them, and in particular, for interoperability among such tools.

Attributes

• nodeID: String [0..1] - is a placeholder for an optional blank node identifier

Associations

• Specialize Class RDFSResource

Constraints
[1] BlankNode is pairwise disjoint from URIReferenceNode and RDFSLiteral.

[2] BlankNode, RDFSLiteral, and URIReferenceNode form a complete covering of RDFSResource.

BlankNode
nodeID : String

RDFSLiteral
lexicalForm : String [1]

[0..1]

URIReferenceNode

[0..1]

RDFProperty

RDFStatement
isReifiedOnly : Boolean

0..1

0..*

+RDFpredicate
0..1

+statement
0..*

PredicateForStatement

Graph
1..*

1..*

+graph
1..*

+statement
1..*

StatementForGraph

RDFSResource
0..10..*

+RDFobject
0..1

+statement
0..*
ObjectForStatement

0..10..*
+RDFsubject

0..1
+statement
0..*

SubjectForStatement

URIReference

0..*

0..*

+isReifiedBy
0..*

+reifies
0..*

ReificationForStatement

0..*

0..1

+namedGraph
0..*

+graphName
0..1

NameForGraph 0..1

0..*

+resource
0..1

+uriRef
0..*

URIRefForResource

[0..1]
Ontology Definition Metamodel 181

[3] BlankNode must not inherit a URI from RDFSResource.

Semantics

RDF makes no reference to the internal structure of blank nodes. However, given two blank nodes, it should be
possible to determine whether or not they are the same. The methodology for making such a determination is left to
the applications that use them, for example, through reasoning about them.

Blank nodes are treated as simply indicating the existence of a thing, without using, or saying anything about, the
name of that thing. (This is not the same as assuming that the blank node indicates an 'unknown' URI reference; for
example, it does not assume that there is any URI reference which refers to the thing.) Thus, they are essentially
treated as existentially quantified variables in the graph in which they occur, and have the scope of the entire graph.
More on the semantics of blank nodes is given in [RDF Semantics].

16.1.2.2 Graph

Description

An RDF graph is a set of RDF triples. The set of nodes of an RDF graph is the set of subjects and objects of triples
in the graph.

Attributes

None.

Associations

• graphName: URIReference [0..1] in association NameForGraph - the optional name of a named graph, which
must be a URI reference

• statement: RDFStatement [1..*] in association StatementForGraph - links a graph to the set of triples it contains

Constraints

None.

Semantics

As described in [RDF Semantics], RDF is an assertional language, intended for use in defining formal vocabularies
and using them to state facts and axioms about some domain.

An RDF graph is defined as a set of RDF triples. A subgraph of an RDF graph is a subset of the triples in the graph.
A triple is identified with the singleton set containing it, so that each triple in a graph is considered to be a subgraph.
A proper subgraph is a proper subset of the triples in the graph. A ground RDF graph is one with no blank nodes.

The assertion of an RDF triple says that some relationship, indicated by the predicate, holds between the things
denoted by subject and object of the triple. The assertion of an RDF graph amounts to asserting all the triples in it, so
the meaning of an RDF graph is the conjunction (logical AND) of the statements corresponding to all the triples it
contains.

16.1.2.3 RDFProperty (Modified Definition)

Description

The RDF Concepts and Abstract Syntax specification [RDF Concepts] describes the concept of an RDF property as a
relation between subject resources and object resources.
182 Ontology Definition Metamodel

Every property is associated with a set of instances, called the property extension. Instances of properties are pairs of
RDF resources.

Associations

• RDFSdomain: RDFSClass [0..*] in association DomainForProperty - links a property to zero or more classes rep-
resenting the domain of that property. A triple of the form: P rdfs:domain C states that P is an instance of the
class rdf:Property, that C is a instance of the class rdfs:Class and that the resources denoted by the sub-
jects of triples whose predicate is P are instances of the class C. Where a property P has more than one
rdfs:domain property, then the resources denoted by subjects of triples with predicate P are instances of all the
classes stated by the rdfs:domain properties.

• RDFSrange: RDFSClass [0..*] in association RangeForProperty - links a property to zero or more classes repre-
senting the range of that property. A triple of the form: P rdfs:range C states that P is an instance of the class
rdf:Property, that C is a instance of the class rdfs:Class and that the resources denoted by the objects of
triples whose predicate is P are instances of the class C. Where P has more than one rdfs:range property, then
the resources denoted by the objects of triples with predicate P are instances of all the classes stated by the
rdfs:range properties.

• RDFSsubPropertyOf: RDFProperty [0..*] in association PropertyGeneralization - links a property to another
property that generalizes it. The property rdfs:subPropertyOf is used to state that all resources related by
one property are also related by another. A triple of the form: P1 rdfs:subPropertyOf P2 states that P1 is
an instance of rdf:Property, P2 is an instance of rdf:Property and P1 is a subproperty of P2. The
rdfs:subPropertyOf property is transitive.

• statement: RDFStatement [0..*] in association PredicateForStatement - links a statement (triple) to the predicate of
that triple

• superPropertyOf: RDFProperty [0..*] in association PropertyGeneralization - links a property to another property
that specializes it (note that superPropertyOf is not an RDF concept).

• Specialize Class RDFSResource - the class rdf:Property is a subclass of rdfs:Resource

Constraints
[1] The predicate of an RDF triple is a URI Reference (thus, a resource that is an RDF property used as the
predicate of a statement must have a URI reference).

Semantics

A property relates resources to resources or literals. A property can be declared with or without specifying its domain
(i.e., classes which the property can apply to) or range (i.e., classes or datatypes that supply its values). Properties
may be specialized (subPropertyOf). The existence of an instance of a specializing property implies the existence of
an instance of the specialized property, relating the same set of resources.

16.1.2.4 RDFSLiteral (Modified Definition)

Description

Literals are used to identify values such as numbers and dates by means of a lexical representation. Anything
represented by a literal could also be represented by a URI, but it is often more convenient or intuitive to use literals.

A literal may be the object of an RDF statement, but not the subject or the predicate.

Literals may be plain or typed:

• A plain literal is a string combined with an optional language tag. This may be used for plain text in a natural lan-
guage.
Ontology Definition Metamodel 183

• A typed literal is a string combined with a datatype URI.

Attributes

• lexicalForm: String [1] - represents a Unicode string in Normal Form C.

Associations

• Specialize Class RDFSResource - All literals are resources

Constraints
[1] RDFSLiteral is pairwise disjoint from URIReferenceNode and BlankNode.

[2] BlankNode, RDFSLiteral, and URIReferenceNode form a complete covering of RDFSResource.

[3] RDFSLiteral must not inherit a URI from RDFSResource.

[4] A literal may be the object of an RDF statement, but not the subject or predicate.

[5] PlainLiteral and TypedLiteral are disjoint.

Semantics

Plain literals are self-denoting. Typed literals denote the member of the identified datatype's value space obtained by
applying the lexical-to-value mapping to the literal string.

16.1.2.5 RDFSResource (Modified Definition)

Description

All things described by RDF are called resources. This is the class of everything. All other RDF classes are
subclasses of this class.

Attributes

None.

Associations

• list: RDFList [0..*] in association FirstElementInList - relates a particular resource to the list(s) for which it is the
initial element

• RDFScomment: PlainLiteral [0..*] in association CommentForResource - links a resource to a comment, or
human-readable description, about that resource

• RDFSisDefinedBy: RDFSResource [0..*] in association IsDefinedByResource - relates a resource to another
resource that defines it; rdfs:isDefinedBy is a subPropertyOf rdfs:seeAlso.

• resource: RDFSResource [0..*] in association IsDefinedByResource - relates a particular resource to other
resources that it defines

• RDFSlabel: PlainLiteral [0..*] in association LabelForResource - links a resource to a human-readable name for
that resource.

• RDFSmember: RDFSResource [0..*] in association MemberOfResource - relates a resource to another resource of
which it is a member (i.e. a resource that contains it).

• resource: RDFSResource [0..*] in association MemberOfResource - relates a particular resource to other
resources that are its members
184 Ontology Definition Metamodel

• RDFSseeAlso: RDFSResource [0..*] in association SeeAlsoForResource - relates a resource to another resource
that may provide additional information about it.

• resource: RDFSResource [0..*] in association SeeAlsoForResource - relates a particular resource to other
resources that it may assist in defining

• RDFtype: RDFSClass [1..*] in association TypeForResource - relates a resource to its type (i.e., states that the
resource is an instance of the class that is its type).

• RDFvalue: RDFSResource [0..*] in association ValueForResource - relates a resource to its value (this is an idi-
omatic expression in RDF that may be used in describing structured values).

• resource: RDFSResource [0..*] in association ValueForResource - relates a value to a resource

• statement: RDFStatement [0..*] in association SubjectForStatement - a resource represents zero or more subjects
of RDF statements or triples

• statement: RDFStatement [0..*] in association ObjectForStatement - a resource represents zero or more objects of
RDF statements

• uriRef: URIReference [0..1] in association URIRefForResource - the optional URI reference associated with
every resource

Constraints
[1] RDFSseeAlso and RDFSisDefinedBy must have non-empty URI references.

[2] RDFSisDefinedBy is a subPropertyOf RDFSseeAlso

[3] The set of blank nodes, the set of all RDF URI references (i.e., URIReferenceNodes) and the set of all liter-
als are pairwise disjoint.

context RDFSResource inv DisjointPartition:

 (self.oclIsKindOf(URIReferenceNode) xor self.oclIsKindOf(BlankNode)) and
 (self.oclIsKindOf(URIReferenceNode) xor self.oclIsKindOf(RDFSLiteral)) and

 (self.oclIsKindOf(BlankNode) xor self.oclIsKindOf(RDFSLiteral))

[4] URIReferenceNode, BlankNode and RDFSLiteral form a complete covering of RDFSResource.

Semantics

The uriRef attribute is used to uniquely identify an RDF resource globally. Note that this attribute has a multiplicity
of [0..1] which provides for the possibility of the absence of an identifier, as in the case of blank nodes and literals.

16.1.2.6 URIReferenceNode

Description

A URI reference or literal used as a node identifies what that node represents. URIReferenceNode is included in
order to more precisely model the intended semantics in UML (i.e., not all URI references are nodes). A URI
reference used as a predicate identifies a relationship between the things represented by the nodes it connects. A
predicate URI reference may also be a node in the graph.

Attributes

None.

Associations

• Specialize Class RDFSResource
Ontology Definition Metamodel 185

Constraints
[1] URIReferenceNode is pairwise disjoint from RDFSLiteral and BlankNode.

[2] BlankNode, RDFSLiteral, and URIReferenceNode form a complete covering of RDFSResource.

[3] URIReferenceNode must inherit a URI from RDFSResource.

Semantics

No additional semantics.

16.1.3 RDF Schema Profile Package

The following sections specify the set of stereotypes and tagged values that comprise the UML2 profile for using
UML notation to represent RDF Schema vocabularies, and extends the RDFS metamodel. There are essentially three
compliance modes for the RDF Schema profile: Basic, Document Model, and Graph Model. The Basic model
corresponds to the metamodel given in Chapter 11, The RDF Schema Metamodel, without extensions. The Document
Model assumes that the extensions described in 16.1.1 (“RDF Document Syntax (Optional)”) are important to the
application and requires all of the Basic stereotypes as well as those defined in 16.1.5 (“RDF Document (optional)”),
below. The Graph Model assumes that the extensions described in 16.1.2 (“RDF Graph Model (Optional)”) are
important and requires a combination of the Basic and Document Model stereotypes, as described in 16.1.10 (“RDF
Graphs and Nodes (optional)”).

The package shown in Figure 41, below provides the overall container for the profile itself. The RDFSchema profile
depends on and extends the RDFS metamodel.

Figure 41 RDF Schema Profile Package

Constraints

• All classes in an RDFSchema package must be stereotyped by «rdfsClass».

16.1.4 RDFS Ontology

An ontology is the primary scoping mechanism for a set of graphs in the basic RDFS metamodel. This profile
element maps directly to the RDFS metamodel elements given in 11.7 (“The Ontology Diagram”), as shown in
Figure 42.

RDFSchema
<<profile>>

RDFS
<<metamodel>>
186 Ontology Definition Metamodel

Figure 42 RDFS Ontology Package

Applying the «ontology» stereotype to a package requires that the UML constructs contained within the package be
interpreted according to this profile definition.

16.1.5 RDF Document (optional)

As shown in Figure 43, if the optional metamodel and profile extensions to support RDF documents are
implemented, an RDF document represents the primary scoping mechanism / container for an RDF/S vocabulary or
OWL ontology and replaces the RDF ontology package defined in 16.1.4 (“RDFS Ontology”), above. This profile
element maps directly to the RDFS metamodel extension representing such a document as discussed in 16.1.1.1
(“Document”).

Figure 43 RDFDocument Provides an Alternate Container For RDFS Vocabularies and OWL Ontologies

Applying the «rdfDocument» stereotype to a package requires that the UML constructs contained within the package
be interpreted according to this profile definition. If this approach is taken, the Ontology package specified in 16.1.4
(“RDFS Ontology”) is not required.

Note that in order to annotate the RDF document, it may be necessary to create a corresponding UML class with the
same stereotype, such that annotation properties can be attached to the class. This mechanism would also be useful in
cases where UML tools do not support properties on packages.

16.1.5.1 Tagged Values

• defaultNamespace: URIReference [0..1] – provides the default namespace, or base for the document, if available,
and maps directly to the default namespace for the document defined in the metamodel, as shown in Figure 39.

Package
<<metaclass>>

ontology
<<stereotype>>

{required}
<<extension>>

[0..1]
Package

<<metaclass>>
rdfDocument

defaultNamespace : URIReference

<<stereotype>>
<<extension>>

{required}
Ontology Definition Metamodel 187

16.1.5.2 RDF Document Stereotypes

RDFS and OWL namespace declarations are associated with the RDF document that acts as the container for the set
of RDF graphs that make up the vocabulary or ontology component, rather than with the optional ontology header
definition (in the case of an OWL ontology) or other statements, as given in Table 33.

Table 33 RDF Documents

Stereotype Base Class Parent Tags Constraints Description

Document
«document»

Class «resource» n/a n/a Extends 16.1.1.1 (“Doc-
ument”). The docu-
ment class is optional,
but is a convenient con-
tainer for namespaces
and namespace defini-
tions, statements, etc.

Namespace
«namespace»

Class n/a n/a Must conform
to [XMLNS]

Extends 16.1.1.3
(“Namespace”)

XMLBase
«xmlBase»

Property n/a n/a n/a XMLBase is a property
of Document and links
the document to zero or
more base namespaces
used therein.

NamespaceDefinition
«namespaceDefinition»

Class n/a n/a Must conform
to [XMLNS]

Extends 16.1.1.4
(“NamespaceDefini-
tion”)

NamespacePrefix
«namespacePrefix»

Property n/a n/a n/a Indicates the string de-
clared as the local
shorthand notation, or
prefix, for use in refer-
ring to the namespace, a
property of the
NamespaceDefinition
class

NamespaceDefinitionFor-
Namespace
«resolvesTo»

Property n/a n/a n/a Property of the
NamespaceDefinition
class linking it to the
namespace that the defi-
nition resolves to

NamespaceDefinitionFor-
Document
«namespaceDefForDocu-
ment»

Property n/a n/a n/a DefinitionForDocu-
ment is a property of
Document and links the
document to zero or
more namespace defini-
tions used therein.

URIReference
«uriReference»

Class n/a n/a Must conform
to [RDF Syn-
tax]

Extends 16.1.1.7 (“UR-
IReference”)
188 Ontology Definition Metamodel

LocalName
«localName»

Property n/a n/a n/a Extends 16.1.1.2 (“Lo-
calName”); localName
is a property of the UR-
IReference class, and
represents the fragment
identifier for the URI
reference

NamespaceURIReference
«namespaceURIRef»

Property n/a n/a n/a Indicates the URI refer-
ence for a given
namespace (property of
namespace)

UniformResourceIdentifier
«URI»

Class «uriReference» n/a Must conform
to [RDF Syn-
tax]

Optional class used pri-
marily for mapping pur-
poses, Extends 16.1.1.6
(“UniformResour-
ceIdentifier”)

URIForURIReference
«uriForURIRef»

Property n/a n/a n/a Links a URI reference
to the URI if the option-
al URI class is support-
ed

RDFStatement
«rdfStatement»

Class n/a n/a n/a Extends 16.1.1.5
(“RDFStatement (Modi-
fied Definition)”)

IsReifiedOnly
«isReifiedOnly»

Property n/a n/a n/a If present, indicates that
a statement is reified
but not asserted (i.e.,
has no subject, predi-
cate, or object associat-
ed with it). Reflects the
case where statements
are made within a vo-
cabulary or ontology
about this statement,
but nothing more is
known.

StatementForDocument
«statementForDocument»

Property n/a n/a Statements are
ordered with
respect to the
document(s)
they occur in.

Links a document to the
statements it contains.

Table 33 RDF Documents

Stereotype Base Class Parent Tags Constraints Description
Ontology Definition Metamodel 189

16.1.6 Classes and Utilities

The stereotypes associated with the definitions given in 11.2 (“The Classes and Utilities Diagrams”) of the RDFS
metamodel are given in Table 34. Note that instances of RDFSDatatype are classes corresponding to the datatypes
defined in [XML Schema Datatypes]. OWL restricts this set further, as discussed in 12 (“The OWL Metamodel”),
and as defined in the model library given in Appendix A (“Foundation Ontology (M1) for RDFS and OWL”).

Table 34 Classes and Utilities

Stereotype Base Class Parent Tags Constraints Description

RDFSResource
«resource»

Class n/a n/a n/a Extends 11.2.5 (“RDFSRe-
source”)

RDFScomment
«comment»

Property n/a n/a A comment is a
plain literal, con-
tained by the re-
source it describes.

Indicates a comment on a
resource

RDFSisDefinedBy
«isDefinedBy»

Constraint n/a n/a rdfs:isDefinedBy is
a subproperty of
rdfs:seeAlso.

Indicates that the resource
isDefinedBy the target re-
source; Relates the resource
to a defining resource in this
or another RDFSchema
package, or in an external
RDF or RDFS document

RDFSlabel
«label»

Property n/a n/a A label is a plain
literal, contained by
the resource it de-
scribes.

Indicates a human-readable
label for a resource

RDFSmember
 «member»

Association n/a n/a n/a Indicates that the resource is
a member of the target re-
source

RDFSseeAlso
 «seeAlso»

Constraint n/a n/a n/a Indicates that more informa-
tion about the resource can
be found at the target re-
source; Relates the resource
to another resource in this or
another RDFSchema pack-
age, or in an external RDF
or RDFS document

RDFtype
«rdfType»

Association n/a n/a n/a Indicates that the resource
has the type of the target re-
source

RDFvalue
«value»

Property n/a n/a n/a Is idiomatic, used to repre-
sent structured values
190 Ontology Definition Metamodel

These stereotypes may be used with or without the stereotypes defined in 16.1.5 (“RDF Document (optional)”),
though the RDF document model is recommended for applications where namespace interoperability is desired. If the
RDF graph model specified in 16.1.10 (“RDF Graphs and Nodes (optional)”) is adopted, however, the stereotypes
specified in 16.1.5 (“RDF Document (optional)”) must also be used.

RDFSClass
«rdfsClass»

Class «resource» n/a [1] All instances
conforming to an
RDFS class are in-
stances of the class;
[2] The RDFS class
must have a URI
reference.

Extends 11.2.2 (“RDFS-
Class”)

RDFSsubClassOf
«rdfsSubClassOf»

Generalization n/a n/a Generally has the
semantics of UML
Generalization, but
classes on both
ends of the general-
ization must be ste-
reotyped
«rdfsClass» (or
«owlClass», if used
with the profile for
OWL, and mixing
the two is permit-
ted, as long as
proper subclassing
structure between
the two is main-
tained).

Indicates that the resource is
a subclass of the target re-
source

RDFSDatatype
«rdfsDatatype»

Class «rdfsClass» n/a Members of RDFS-
Datatype must have
URI references.

Extends 11.2.3 (“RDFS-
Datatype”)

RDFSLiteral
«literal»

Class «resource» n/a n/a Extends 11.2.4 (“RDFSLit-
eral”)

PlainLiteral
«plainLiteral»

Class «literal» n/a n/a Extends 11.2.1 (“PlainLiter-
al”)

TypedLiteral
«typedLiteral»

Class «literal» n/a The datatype prop-
erty is required.

Extends 11.2.7 (“TypedLit-
eral”)

DatatypeFor-
TypedLiteral
«datatype»

Property n/a n/a n/a Links a typed literal to its
type (must be an RDFS-
Datatype)

RDFXMLLiteral
«xmlLiteral»

Class «typedLiteral» n/a n/a Extends 11.2.6 (“RDFXML-
Literal”)

Table 34 Classes and Utilities

Stereotype Base Class Parent Tags Constraints Description
Ontology Definition Metamodel 191

16.1.7 Properties in RDF/S

16.1.7.1 RDFProperty

Description
The RDFProperty profile construct extends the definition given in 11.3.1 (“RDFProperty”). The association class repre-
sents a binary relation with unidirectional navigation, from the class that defines the domain of the property to the class
that defines its range, with association end names “domain” and “range”, respectively.

Properties in RDF, RDF Schema, and OWL are defined globally, that is, that they apply to all ontologies in the
universe of discourse on which they are defined – not only to the ontology that they are defined in, but to those that
are imported or that import the ontology that defines them. For RDF properties that are defined without a specifying
a domain or range (which is legal in RDF, unlike UML), the profile uses a global Thing class (Thing for RDF/S,
owl:Thing in OWL ontologies) as default for the “missing” association end. Definitions for both are provided in
the model library given in Appendix A (“Foundation Ontology (M1) for RDFS and OWL”). Properties that are
defined with such a default domain or range may not have multiplicities (other than [0..*]) or other constraints, such
as any OWL cardinality or value restrictions, defined on them.

Stereotype and Base Class
«rdfProperty» with base class of UML::AssociationClass

Parent

«resource»

Tags

None.

Constraints
[1] All instances are instances of Thing, at least indirectly.

[2] Properties on Thing may not have multiplicity (other than [0..*]) or other OWL restrictions.

[3] The RDF property must have a URI reference.

[4] Association classes with rdfProperty applied are binary, and have unidirectional navigation.

[5] Properties cannot have the same value twice (i.e., in UML, isUnique=true).

[6] Property values are not ordered (i.e., in UML, isOrdered=false).

[7] The navigable end of an rdfProperty association is an rdfGlobal property.

Notation

A. Properties without a specified domain are considered to be defined on the UML class Thing, (or owl:Thing in
the case of an OWL ontology), for example, as shown in Figure 44 . Thing (for use in RDF/S vocabularies) and
owl:Thing are defined in the model library provided in Appendix A, Foundation Ontology (M1) for RDFS and
OWL.

Figure 44 Property hasColor Without Specified Domain

Thing
hasColor : Color

<<rdfsClass>>
192 Ontology Definition Metamodel

From a UML perspective, RDF properties are semantically equivalent to binary associations with unidirectional
navigation (“one-way” associations).

Figure 45 Property hasColor Without Specified Domain, Alternate Notation

Figure 45 shows that there is efficient navigation from an instance of Thing to an instance of Color through the
hasColor end, just like a UML property. The only difference is the underlying repository will have an association
with the hasColor property as one of its ends. The other end will be owned by the association itself, and be marked
as nonnavigable.

Unidirectional associations can be classes, as shown in Figure 46 :

Figure 46 Property hasColor - Association Class Representation

An association class can have properties, associations, and participate in generalization as any other class. Notice that
the association has a (slightly) different name than the property, by capitalizing the first letter, to distinguish the
association class (of links, tuples) from the mapping (across those links, tuples). A stereotype “rdfProperty” may
be introduced to highlight such binary, unidirectional association classes, as shown in Figure 46. In the examples
given in the remainder of the profile, the notation showing properties in class rectangles is sometimes used, but
unidirectional associations and association classes could be used instead (with the exception of the approach taken for
owl:inverseOf, see section 16.2.6.2 (“owl:inverseOf Relation”)).

B. Properties with a domain are defined on a UML class for the domain, where the property is not inherited from a
supertype.

Figure 47 Properties With Defined Domain, Undefined Range

Normally UML models introduce properties and restrict them with multiplicities in the same class. This translates in
RDF/OWL as global properties (along with restrictions in specific classes in OWL). If multiplicities or other
restrictions are used on a property of Thing, the translation to OWL will be a global property, and a class called
“Thing” with the restrictions. A stereotype “rdfGlobal” may be introduced to highlight properties that are
introduced at that class. Properties that are inherited are distinguished in UML by subsetting or redefinition, as
discussed below.

Color
<<rdfsClass>>

Thing
<<rdfsClass>> +hasColor

Color
<<rdfsClass>>

Thing
<<rdfsClass>> +hasColor

HasColor
<<rdfProperty>>

Dog
<<rdfsClass>>

Thing
<<rdfsClass>>+chases

Chases
<<rdfProperty>>
Ontology Definition Metamodel 193

C. Properties with a defined range have the range class as their type in UML. Properties with no range have Thing
as their type in UML, as shown in Figure 47. Property types are shown to the right of the colon after the property
name, as shown in Figure 44.

D. Properties with a range have the range class as their type in UML, as shown in Figure 44.

E. The most natural representation for RDF/S and OWL property subtyping (i.e., rdfs:subPropertyOf) in UML is to
use UML property/unidirectional association subsetting or association class subtyping. The UML semantics for both
is that all links (instances, tuples) of the subtype properties or associations are links (instances, tuples) of all the
supertypes properties or associations.

The most natural notation for property subsetting in UML is to use “{subsets <super-property-name>}” at the end of
the property entry in a class, as shown in Figure 48.

Figure 48 Property Subsetting, Notation on Property Entry for Class

Alternatively, the notation given in Figure 49 may be used for unidirectional association subsetting.

Figure 49 Property Subsetting, Unidirectional Association Notation

Finally, for use with association classes, the notation shown in Figure 50, which uses a UML Generalization with the
stereotype «rdfsSubPropertyOf», as described in Table 35, is preferred.

Figure 50 Property Subsetting, Association Class Notation

Dog
follows : Thing
chases : Thing

<<rdfsClass>>

{ subsets follows }

Dog
<<rdfsClass>>

Thing
<<rdfsClass>>

+chases

+follows

{subsets follows}

Dog
<<rdfsClass>>

Thing
<<rdfsClass>>

+chases

+follows

Follows
<<rdfProperty>>

Chases
<<rdfProperty>>

<<rdfsSubPropertyOf>>
194 Ontology Definition Metamodel

Additional stereotypes associated with the definitions given in 11.3 (“The Properties Diagram”) of the RDFS
metamodel are given in Table 35.

16.1.8 Containers and Collections

The stereotypes associated with the definitions given in 11.4 (“The Containers Diagram”) and 11.5 (“The Collections
Diagram”) of the RDFS metamodel are given in Table 36.

Table 35 Properties

Stereotype Base Class Parent Tags Constraints Description

RDFGlobalProperty
«rdfGlobal»

Property n/a n/a n/a An optional property on
the RDFProperty asso-
ciation class indicating
that a property is de-
fined globally, i.e. that
its domain and/or range
is owl:Thing

RDFSsubPropertyOf
«rdfsSubPropertyOf»

Generalization n/a n/a Properties on both
ends of the generali-
zation must be stereo-
typed «rdfProperty»
(or
«owlObjectProperty»
or
«owlDatatypeProperty
», if used with the
profile for OWL, and
limited mixing of
RDF and OWL is per-
mitted).

Indicates that the re-
source is a sub-property
of the specified re-
source

Table 36 Containers and Collections

Stereotype Base Class Parent Tags Constraints Description

RDFSContainer
«container»

Class «resource» n/a n/a Extends 11.4.3 (“RDFSCon-
tainer”)

RDFSContainerMem-
bershipProperty
«containerMembership-
Property»

Association
Class

«rdfProperty» n/a n/a Extends 11.4.4 (“RDFSCon-
tainerMembershipProperty”)

RDFAlt
«alt»

Class «container» n/a n/a Extends 11.4.1 (“RDFAlt”)

RDFBag
«bag»

Class «container» n/a n/a Extends 11.4.2 (“RDFBag”)

RDFSeq
«seq»

Class «container» n/a n/a Extends 11.4.5 (“RDFSeq”)
Ontology Definition Metamodel 195

Note: need discussion of container membership properties...rdf:_1, rdf:_2, rdf:_3,... and their inclusion in the model
library. Same for rdf:nil.

16.1.9 Reification

The stereotypes associated with the definitions given in 11.6 (“The Reification Diagram”) of the RDFS metamodel
are given in Table 37.

RDFList
«list»

Class «resource» n/a n/a Extends 11.5.1 (“RDFList”)

RDFfirst
«first»

Property n/a n/a n/a Indicates that the target re-
source is the first member of
the list

RDFrest
«rest»

Association n/a n/a n/a Indicates that the target re-
source is the rest of the list

Table 37 Reification (Basic Model)

Stereotype Base Class Parent Tags Constraints Description

RDFStatement
«statement»

Class «resource» n/a n/a Extends 11.6.1 (“RDFState-
ment”)

RDFsubject
 «subject»

Property n/a n/a The target resource
must be a URI or
blank node.

Indicates that the target re-
source is the subject of the
triple

RDFpredicate
«predicate»

Property n/a n/a The target resource
must have a URI.

Indicates that the target re-
source is the predicate of the
triple

RDFobject
«object»

Property n/a n/a The target resource
must be a URI, blank
node, or literal.

Indicates that the target re-
source is the object of the
triple

Table 36 Containers and Collections

Stereotype Base Class Parent Tags Constraints Description
196 Ontology Definition Metamodel

16.1.10 RDF Graphs and Nodes (optional)

The stereotypes associated with the RDF Graph model given in 16.1.2 (“RDF Graph Model (Optional)”) are defined
in Table 38. These definitions supersede those given in Table 37 when the RDF graph model is adopted., augment the
definitions given in Table 35, and presume that the RDF Document stereotypes, defined in 16.1.5 (“RDF Document
(optional)”), have also been adopted.

16.2 UML Profile for OWL
This section specifies the UML profile for OWL. It is loosely organized based on the structure of the OWL
metamodel, with sections reordered to facilitate understanding and utility.

Table 38 RDF Graphs and Nodes

Stereotype Base Class Parent Tags Constraints Description

BlankNode
«blankNode»

Class «resource» n/a n/a Extends 16.1.2.1 (“Blan-
kNode”)

NodeID
«nodeID»

Property n/a n/a n/a Indicates an optional
node identifier for the
blank node

URIReferenceNode
«uriReferenceNo-
de»

Class «resource» n/a n/a Extends 16.1.2.6 (“UR-
IReferenceNode”)

RDFProperty
«rdfProperty»

Association
Class

«resource» n/a See Table 35 Extends 16.1.2.3 (“RDF-
Property (Modified Defi-
nition)”)

RDFSResource
«resource»

Class n/a n/a URIReferenceNo-
de, BlankNode,
and Literal are
pairwise disjoint
and covering.

Extends 16.1.2.5 (“RDF-
SResource (Modified
Definition)”)

RDFStatement
«statement»

Class n/a n/a n/a Extends 16.1.1.5 (“RDF-
Statement (Modified
Definition)”)

RDFsubject
«subject»

Property n/a n/a The target node
cannot be a literal.

Indicates that the target
node is the subject of the
triple

RDFpredicate
«predicate»

Property n/a n/a n/a Indicates that the target
property is the predicate
of the triple

RDFobject
«object»

Property n/a n/a n/a Indicates that the target
node is the object of the
triple

Graph Class n/a n/a n/a Extends 16.1.2.2
(“Graph”)
Ontology Definition Metamodel 197

16.2.1 OWL Profile Package

The following sections specify the set of stereotypes and tagged values that comprise the UML2 profile for using
UML notation to represent OWL ontologies, and extends the OWL metamodel. Support for the optional RDF
document and graph model and profile extensions, given in section 16.1 (“UML Profile for RDF Schema”), is also
discussed.

As shown in Figure 51, the OWL profile package provides the container for the profile and extends the RDFSchema
profile package.

Figure 51 Web Ontology Language (OWL) Profile Package

Applying the Web Ontology Language stereotype to a package requires that the UML constructs contained within the
package be interpreted according to this profile definition.

Constraints
[1] All classes in a Web Ontology Language package must be stereotyped by «rdfsClass» or by «owlClass».

[2] For applications intending to support OWL DL, all classes in a Web Ontology Language package must be
stereotyped by «owlClass».

16.2.2 OWL Ontology Document

An OWL document consists of optional ontology headers (generally at most one) plus any number of class axioms,
property axioms, and facts about individuals. Please note that “axiom” is the formal term used in [OWL S&AS].

As with most RDF documents, the OWL statements that comprise an OWL document should be subelements of a
rdf:RDF element. This enclosing element generally holds XML namespace and base declarations. Also, an OWL
ontology document often starts with several entity declarations. For these reasons, we recommend compliance with /
implementation of the optional RDF document extensions defined in 16.1.1 (“RDF Document Syntax (Optional)”)
and 16.1.5 (“RDF Document (optional)”).

RDFSchema
<<profile>>

Web Ontology Language
<<profile>>

<<imports>>

OWL
<<metamodel>>
198 Ontology Definition Metamodel

16.2.3 OWL Annotation Properties

OWL annotation properties correspond, for the most part, to properties on other stereotypes defined herein. OWL
provides several built-in annotation properties, which do have special meaning and implementation, as defined in
Table 39 and 16.2.3.1 (“owl:versionInfo”), and also allows users to define such properties, as needed.

Table 39 Annotation Properties

Stereotype Base Class Parent Tags Constraints Description

OWLAnnotationProperty
«annotationProperty»

Association
Class

«rdfProperty» n/a An instance of an
annotation
property is a
single valued
UML property,
which is an
instance of this
class.

Extends 12.6.1
(“OWLAnnotationPropert
y”) to support user defined
annotation properties.
This definition represents
the class of annotation
properties rather than
instances of annotation
properties.

AnnotationPropertyIn-
stance
«annotation»

Property n/a n/a [1] The range of
an annotation
property is either
a URI reference,
an RDFLiteral, or
an Individual. [2]
Annotations are
not inherited by
subclasses,
subproperties, or
individuals of the
classes or
properties on
which they are
defined.

User-defined annotations
can be applied to any
ontology element:
ontologies themselves,
classes, properties, or
individuals.

RDFScomment
«comment»

Property n/a n/a [1] A comment is
a plain literal,
contained by the
resource it de-
scribes. [2]
Comments are not
inherited by
subclasses,
subproperties, or
individuals of the
classes or
properties on
which they are
defined.

Indicates a comment on a
resource; rdfs:comment is
an instance of owl:Anno-
tationProperty
Ontology Definition Metamodel 199

Note: need discussion of annotations, comments, and labels as static properties in UML.

16.2.3.1 owl:versionInfo

Description

An owl:versionInfo statement generally has as its object a string giving information about this version, for
example RCS/CVS keywords. This statement does not contribute to the logical meaning of the ontology other than
that given by the RDF(S) model theory.

Although this property is typically used to make statements about ontologies, it may be applied to any OWL
construct. For example, one could attach a owl:versionInfo statement to an OWL class.

RDFSisDefinedBy
«isDefinedBy»

Constraint n/a n/a rdfs:isDefinedBy
is a subproperty
of rdfs:seeAlso.

Indicates that the resource
isDefinedBy the target re-
source; rdfs:isDefinedBy
is an instance of owl:An-
notationProperty; Relates
the resource to a defining
resource in this or another
RDFSchema package, or
in an external RDF or
RDFS document

RDFSlabel
«label»

Property n/a n/a [1] A label is a
plain literal, con-
tained by the re-
source it
describes. [2]
Labels are not
inherited by
subclasses,
subproperties, or
individuals of the
classes or
properties on
which they are
defined.

Indicates a human-read-
able label for a resource;
rdfs:label is an instance
of owl:AnnotationProper-
ty

RDFSseeAlso
«seeAlso»

Constraint n/a n/a n/a Indicates that more infor-
mation about the resource
can be found at the target
resource; rdfs:seeAlso is
an instance of owl:Anno-
tationProperty; Relates
the resource to another
resource in this or another
RDFSchema package, or
in an external RDF or
RDFS document

Table 39 Annotation Properties

Stereotype Base Class Parent Tags Constraints Description
200 Ontology Definition Metamodel

Stereotype and Base Class

No stereotype; implemented as a UML Property of the stereotype it describes.

Parent

None.

Tags

None.

Constraints
 [1] owl:versionInfo is an instance of owl:AnnotationProperty in the OWL language

Notation

In the case of an ontology, with a stereotyped package of «ontology» or «rdfDocument», the normal stereotype
notation be used, with property values specified in braces under the stereotype label7, as shown in Figure 52
(“Stereotype Notation for owl:versionInfo Applied to an Ontology or RDF Document”). In cases where the UML
tools do not support stereotype property notation, a corresponding UML class, with the same stereotype, may be
used, and annotation properties for the ontology or RDF document would be applied to that class. For OWL classes
and properties, owl:versionInfo should be represented as a property on «owlClass» or «owlProperty»
stereotype, as appropriate.

Figure 52 Stereotype Notation for owl:versionInfo Applied to an Ontology or RDF Document

16.2.4 OWL Ontology Properties

While an OWL ontology may seem to be analogous to the notion of an RDFS vocabulary on the surface, in fact, the
owl:ontology syntactic feature of OWL essentially enables association of a set of annotations with an RDF
vocabulary or OWL ontology. The target element for (or domain of) these annotations, called ontology properties
(and annotation properties, for annotations on ontologies -- annotation properties are not limited to annotations on
ontologies, however) in OWL, is the “ontology ID” (i.e., the URI reference that is the identifier for the ontology,
which it has by virtue of being a resource), not a subordinate OWL document.

7. The stereotype property notation follows the clarifications and elaborations of stereotype notation being
proposed by the UML extension for Systems Engineering. See Systems Modelling Language (SysML)
Specification, Addendum to SysML v0.9, Profiles and Model Libraries Chapter, http://doc.omg.org/ad/05-
06-01.pdf.

{ versionInfo = "1.1" }
MyOntology

<<rdfDocument>>
Ontology Definition Metamodel 201

OWL provides several built-in ontology properties, and also allows users to define such properties, as needed.
Although there is not a great analogy in UML to cover all cases, ontology properties, particularly the set of built-in
ontology properties, correspond to UML constraints between packages, and should be implemented as given in Table
40 (“Ontology Properties”) and the subsections that follow.

User-defined ontology properties are essentially properties defined on the «ontology» or «rdfDocument» stereotypes,
that can apply only between packages having these stereotypes. They should be defined individuals of the stereotyped
OWLOntologyProperty class, in order to distinguish them from annotation properties or other RDF or OWL
properties, however, in order to support downstream DL reasoning requirements.

16.2.4.1 owl:backwardCompatibleWith

Description
An owl:backwardCompatibleWith statement contains a reference to another ontology. This identifies the specified
ontology as a prior version of the containing ontology, and further indicates that it is backward compatible with it.

Stereotype and Base Class

«backwardCompatibleWith» stereotype of UML::Constraint

Parent

None. It is an instance of owl:OntologyProperty in the OWL language.

Table 40 Ontology Properties

Stereotype Base Class Parent Tags Constraints Description

OWLOntologyProperty
«ontologyProperty»

Association
Class

«rdfProperty» n/a [1] Applies only
between packages
stereotyped by
«ontology» or
«rdfDocument»;
[2] ontology
properties must
have a defined
domain and range,
which is an
ontology ID, i.e.,
the URI reference
for the ontology or
RDF vocabulary;
[3] ontology
properties are
single valued.

Extends 12.7.2
(“OWLOntologyPropert
y”) to allow for user
defined ontology
properties; In general,
ontology properties are
constraints between
ontologies.

OntologyPropertyInsta
nce
«ontologyAnnotation»

Property n/a n/a n/a Indicates some kind of
relationship between two
ontologies, such as
owl:PriorVersion,
but in this case, is user
defined.
202 Ontology Definition Metamodel

Tags

None.

Constraints
 [1] Applies only between packages stereotyped by «ontology» or «rdfDocument».
 [2] Classes and properties in the new version that have the same name as classes and properties in the earlier version
 must either be equivalent to or extend those in the earlier versions.
 [3] The later version must be logically consistent with the earlier version.
 [4] (semantic constraint) Identifiers in the later version have the same interpretation in the earlier version.

Notation

Dashed line between two instances with stereotype label, arrowhead towards the earlier version, as shown in Figure
53 (“Stereotype Notation for owl:backwardCompatibleWith”).

Figure 53 Stereotype Notation for owl:backwardCompatibleWith

16.2.4.2 owl:imports

Description
An owl:imports statement references another OWL ontology containing definitions, whose meaning is considered to
be part of the meaning of the importing ontology. Each reference consists of a URI specifying from where the ontology is
to be imported. Syntactically, owl:imports is a property with the class owl:Ontology as its domain and range.

Stereotype and Base Class

«owlImports» stereotype of UML::PackageImports

Parent

None. It is an instance of owl:OntologyProperty in the OWL language.

Tags

None.

Constraints
 [1] Applies only between packages stereotyped by «ontology» or «rdfDocument».

Notation

Dashed line between two instances with stereotype label, arrowhead towards the imported ontology, as shown in
Figure 54 (“Stereotype Notation for owl:imports”).

{ versionInfo = "1.1" }
MyOntology

<<rdfDocument>>
{ versionInfo = "1.2" }

MyNewOntology

<<rdfDocument>>
<<backwardCompatibleWith>>
Ontology Definition Metamodel 203

Figure 54 Stereotype Notation for owl:imports

16.2.4.3 owl:incompatibleWith

Description
An owl:incompatibleWith statement contains a reference to another ontology. This indicates that the containing
ontology is a later version of the referenced ontology, but is not backward compatible with it. Essentially, this is for use by
ontology authors who want to be explicit that documents cannot upgrade to use the new version without checking whether
changes are required.

Stereotype and Base Class

«incompatibleWith» stereotype of UML::Constraint

Parent

None. It is an instance of owl:OntologyProperty in the OWL language.

Tags

None.

Constraints
 [1] Applies only between packages stereotyped by «ontology» or «rdfDocument».
 [2] The later version must be logically inconsistent with the earlier version.

Notation

Dashed line between two instances with stereotype label, arrowhead towards the earlier version, as shown in Figure
55 (“Stereotype Notation for owl:incompatibleWith”).

Figure 55 Stereotype Notation for owl:incompatibleWith

Note: While it might seem reasonable to eliminate the arrowhead in this case, and make the relationship bi-
directional, all RDF graphs and thus such relationships are unidirectional in RDF, RDF Schema and OWL.
Applications that leverage this notation may optionally allow the user to indicate that they want a particular instance
of owl:incompatibleWith to be bidirectional, and in this case, as a shorthand notation, eliminate the arrowhead
and use a single dashed line; the interpretation of such notation should be two instances of
owl:incompatibleWith, however.

{ versionInfo = "1.1" }
MyOntology

<<rdfDocument>>
AnotherOntology

<<rdfDocument>>
<<owlImports>>

{ versionInfo = "1.1" }
MyOntology

<<rdfDocument>>
{ versionInfo = "1.2" }

MyNewOntology

<<rdfDocument>>
<<incompatibleWith>>
204 Ontology Definition Metamodel

16.2.4.4 owl:priorVersion

Description
An owl:priorVersion statement contains a reference to another ontology. This identifies the specified ontology as a
prior version of the containing ontology. This has no meaning in the model-theoretic semantics other than that given by the
RDF(S) model theory. However, it may be used by software to organize ontologies by versions.

Because of the lack of semantics, there is no obvious UML element to reuse or stereotype for this particular OWL property.
However, assuming that the spirit of this property is similar to though not quite as strong as that of
owl:backwardCompatibleWith, we suggest the following.

Stereotype and Base Class

«priorVersion» stereotype of UML::Constraint

Parent

None. It is an instance of owl:OntologyProperty in the OWL language.

Tags

None.

Constraints
 [1] Applies only between packages stereotyped by «ontology» or «rdfDocument».

Notation

Dashed line between two instances with stereotype label, arrowhead towards the earlier version, as shown in Figure
56 (“Stereotype Notation for owl:priorVersion”).

Figure 56 Stereotype Notation for owl:priorVersion

16.2.5 OWL Classes, Restrictions, and Class Axioms

Classes provide an abstraction mechanism for grouping resources with similar characteristics. Like RDF classes,
every OWL class is associated with a set of individuals, called the class extension. The individuals in the class
extension are called the instances of the class. A class has an intensional meaning (the underlying concept) which is
related but not equal to its class extension. Thus, two classes may have the same class extension, but still be different
classes.

A class description is the term used in [OWL S&AS] for the basic building blocks of class axioms. A class
description describes an OWL class, either by a class name or by specifying the class extension of an unnamed
anonymous class.

As described in 12.2.9 (“OWLClass”), OWL distinguishes six types of class descriptions:

1. a class identifier (a URI reference)

{ versionInfo = "1.1" }
MyOntology

<<rdfDocument>>
{ versionInfo = "1.2" }

MyNewOntology

<<rdfDocument>>

<<priorVersion>>
Ontology Definition Metamodel 205

2. an exhaustive enumeration of individuals that together form the instances of a class

3. a property restriction

4. the intersection of two or more class descriptions

5. the union of two or more class descriptions

6. the complement of a class description

The first type is special in the sense that it describes a class through a class name (syntactically represented as a URI
reference). The other five types of class descriptions describe an anonymous class by placing constraints on the class
extension. They consist of a set of RDF triples in which a blank node represents the class being described. This blank
node has an rdf:type property whose value is owl:Class.

Class descriptions of type 2-6 describe, respectively, a class that contains exactly the enumerated individuals (2nd
type), a class of all individuals which satisfy a particular property restriction (3rd type), or a class that satisfies
boolean combinations of class descriptions (4th, 5th and 6th type). Intersection, union and complement can be
respectively seen as the logical AND, OR and NOT operators. The four latter types of class descriptions lead to
nested class descriptions and can thus in theory lead to arbitrarily complex class descriptions. In practice, the level of
nesting is usually limited. Stereotypes for OWL class descriptions are given in Table 41and the subsections that
follow.

Note: owl:Class is defined as a subclass of rdfs:Class. The rationale for having a separate OWL class
construct lies in the restrictions on OWL DL (and thus also on OWL Lite), which imply that not all RDFS
classes are legal OWL DL classes. In OWL Full these restrictions do not exist and therefore owl:Class and
rdfs:Class are equivalent in OWL Full.

The set of stereotypes defined for use in constructing class descriptions are given in Table 41 and the subsections that
follow.

Table 41 Class Descriptions

Stereotype Base Class Parent Tags Constraints Description

OWLClass
«owlClass»

Class «rdfsClass» isDeprecated:
Boolean

All instances
conforming to
an OWL class
are instances
of the class.

A type 1 class descrip-
tion is syntactically
represented as an
named instance of
owl:Class, a subclass
of rdfs:Class. Extends
12.2.9 (“OWLClass”).
206 Ontology Definition Metamodel

A property restriction is a special kind of class description. When used in another class, the restriction class is
effectively a supertype of the containing class, applying the restriction to all individuals of the containing class. It
describes an anonymous class, namely a class of all individuals that satisfy the restriction. OWL distinguishes two
kinds of property restrictions: value constraints and cardinality constraints. Property restrictions can be applied both
to datatype properties (properties for which the value is a data literal) and object properties (properties for which the
value is an individual).

16.2.5.1 Cardinality Constraints

Description

In OWL, like in RDF, it is assumed that any instance of a class may have an arbitrary number (zero or more) of
values for a particular property. To make a property required (at least one), to allow only a specific number of values
for that property, or to insist that a property must not occur, cardinality constraints can be used. OWL provides three

EnumeratedClass
«enumeratedClass»

Class «owlClass» n/a n/a Extends 12.2.4
(“EnumeratedClass”).
The enumerated
individuals are the UML
instance specifications
of the class.

EnumeratedDataVal-
ues
«dataRange»

Enumeration n/a n/a n/a Represents enumerated
datatype values. The
enumerated values are
the enumeration literals
(a kind of instance
specification) of the
enumeration.

RestrictionClass
«owlRestriction»

Class «owlClass» n/a n/a Extends 12.2.10
(“OWLRestriction”).
This construct reifies a
restriction class for use
in complex class
axioms. The restriction
class is a subtype of the
domain of the property
(which might be
owl:Thing), and a
supertype of the class
that it is restricting the
property on. Note:
although restriction
classes are typically
anonymous, they are not
required to be and can be
named (via a class ID
URI reference/name).

Table 41 Class Descriptions

Stereotype Base Class Parent Tags Constraints Description
Ontology Definition Metamodel 207

constructs for restricting the cardinality of properties locally within a class context: owl:maxCardinality,
owl:minCardinality, and owl:Cardinality. These constructs are analogous to multiplicity in UML, thus the approach
taken is

• for properties whose initial definition includes the cardinality constraint, simply apply multiplicities as appropri-
ate.

• for inherited properties, redefine the property with new multiplicity.

Stereotype and Base Class

None. UML multiplicities are presented using the standard presentation options defined in section 7.4.1, “Unified
Modeling Language: Superstructure”, version 2 [UML2].

Parent

None.

Tags

None.

Constraints
 [1] ValueSpecifications for multiplicities in OWL must be non-negative integer literals.
 [2] isOrdered = false in OWL.
 [3] isUnique = true in OWL, meaning that the values are a set, not a a bag.

Notation
For inherited properties, show the property with restricted multiplicity in subtype, and using “{redefines <restricted-
property-name> }” at the end of the property entry in a class (can be elided), as shown in Figure 57.

Figure 57 owl:Cardinality - Restricted Multiplicity in Subtype

Alternatively, when unidirectional associations are desirable, cardinality constraints can be represented as shown in
Figure 58.

Thing
hasColor : Color

<<owlClass>>

SingleColoredThing
hasColor : Color

<<owlClass>>

[1..1]
208 Ontology Definition Metamodel

Figure 58 owl:Cardinality - Restricted Multiplicity in Subtype

16.2.5.2 owl:allValuesFrom Constraint

Description

The value constraint owl:allValuesFrom is a built-in OWL property that links a restriction class to either a
class description or a data range. A restriction containing owl:allValuesFrom specifies a class or data range for
which all values of the property under consideration are either members of the described class, or are data values
within the specified data range.

Essentially, owl:allValuesFrom is used to redefine the type of a particular property (in effect define a
subproperty), similar to UML property redefinition.

Stereotype and Base Class

None. Uses UML Generalization and property redefinition, as shown under Notation, below.

Note that the domain and/or target (for owl:allValuesFrom) for the subproperty will not always be a direct
descendent of the superclass that the property is defined on, as it happens to be in the examples.

If the attribute form of notation is used, then “{redefines <parent-class>::<property-name>}” should be given at the
end (i.e., to the right) of the property entry. The parent class is optional if the property inherits from only one parent.

Parent

None.

Tags

None.

Constraints
 [1] Property name is not changed in redefinition.

Notation

Several notation approaches are provided here, in keeping with the notation used for properties in the profile for
RDF/S. First, we can show the property with restricted type in subtype, by adding “{redefines <restricted-property-
name> }” at the end of the property entry (can be elided), as in Figure 59.

Thing
<<owlClass>>

SingleColoredThing
<<owlClass>>

Color
<<owlClass>>+hasColor

1..1
+hasColor

{redefines hasColor}

1..1
Ontology Definition Metamodel 209

Figure 59 Simple Property Redefinition Example For owl:allValuesFrom

Secondly, we can show the same thing using unidirectional association style properties, as shown in Figure 60.

Figure 60 Property Redefinition For owl:allValuesFrom With Unidirectional Associations

An alternative using association classes is shown below. This might be confusing to OWL users, because the
subproperty statement cannot place restrictions on the HasBrightColor subproperty. The UML generalization
used this way would need to be interpreted differently in the mapping to OWL, perhaps by applying an
“owlRedefines” stereotype to it.

Figure 61 Property Redefinition For owl:allValuesFrom With Association Classes

BrightColoredThing
hasColor : BrightColor

<<owlClass>>

Thing
hasColor : Color

<<owlClass>>

{ redefines hasColor }

Color
<<owlClass>>

Thing
<<owlClass>> +hasColor

BrightColoredThing
<<owlClass>>

BrightColor
<<owlClass>>

+hasColor
{redefines hasColor}

Color
<<owlClass>>

Thing
<<owlClass>> +hasColor

BrightColor
<<owlClass>>

BrightColoredThing
<<owlClass>>

+hasColor
{redefines hasColor}

HasColor
<<objectProperty>>

HasBrightColor
<<objectProperty>>

<<rdfsSubPropertyOf>>
210 Ontology Definition Metamodel

16.2.5.3 owl:someValuesFrom and owl:hasValue

Description

Similar to owl:allValuesFrom, owl:someValuesFrom is a built-in OWL property that links a restriction
class to either a class description or a data range. A restriction containing an owl:someValuesFrom constraint is
used to describe a class or data range for which at least one value of the property concerned is either a member of the
class extension of the class description or a data value within the specified data range. In other words, it defines a
class of individuals x for which there is at least one y (either an instance of the class description or value of the data
range) such that the pair (x,y) is an instance of P. This does not exclude that there are other instances (x,y') of P for
which y' does not belong to the class description or data range.

The value constraint owl:hasValue is a built-in OWL property that links a restriction class to a value V, which
can be either an individual or a data value. A restriction containing an owl:hasValue constraint describes a class
of all individuals for which the property concerned has at least one value semantically equal to V (it may have other
values as well).

Again, like owl:allValuesFrom, owl:someValuesFrom and owl:hasValue are used to redefine the type
of a particular property, similar to UML property redefinition.

Stereotype and Base Class

A stereotype «owlValue» of UML::Constraint is applied to redefining properties. The stereotype has these properties.

• hasValue – of type UML::InstanceSpecification

• someValuesFrom – of type UML::Class

Parent

None.

Tags

None.

Constraints
[1] Can be applied to RDF and OWL properties, but only to properties that redefine other properties.

[2] In the case of owl:someValuesFrom class, the class must be stereotyped «owlClass».

Notation

Put before the property name: “«owlValue» {hasValue = <instance-name>, <instance-name>; someValuesFrom =
<class-name>, <class-name>}”, for example, as shown in Figure 62, where volume is an individual of type physical
dimension8.

8. This notation follows the clarifications and elaboration of stereotype notation being proposed by the UML extension
for Systems Engineering. The properties of the stereotypes must be strings, because they cannot be typed by
UML metamodel elements. Requires namespace notation to resolve name conflicts. See Systems Model-
ling Language (SysML) Specification, Addendum to SysML v0.9, Profiles and Model Libraries Chapter,
http://doc.omg.org/ad/05-06-01.pdf.
Ontology Definition Metamodel 211

Figure 62 Example Using owl:hasValue Constraint

16.2.5.4 owl:intersectionOf Property

Description

The owl:intersectionOf property links a class to a list of class descriptions. An owl:intersectionOf
statement describes a class for which the class extension contains precisely those individuals that are members of the
class extension of all class descriptions in the list. owl:intersectionOf can be viewed as being analogous to
logical conjunction.

Stereotype and Base Class

A stereotype «intersectionOf» of UML::Constraint.

Parent

None.

Tags

None.

Constraints
[1] Applies to generalizations with a common subtype.

[2] All instances of super types along intersection generalizations are instances of the subtype.

[3] (UML generalization semantics) All instances of the subtype are instances of the super types.

Notation

Dashed line between generalization lines with stereotype label, as shown in Figure 63.

standard international unit
hasSymbol : standard unit symbol
hasPhysicalDimension : physical dimension

<<owlClass>>

unit of volume
<<owlValue>> { hasValue = volume } hasPhysicalDimension : physical dimension

<<owlClass>>
212 Ontology Definition Metamodel

Figure 63 Example Using owl:intersectionOf

The stereotype is based on UML::Generalization rather than UML::Class, so there can be other supertypes not
required by the intersection. Use of UML::GeneralizationSet was prohibited in this case, because it requires one
supertype – its semantics refers to the instances of the subtypes, not the supertypes.

16.2.5.5 owl:unionOf Property

Description

The owl:unionOf property links a class to a list of class descriptions. An owl:unionOf statement describes an
anonymous class for which the class extension contains those individuals that occur in at least one of the class
extensions of the class descriptions in the list. owl:unionOf is analogous to logical disjunction.

Stereotype and Base Class

UML::GeneralizationSet with isCovering = true, as shown in Figure 64. For consistency with the other class
descriptions, vendors can also optionally define a «unionOf» stereotype of UML::Constraint, applied to
UML::Generalization (similar to intersection, above).

Parent

None.

Tags

None.

Constraints
 [1] (UML semantics) All instances of the supertype are instances of at least one of the subtypes.

Notation

Dashed line between generalization lines labeled with “{complete}”.

Person
<<owlClass>>

Tall Thing
<<owlClass>>

Tall Person
<<owlClass>>

<<intersectionOf>> - - - - - - - - - - - - - - - - - - -
Ontology Definition Metamodel 213

Figure 64 Example Using owl:unionOf

16.2.5.6 owl:complementOf Property

Description

An owl:complementOf property links a class to precisely one class description. An owl:complementOf
statement describes a class for which the class extension contains exactly those individuals that do not belong to the
class extension of the class description that is the object of the statement. owl:complementOf is analogous to
logical negation: the class extension consists of those individuals that are NOT members of the class extension of the
complement class.

Stereotype and Base Class

«complementOf» stereotype of UML::Constraint.

Parent

None.

Tags

None.

Constraints
[1] Applies between exactly two classes.

[2] All instances (of owl:Thing) are instances of exactly one of the two classes.

Notation

Dashed line between two classes with stereotype label. An arrowhead should be used opposite from the class that will
have owl:complementOf in XML syntax (since all RDF, RDF Schema, and OWL graphs are unidirectional, by
definition). Shorthand notation that eliminates the arrowhead may be used within an ontology, but XML production in
this case should result in two instances of owl:complementOf – one for each “side” of the bidirectional constraint.

Figure 65 Example Using owl:complementOf

Gender
<<owlClass>>

Female
<<owlClass>>

Male
<<owlClass>>

{ complete } -

NonHuman
<<owlClass>>

Human Being
<<owlClass>> <<complementOf>>
214 Ontology Definition Metamodel

16.2.5.7 owl:disjointWith Class Axiom

Description

owl:disjointWith is a built-in OWL property with a class description as domain and range. Each
owl:disjointWith statement asserts that the class extensions of the two class descriptions involved have no
individuals in common. A class axiom may also contain (multiple) owl:disjointWith statements. Like axioms
with rdfs:subClassOf, declaring two classes to be disjoint is a partial definition: it imposes a necessary but not
sufficient condition on the class.

Stereotype and Base Class

«disjointWith» stereotype of UML::Constraint.

Parent

None.

Tags

None.

Constraints
[1] Applies only between classes.

[2] No shared instances.

Notation

Dashed line between two classes with stereotype label. An arrowhead should be used opposite from the class that will
have owl:disjointWith in XML syntax (since all RDF, RDF Schema, and OWL graphs are unidirectional, by
definition). Shorthand notation that eliminates the arrowhead may be used within an ontology, but XML production in
this case should result in two instances of owl:disjointWith – one for each “side” of the bidirectional constraint.

Figure 66 Example Using owl:disjointWith

In cases where there are multiple participants in the same owl:disjointWith class axiom, a constraint note with
stereotype label and dashed lines to more than one class should be used, as shown in Figure 67.

Female
<<owlClass>>

Male
<<owlClass>> <<disjointWith>>
Ontology Definition Metamodel 215

Figure 67 Example Using owl:disjointWith With Multiple Participants

Alternatively, if the classes have a common supertype, use UML::GeneralizationSet with isDisjoint = true. Notation is
dashed line between generalization lines labeled with “{disjoint}”.

Figure 68 Example Using owl:disjointWith With Common Supertype

16.2.5.8 owl:equivalentClass Class Axiom

Description

owl:equivalentClass is a built-in property that links a class description to another class description. The
meaning of such a class axiom is that the two class descriptions involved have the same class extension (i.e., both
class extensions contain exactly the same set of individuals). A class axiom may contain (multiple)
owl:equivalentClass statements.

Stereotype and Base Class

«equivalentClass» stereotype of UML::Constraint.

Parent

None.

Tags

None.

Constraints
[1] Applies only between classes.

Star
<<owlClass>>

Planet
<<owlClass>>

Comet
<<owlClass>>

<<disjointWith>>

CelestialBody
<<owlClass>>

Star
<<owlClass>>

Planet
<<owlClass>>

Comet
<<owlClass>>

 { disjoint } -
216 Ontology Definition Metamodel

[2] Instances are the same.

Notation

Dashed line between two classes with stereotype label. An arrowhead should be used opposite from the class that will
have owl:equivalentClass in XML syntax. Shorthand notation that eliminates the arrowhead may be used within an
ontology, but XML production in this case should result in two instances of owl:equivalentClass – one for each
“side” of the bidirectional constraint. .

Figure 69 Example Using owl:equivalentClass

Alternatively two UML::Generalizations may be used, again within a given ontology, if such circular definitions are
supported by the tool (i.e., class a generalizes class b and vice versa).

In cases where there are multiple participants in the same owl:equivalentClass class axiom, a constraint note
with stereotype label and dashed lines to more than one class should be used, similarly to the example used for
owl:disjointWith.

16.2.6 Properties

OWL distinguishes between two main categories of properties that an ontology builder may want to define:

• Object properties link individuals to individuals.

• Datatype properties link individuals to data values.

Note: OWL also has the notion of annotation properties (owl:AnnotationProperty) and ontology prop-
erties (owl:OntologyProperty). These are needed in OWL DL for semantic reasons, and are defined
above.

An object property is defined as an instance of the built-in OWL class owl:ObjectProperty. A datatype
property is defined as an instance of the built-in OWL class owl:DatatypeProperty. Both
owl:ObjectProperty and owl:DatatypeProperty are subclasses of the RDF class rdf:Property.

Note: In OWL Full, object properties and datatype properties are not disjoint. Because data values can be
treated as individuals, datatype properties are effectively subclasses of object properties. In OWL Full
owl:ObjectProperty is equivalent to rdf:Property In practice, this mainly has consequences for the
use of owl:InverseFunctionalProperty. We have introduced the stereotyped «owlProperty» associa-
tion class as a means of generalizing these notions, as shown in Table 42 (“Properties”).

A property axiom defines characteristics of a property. In its simplest form, a property axiom just defines the
existence of a property. Often, property axioms define additional characteristics of properties. OWL supports the
following constructs for property axioms:

• RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain and rdfs:range

• relations to other properties: owl:equivalentProperty and owl:inverseOf

• global cardinality constraints: owl:FunctionalProperty and owl:InverseFunctionalProperty

• logical property characteristics: owl:SymmetricProperty and owl:TransitiveProperty

Human Being
<<owlClass>>

Person
<<owlClass>><<equivalentClass>>
Ontology Definition Metamodel 217

The relevant RDF Schema concepts are defined in 16.1.7 (“Properties in RDF/S”); global cardinality constraints and
logical property characteristics are represented as UML properties on either «owlProperty» or «objectProperty», as
given in Table 42. The relations between properties are defined in the sections that follow.

Table 42 Properties

Stereotype Base Class Parent Tags Constraints Description

OWLProperty
«owlProperty»

Association
Class

«rdfProperty» isDeprecat-
ed: Boolean

n/a Extends 12.3.3 (“Proper-
ty”)

OWLFunctionalProper-
ty
«isFunctional»

Association
Class, Prop-
erty

«owlProperty» n/a n/a Indicates that an object
or datatype property is
functional; is defined as
a subclass of
rdf:Property. A
functional property can
have only one (unique)
value y for each instance
x, i.e. there cannot be
two distinct values y1
and y2 such that the
pairs (x,y1) and (x,y2)
are both instances of this
property.

OWLObjectProperty
«objectProperty»

Association
Class

«owlProperty» n/a n/a Extends 12.3.2
(“OWLObjectProperty”)

OWLInverseFunction-
alProperty
«isInverseFunctional»

Association
Class, Prop-
erty

«objectProper-
ty»

n/a n/a Indicates that an object
property is inverse Func-
tional; is defined as a
subclass of owl:Ob-
jectProperty; Be-
cause in OWL Full
datatype properties are a
subclass of object prop-
erties, an inverse-func-
tional property can be
defined for datatype
properties, which is not
possible in OWL DL. If
P is an owl:Inverse-
FunctionalProp-
erty, then this asserts
that a value y can only
be the value of P for a
single instance x, i.e.
there cannot be two dis-
tinct instances x1 and x2
such that both pairs
(x1,y) and (x2,y) are in-
stances of P.
218 Ontology Definition Metamodel

16.2.6.1 owl:equivalentProperty Relation

Description

The owl:equivalentProperty construct can be used to state that two properties have the same property
extension. Syntactically, owl:equivalentProperty is a built-in OWL property with rdf:Property as both
its domain and range.

Note: Property equivalence is not the same as property equality. Equivalent properties have the same “values”
(i.e., the same property extension), but may have different intensional meaning (i.e., denote different concepts).
Property equality should be expressed with the owl:sameAs construct. As this requires that properties are
treated as individuals, such axioms are only allowed in OWL Full.

Stereotype and Base Class

«equivalentProperty» stereotype of UML::Constraint between classes stereotyped as «rdfProperty», «owlProperty»,
«objectProperty», or «datatypeProperty».

Parent

None.

OWLSymmetricProper-
ty
«isSymmetric»

Property «objectProper-
ty»

n/a Indicates that an object
property is symmetric; is
defined as a subclass of
owl:ObjectProp-
erty. A symmetric
property is a property for
which holds that if the
pair (x,y) is an instance
of P, then the pair (y,x) is
also an instance of P.
The domain and range of
a symmetric property are
the same.

OWLTransitiveProperty
«isTransitive»

Property «objectProper-
ty»

n/a Indicates that an object
property is transitive; is
defined as a subclass of
owl:ObjectProp-
erty. If a property P is
transitive, this means
that if a pair (x,y) is an
instance of P, and the
pair (y,z) is also instance
of P, then we can infer
the pair (x,z) is also an
instance of P.

OWLDatatypeProperty
«datatypeProperty»

Association
Class

«owlProperty» n/a n/a Extends 12.3.1 (“OWL-
DatatypeProperty”)

Table 42 Properties

Stereotype Base Class Parent Tags Constraints Description
Ontology Definition Metamodel 219

Tags

None.

Constraints
[1] Applies only between global properties.

[2] Instances (property extensions, or sets of tuples) are the same.

Notation

Dashed line between two association classes with stereotype label. An arrowhead should be used opposite from the
association class that will have owl:equivalentProperty in XML syntax. Shorthand notation that eliminates the
arrowhead may be used within an ontology, but XML production should result in two instances of
owl:equivalentProperty – one for each “side” of the bidirectional constraint.

In cases where there are multiple participants in the same owl:equivalentProperty relation, a constraint note with
stereotype label and dashed lines to more than one association class representing the property should be used, similarly
to the example for owl:disjointWith.

16.2.6.2 owl:inverseOf Relation

Description

Properties have a direction, from domain to range. In practice, people often find it useful to define relations in both
directions: persons own cars, cars are owned by persons. The owl:inverseOf construct can be used to define such
an inverse relation between properties.

Syntactically, owl:inverseOf is a built-in OWL property with owl:ObjectProperty as its domain and
range. An axiom of the form P1 owl:inverseOf P2 asserts that for every pair (x,y) in the property extension of
P1, there is a pair (y,x) in the property extension of P2, and vice versa. Thus, owl:inverseOf is a symmetric
property.

Stereotype and Base Class

«inverseOf» stereotype of UML::Association.

Parent

None.

Tags

None.

Constraints
[1] Applies only to global properties.

[2] owl:inverseOf is binary -- between exactly two object properties.

Notation

A. Several approaches are possible from a notation perspective for representing owl:inverseOf. The most
natural choice from a UML perspective would be to use a simple association with properties as ends, i.e., a line
between classes with properties on the ends closest to their ranges, for example, as shown in Figure 70.
220 Ontology Definition Metamodel

Figure 70 Using owl:inverseOf With Bidirectional Shorthand Notation

Additional constraints if this approach is taken:

[1] (UML) A property cannot be an inverse of itself (use "symmetric")

[2] (UML) A property can have at most one inverse.

B. Alternatively, one could use an «inverseOf» stereotype of UML::Constraint between association classes for binary,
unidirectional associations, as shown in Figure 71. An arrowhead should be used opposite from the association class
that will have owl:inverseOf in XML syntax. Shorthand notation that eliminates the arrowhead may be used within
an ontology, but XML production should result in two instances of owl:inverseOf – one for each “side” of the
bidirectional constraint.

Figure 71 Using owl:inverseOf Between Association Classes

Additional constraints if this approach is taken:

[1] (UML) A property cannot be an inverse of itself (use "symmetric")

C. A third notational option would be to use a stereotype «inverse» of a UML::Property with a property:

OF of type UML:String

Values for the OF property must be strings, because they cannot be typed by UML metamodel elements. This
approach requires namespace notation to resolve name conflicts.

Using a similar notation to the approach taken in 16.2.5.3 (“owl:someValuesFrom and owl:hasValue”), put before the
property name: “"inverse" { of = <property-name>, <property-name> }”.

Additional constraints if this approach is taken:

[1] Value of OF property must refer to a global property.

[2] (UML) A property cannot be an inverse of itself (use "symmetric")

Male
<<owlClass>>

Female
<<owlClass>>+brotherOf+sisterOf

brotherOf
<<objectProperty>>

sisterOf
<<objectProperty>>

Female
<<owlClass>>

Male
<<owlClass>>

+brotherOf

+sisterOf

<<inverseOf>>
<<inverseOf>>
Ontology Definition Metamodel 221

16.2.7 Individuals

Individuals are defined with individual axioms (also called “facts”). These include:

• Facts about class membership and property values of individuals

• Facts about individual identity

Many languages have a so-called “unique names” assumption: different names refer to different things in the world.
On the web, such an assumption is not possible. For example, the same person could be referred to in many different
ways (i.e. with different URI references). For this reason OWL does not make this assumption. Unless an explicit
statement is being made that two URI references refer to the same or to different individuals, OWL tools should in
principle assume either situation is possible.

OWL provides three constructs for stating facts about the identity of individuals:

• owl:sameAs is used to state that two URI references refer to the same individual.

• owl:differentFrom is used to state that two URI references refer to different individuals

• owl:AllDifferent provides an idiom for stating that a list of individuals are all different.

16.2.7.1 Class Membership and Property Values of Individuals

Description

Many facts typically are statements indicating class membership of individuals and property values of individuals.
Individual axioms need not necessarily be about named individuals: they can also refer to anonymous individuals.

Stereotype and Base Class

UML::InstanceSpecification typed by a class having the properties desired for the individual. The class may
stereotyped by «singleton» to indicate it is for a specific individual9. Singleton classes are not translated to OWL, and
their properties appear in OWL as properties of the individual.

Parent

None.

Tags

None.

Constraints
 [1] Classes stereotyped by «singleton» have exactly one instance each.
 [2] Instances of «singleton» classes have exactly one classifier.

Notation

Instance specifications use the same symbol as classes, but their names are underlined, and have a colon separating
the instance name from the class name. Singleton classes can be anonymous, omitted from the notation, and
generated by tools. Instances of anonymous classes show nothing after the colon.

9. UML supports individuals without classes and properties on such individuals, for tools that choose to support it.
222 Ontology Definition Metamodel

16.2.7.2 owl:sameAs Relation

Description

The built-in OWL property owl:sameAs links an individual to an individual. Such an owl:sameAs statement indicates
that two URI references actually refer to the same thing: the individuals have the same “identity”.

owl:sameAs statements are often used in defining mappings between ontologies. It is unrealistic to assume everybody
will use the same name to refer to individuals, particularly in a web based environment.

Additionally, in OWL Full, where a class can be treated as instances of (meta)classes, the owl:sameAs construct can
be used to define class equality, thus indicating that two concepts have the same intensional meaning.

Stereotype and Base Class

«sameAs» stereotype of UML::Constraint.

Parent

None.

Tags

None.

Constraints
 [1] Applies only between instance specifications, or in OWL Full, between instances or between classes.

Notation

Dashed line between two instances (or classes) with stereotype label. An arrowhead can be used opposite from the
instance (or class) that will have owl:sameAs in XML syntax.

Note: need example diagram.

Constraint note with stereotype label and dashed lines to more than one instance (or class - translates to multiple
owl:sameAs statements).

Note: need example diagram.

16.2.7.3 owl:differentFrom Relation

Description

The built-in OWL owl:differentFrom property links an individual to an individual. An owl:differentFrom statement
indicates that two URI references refer to different individuals.

Stereotype and Base Class

«differentFrom» stereotype of UML::Constraint.

Parent

None.

Tags

None.
Ontology Definition Metamodel 223

Constraints
 [1] Applies only between instance specifications.

Notation

Dashed line between two instances with stereotype label. An arrowhead can be used opposite from the instance that
will have owl:differentFrom in XML syntax.

Note: need example diagram.

Constraint note with stereotype label and dashed lines to more than one instance (translates to multiple
owl:differentFrom statements).

Note: need example diagram.

16.2.7.4 owl:AllDifferent Construct

Description

For ontologies in which the unique-names assumption holds, the use of owl:differentFrom is likely to lead to a large
number of statements, as all individuals have to be declared pairwise disjoint. For such situations OWL provides a
special idiom in the form of the construct owl:AllDifferent. owl:AllDifferent is a special built-in OWL class, for
which the property owl:distinctMembers is defined, which links an instance of owl:AllDifferent to a list of
individuals. The intended meaning of such a statement is that all individuals in the list are all different from each
other.

Stereotype and Base Class

«allDifferent» stereotype of UML::Constraint.

Parent

None.

Tags

None.

Constraints
 [1] Applies only between instance specifications.

Notation

Constraint note with stereotype label and dashed lines to more than one instance.

Note: need example diagram.

16.2.7.5 Individual Property Values

Description

In RDF, RDF Schema, and OWL, properties of individuals are accessed essentially through the triples (or
statements), where the individual is the subject of the triple. In this profile, while we have optionally provided
explicit access to the elements of the triple in a way that identifies the subject for this purpose, we also provide a
more intuitive representation from a UML perspective.
224 Ontology Definition Metamodel

Stereotype and Base Class

No stereotype, use UML::Slot to represent properties on individuals.

Parent

None.

Tags

None.

Constraints
 [1] Values must conform to constraints on the property, such as type and multiplicity.

Notation

Put values after equal sign at end of property entry in instance.

Note: need example diagram.

16.2.8 Datatypes

OWL allows three types of data range specifications:

• An RDF datatype specification.

• The RDFS class rdfs:Literal.

• An enumerated datatype, using the owl:oneOf construct.

OWL makes use of the RDF datatyping scheme, which provides a mechanism for referring to XML Schema
datatypes. Data values are instances of the RDF Schema class rdfs:Literal. Literals can be either plain (no datatype)
or typed. Datatypes are instances of the class rdfs:Datatype. In RDF/XML, the type of a literal is specified by an
rdf:datatype attribute of which the value is recommended to be one of the following:

• A canonical URI reference to an XML Schema datatype of the form:

http://www.w3.org/2001/XMLSchema#NAME

where “NAME” should be the name of a simple XML Schema built-in datatype, with the provisos specified
below.

• The URI reference of the datatype rdf:XMLLiteral. This datatype is used to include XML content into an RDF/
OWL document. The URI reference of this datatype is:

http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral

The RDF Semantics document recommends use of the following simple built-in XML Schema datatypes.

• The primitive datatype xsd:string, plus the following datatypes derived from xsd:string: xsd:normalizedString,
xsd:token, xsd:language, xsd:NMTOKEN, xsd:Name, and xsd:NCName.

• The primitive datatype xsd:boolean.

• The primitive numerical datatypes xsd:decimal, xsd:float, and xsd:double, plus all derived types of xsd:decimal
(xsd:integer, xsd:positiveInteger. xsd:nonPositiveInteger, xsd:negativeInteger, xsd:nonNegativeInteger, xsd:long,
xsd:int, xsd:short, xsd:byte, xsd:unsignedLong, xsd:unsignedInt, xsd:unsignedShort, xsd:unsignedByte)

• The primitive time-related datatypes: xsd:dateTime, xsd:time, xsd:date, xsd:gYearMonth, xsd:gYear, xsd:gMonth-
Ontology Definition Metamodel 225

Day, xsd:gDay, and xsd:gMonth.

• The primitive datatypes xsd:hexBinary, xsd:base64Binary, and xsd:anyURI.

Note: It is not illegal, although not recommended, for applications to define their own datatypes by defining an
instance of rdfs:Datatype. Such datatypes are “unrecognized”, but are treated in a similar fashion as “unsupported
datatypes”.

The set of XML Schema datatypes that are allowable for use in OWL DL are given in the model library provided in
Appendix A, Foundation Ontology (M1) for RDFS and OWL.

In addition to the RDF datatypes, OWL provides one additional construct for defining a range of data values, namely
an enumerated datatype. In the RDF/XML and OWL syntax, this datatype format makes use of the owl:oneOf
construct, that is also used for describing an enumerated class. In the case of an enumerated datatype, the subject of
owl:oneOf is a blank node of class owl:DataRange and the object is a list of literals. The stereotype for enumerated
datatypes is given in Table 41 (“Class Descriptions”).
226 Ontology Definition Metamodel

17 The Topic Map Profile
This chapter defines a UML2 profile to support the usage of UML notation for the modeling of Topic Maps.

Note that the structure of Topic Maps differs considerably from UML, making the profiles somewhat misleading.
UML specifies a class structure, with instances specified by a generic instances model. Topic Map constructs are
largely at the individual level, in some cases gathered into classes via a type association.

In particular, the stereotype Topic extends UML Class. An instance of Class is itself a class, while an instance of
Topic in the TM metamodel is generally not, although some instances of Topic serve as types for others. The profile
only models instances of Topic which are types.

Further, the stereotype Association extends UML Association. An instance of UML Association specifies a set of
tuples. An instance of TM Association specifies a particular link among particular individual instances of Topic.
However, a TM Association is linked to an instance of Topic which serves as its type. So the stereotype models the
instance of Topic which is the type of the TM Association.

17.1 Stereotypes

17.1.1 Topic Map

The Topic Map stereotype is defined as an extension of the UML Package base meta-class, as shown in Figure 72.

Figure 72 Topic Map Stereotype

Applying this stereotype to a package requires that the UML constructs contained within the package be interpreted
according to this profile definition.

Tagged Values

• baseLocator - used to specify the storage location of the Topic Map, it must be a URI String.

17.1.2 Topic

The Topic stereotype extends the UML Class meta-class, as shown in Figure 73. Its application indicates that the
UML Class is interpreted as a Topic.

Figure 73 Topic Stereotype

Tagged Values

• subjectIdentifier - used to reference the Topic’s subjectIdentifier, it must be a URI string.
Ontology Definition Metamodel 227

• subjectLocator - used to reference the Topic’s subjectLocators, it must be a URI string.

17.1.3 Association

The association stereotype extends the UML Association meta-class, as shown in Figure 74. Its application indicates
the UML Association is interpreted as a Topic Map Association. Both binary and n-ary associations are supported.

Figure 74 Association Stereotype

17.1.4 Characteristics

The characteristics of Topics use a shared set of stereotypes that extend the UML Properties meta-class, as shown in
Figure 75. These four stereotypes are used to model the association roles played by topics and the attributes of topics

Figure 75 Characteristic Stereotype

AssociationRole

The AssociationRole stereotype is used to indicate an UML Association owned end Property is a Topic Map
AssociationRole. The owning UML Association must be stereotyped using the Association stereotype.

Occurrence

The Occurrence stereotype may be applied to either a UML Attribute or a UML Association owned-end Property.
Values of this property are interpreted as Topic Map Occurrence values.

Names

The TopicName stereotype may be applied to char array or string typed attributes to indicate that values of the
attribute represent Topic Names. The TopicName stereotyped Property may have multiple values for the tagged value
‘variant’ indicating a set of Variant stereotype Properties that are associated with this TopicName.
228 Ontology Definition Metamodel

The Variant stereotype may be applied to any UML Property, including attributes and association ends, to indicate
these values represent Variants. The Variant stereotype Property is required to have a tagged value ‘parent’ linking
the variant to a parent TopicName.

17.2 Abstract Bases
Several abstract base meta-classes are defined in the profile. They purpose is to define shared tagged values for sets
of stereotype meta-classes.

17.2.1 TopicMapElement

All stereotypes in the profile are specializations of the TopicMapELement abstract base class, as shown in Figure 76.
This class provides all profile stereotypes with the ‘itemIdentifiers’ tagged value.

Figure 76 TopicMapElement Stereotypes

Tagged Values

• sourceLocator - used to optionally provide an application specific unique identifier to the stereotyped elements; it
must be a URI String.

17.2.2 Scoped Element

Some stereotyped elements in a profiled model, as shown in Figure 77, may have ‘scope’ tagged values that define
when this scoped element is applicable.

Figure 77 ScopedElement Stereotypes

Tagged Values

• scope – a set of references to Topic Stereotyped elements that define the scope of the element.
Ontology Definition Metamodel 229

17.2.3 TypedElement

Some stereotyped elements in the profiled model, as shown in Figure 78, may have a ‘type’ tagged value. This value
references a Topic stereotyped class that defines the general nature of the owning element.

Figure 78 TypedElement Stereotypes

Tagged Values

• type – a reference to a Topic stereotyped element that is the type of this element.

17.3 Example
The figure below, Figure 79, show an example profile applied to a simple UML model of:

• A Personal Car is a Car, which may be owned by a Person.

• A Car is a Vehicle, which may have a Color.

• Carl is a person that owns one Personal Car that is red and another that is blue.
230 Ontology Definition Metamodel

Figure 79 Example Profile

<< topic >>
Ve hicle

<< topic >>
Car

<< topic >>
Pe rsonalCar

<< topic >>
Color

<< topic >>
Pe rson

owne d+

owne r+

owne rship

<< asso ciatio n >>

isColor+

 ColorOf+

 hasColor

<< asso ciatio n >>

Carl:Person

CarlsRedCar:PersonalCar

CarlsBlueCar:PersonalCar

Red:Color

Blue:Color
Ontology Definition Metamodel 231

232 Ontology Definition Metamodel

18 Mapping UML to OWL

18.1 Overview
This chapter describes the mapping or transformation between instances of the UML metamodel and those of the
OWL metamodel. The mappings are defined in one direction: from UML to OWL. This chapter uses the abstract
syntax that is defined in section 19.1.

18.2 UML to OWL Mapping
This section describes mappings from [UML2] models to ODM OWL models. The UML2 metamodel is based on
ptc/04-10-02. The mapping is limited to OWL DL, which means only OWL-DL constructs will be used in mapping
definitions. There are many abstract metaclasses in UML2 kernel package, so only important concrete classes are
mapped to OWL constructs.

18.2.1 Package

A package is a namespace for its members, and may contain other packages. Only packageable elements can be
owned members of a package. By virtue of being a namespace, a package can import either individual members of
other packages, or all the members of other packages. A package has,

• a name,

• a set of members that are owned by this package,

• a set of PackageImports that are owned by this package.

Therefore, the following URIs can be used to index all elements appearing in this description:

• m: the m-th Package of a model

• m.o: the o-th PackageImport of Package (m)

• m.o.p: the p-th Package whose members are imported by PackageImport (m.o)

• m.c: the c-th Class of Package (m)

• m.a: the a-th Association of Package (m)

• m.i: the i-th InstanceSpecification of Package (m)

UML Abstract Syntax

The above description of a Package can be represented in the UML Abstract Syntax as follows:

Package (m

name (String)

{importedPackage(m.o:Package)}o

{ownedMember(m.c:Class)}c

{ownedMember(m.a:Association)}a

{ownedMember(m.i:InstanceSpecification)}i)
Ontology Definition Metamodel 233

ODM OWL Abstract Syntax

A Package is mapped to a OWLOntology, which has

• a localName,

• a set of imported OWLOntologies,

• a set of contained OWLClasses, OWLRestrictions, OWLDatatypeProperties, OWLObjectProperties and Individu-
als.

Then the result target model can be represented as follows using the ODM OWL abstract syntax (defined in Section
19.5):

UML2OWL(Package (m)) :=

OWLOntology(m

// Map name to localName
 localName(m.name:String)

// Map PackageImport.importedPackage to OWLimports
 {OWLimports(m.o.p:OWLOntology)}o

// Map Class to OWLClass
 {contains(m.c:OWLClass)}c

// Map Association to OWLObjectProperty
 {contains(m.a:OWLObjectProperty)}a

// Map InstanceSpecification to Individual
 {contains(m.i:Individual)}i)

18.2.2 Class

Class is a kind of classifier whose features are attributes and operations. Attributes of a class are represented by
instances of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary
associations.

The mapping from Class to OWLClass mainly contains the transformation of generalization relationships between
Classes and the Properties that are owned by Class. A generalization is a taxonomic relationship between a more
general classifier and a more specific classifier. Each instance of the specific classifier is also an indirect instance of
the general classifier. It has the same semantics of RDFSsubClassOf in RDF Schema, and the two ends of the
generalization relationships can be accessed by the source and target that are defined in DirectedRelationship.

The ownedAttribute defines the attributes owned by the class. It is an ordered set of Properties, which can be
mapping to either OWLDatatypeProperty or OWLObjectProperty. If a property is part of the memberEnds of an
Association, the mapping of it will be discussed in 18.2.3 (“Association”).

If the type of the property is a PrimitiveType, the property is mapped to the OWLDatatypeProperty. If the type of the
property is an Enumeration, and the ownedLiteral of the Enumeration has specification as ValueSpecification, then
the property is OWLDatatypeProperty. If the type of the property is Class, or the ownedLiteral of an Enumeration
type has at least one classifier, the property can be mapped to OWLObjectProperty.

Multiplicity is another issue in mapping. In UML, property is a MultiplicityElement, which defines upperValue and
lowerValue to express cardinality. However, OWL uses Restrictions to represent Cardinality. So in addition to map
Class to OWLClass, some OWLRestrictions will be generated based on multiplicity definitions of the
ownedProperties and corresponding RDFSsubClassOf relationships beween OWLClass and OWLRestriction will also
be created.
234 Ontology Definition Metamodel

The following URIs are defined from the source UML model,

• m.c: the c-th Class of Package (m)

• m.c.g: the g-th Generalization of Class (m.c)

• m.c.g.g: the general of Generalization (m.g)

• m..c.p: the p-th ownedAttribute of Class (m.c)

• m.c.p.a: the association of Property (m.c.p)

• m.c.p.u: the upperValue of Property (m.c.p)

• m.c.p.l: the lowerValue of Property (m.c.p)

• m.c.p.t: the type of Property (m.c.p)

• m.c.p.t.ol: the ownedLiteral of the typed Enumeration (m.c.p.t)

• m.c.p.t.ol.s: the specification of the EnumerationLiteral

• m.c.p.t.ol.c: the classifier of the EnumerationLiteral

If m.c.p.a is not NULL, see definition in 18.2.3 (“Association”). In order to simplify the mapping definitions, four
different UML abstract syntax and the corresponding target OWL models are defined.

18.2.2.1 Case I - m.c.p.t is PrimitiveType

UML Abstract Syntax

Class (m.c

 name (String)
 {generalization(m.c.g:Generalization)}g
 {ownedAttribute(m.c.p:Property)}p)

Generalization(c.g

 {general(c.g.g:Class)}g)

Property (c.p

 name (String)
 {association(c.p.a:Association)}a
 {upperValue(c.p.u:ValueSpecification)}u
 {lowerValue(c.p.l:ValueSpecification)}l
 {type(c.p.t:PrimitiveType)}t)

ODM OWL Abstract Syntax
UML2OWL(Class (m.c)) :=

// Map Class to OWLClass
 OWLClass(m.c

// Map name to localName
 localName(m.c.name:String)

// Map Generalization to RDFSsubClassOf
 {RDFSsubClassOf(m.c.g.g:OWLClass)}g
Ontology Definition Metamodel 235

 {RDFSsubClassOf(m.c.p.R:OWLRestriction)}p)

// Map Property to OWLDatatypeProperty
 OWLDatatypeProperty(m.c.p

// Map name to localName
 localName(m.c.p.name:String)
 {RDFSdomain(m.c:OWLClass)}
 {RDFSrange (m.c.p.t:dataTypeID)})

OWLRestriction(m.c.p.R
 {OWLonProperty(m.c.p:OWLDatatypeProperty)}
 {OWLmincardinality (m.c.p.l:Integer))
 {OWLmaxcardinality (m.c.p.u:Integer)})

18.2.2.2 Case II - m.c.p.t is Enumeration and m.c.p.t.ol is instance of ValueSpecification

UML Abstract Syntax

Class (m.c

 name (String)
 {generalization(m.c.g:Generalization)}g
 {ownedAttribute(m.c.p:Property)}p)

Generalization(c.g

 {general(c.g.g:Class)}g)

Property (c.p

 name (String)
 {association(c.p.a:Association)}a
 {upperValue(c.p.u:ValueSpecification)}u
 {lowerValue(c.p.l:ValueSpecification)}l
 {type(c.p.t:Enumeration)}t)

Enumeration (c.p.t

 name (String)
 {ownedLiteral(c.p.ol:EnumerationLiteral)}t)

EnumerationLiteral(c.p.t.ol

 {specification(c.p.t.ol.s:ValueSpecification)}s)

ODM OWL Abstract Syntax
UML2OWL(Class (m.c)) :=

// Map Class to OWLClass
 OWLClass(m.c

// Map name to localName
 localName(m.c.name:String)

// Map Generalization to RDFSsubClassOf
 {RDFSsubClassOf(m.c.g.g:OWLClass)}g
 {RDFSsubClassOf(m.c.p.R:OWLRestriction)}p)
236 Ontology Definition Metamodel

// Map Enumeration to OWLDataRange
 OWLDataRange(m.c.p.t.D
 localName(m.c.p.t.name:String)
 {OWLoneOf(m.c.p.t.ol:dataLiteral)}t)

// Map Property to OWLDatatypeProperty
 OWLDatatypeProperty(m.c.p

// Map name to localName
 localName(m.c.p.name:String)
 {RDFSdomain(m.c:OWLClass)}
 {RDFSrange (m.c.p.t.D:OWLDataRange)})

OWLRestriction(m.c.p.R
 {OWLonProperty(m.c.p:OWLDatatypeProperty)}
 {OWLmincardinality (m.c.p.l:Integer))
 {OWLmaxcardinality (m.c.p.u:Integer)})

18.2.2.3 Case III - m.c.p.t is Class

UML Abstract Syntax

Class (m.c

 name (String)
 {generalization(m.c.g:Generalization)}g
 {ownedAttribute(m.c.p:Property)}p)

Generalization(c.g

 {general(c.g.g:Class)}g)

Property (c.p

 name (String)
 {association(c.p.a:Association)}a
 {upperValue(c.p.u:ValueSpecification)}u
 {lowerValue(c.p.l:ValueSpecification)}l
 {type(c.p.t:Class)}t)

ODM OWL Abstract Syntax
UML2OWL(Class (m.c)) :=

// Map Class to OWLClass
 OWLClass(m.c

// Map name to localName
 localName(m.c.name:String)

// Map Generalization to RDFSsubClassOf
 {RDFSsubClassOf(m.c.g.g:OWLClass)}g
 {RDFSsubClassOf(m.c.p.R:OWLRestriction)}p)

// Map Property to OWLObjectProperty
 OWLObjectProperty(m.c.p

// Map name to localName
 localName(m.c.p.name:String)
Ontology Definition Metamodel 237

 {RDFSdomain(m.c:OWLClass)}
 {RDFSrange (m.c.p.t:OWLClass)})

OWLRestriction(m.c.p.R
 {OWLonProperty(m.c.p:OWLObjectProperty)}
 {OWLmincardinality (m.c.p.l:Integer))
 {OWLmaxcardinality (m.c.p.u:Integer)})

18.2.2.4 Case IV - m.c.p.t is Enumeration and m.c.p.t.ol is instance of Class

UML Abstract Syntax

Class (m.c

 name (String)
 {generalization(m.c.g:Generalization)}g
 {ownedAttribute(m.c.p:Property)}p)

Generalization(c.g

 {general(c.g.g:Class)}g)

Property (c.p

 name (String)
 {association(c.p.a:Association)}a
 {upperValue(c.p.u:ValueSpecification)}u
 {lowerValue(c.p.l:ValueSpecification)}l
 {type(c.p.t:Enumeration)}t)

Enumeration (c.p.t

 name (String)
 {ownedLiteral(c.p.ol:EnumerationLiteral)}t)

EnumerationLiteral(c.p.t.ol

 {classifier(c.p.t.ol.c:Class)}c)

ODM OWL Abstract Syntax
UML2OWL(Class (m.c)) :=

// Map Class to OWLClass
 OWLClass(m.c

// Map name to localName
 localName(m.c.name:String)

// Map Generalization to RDFSsubClassOf
 {RDFSsubClassOf(m.c.g.g:OWLClass)}g
 {RDFSsubClassOf(m.c.p.R:OWLRestriction)}p)

// Map Enumeration to EnumeratedClass
 EnumeratedClass(m.c.p.t.C
 localName(m.c.p.t.name:String)
 {OWLoneOf(m.c.p.t.ol:Individual)}t)

// Map Property to OWLObjectProperty
 OWLObjectProperty(m.c.p
238 Ontology Definition Metamodel

// Map name to localName
 localName(m.c.p.name:String)
 {RDFSdomain(m.c:OWLClass)}
 {RDFSrange (m.c.p.t.C:EnumeratedClass)})

OWLRestriction(m.c.p.R
 {OWLonProperty(m.c.p:OWLObjectProperty)}
 {OWLmincardinality (m.c.p.l:Integer))
 {OWLmaxcardinality (m.c.p.u:Integer)})

18.2.3 Association

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of the association
may have the same type. In this specification, only binary association is discussed. The following URIs are defined
from the source UML model:

• m.a: the a-th Association of Package (m)

• m.a.p0: the 0-th member end of the association (m.a)

• m.a.p0.t: the type of the 0-the member end (m.a.p0)

• m.a.p0.c: the class that owns the 0-the member end (m.a.p0)

• m.a.p0.u: the upper value of the 0-the member end (m.a.p0)

• m.a.p0.l: the lower value of the 0-the member end (m.a.p0)

• m.a.p1: the 1-th member end of the association (m.a)

• m.a.p1.c: the class that owns the 1-the member end (m.a.p0)

• m.a.p1.t: the type of the 1-the member end (m.a.p1)

• m.a.p1.u: the upper value of the 1-the member end (m.a.p1)

• m.a.p1.l: the lower value of the 1-the member end (m.a.p1)

UML Abstract Syntax

The above description of an Association can be represented in the UML Abstract Syntax as follows:

Association (m.a

 {memberEnd(m.a.p0:Property)}
 {memberEnd (m.a.p1:Class)}p)

Property (m.a.p0

 name (String)
 {upperValue(m.a.p0.u:ValueSpecification)}u
 {lowerValue(m.a.p0.l:ValueSpecification)}l
 {type(m.a.p0.t:Class)}t)

Property (m.a.p1

 name (String)
 {upperValue(m.a.p1.u:ValueSpecification)}u
 {lowerValue(m.a.p1.l:ValueSpecification)}l
Ontology Definition Metamodel 239

 {type(c.p1.t:Class)}t)

ODM OWL Abstract Syntax

The association can be mapped to two OWLObjectProperties in OWL, as follows:

UML2OWL(Association (m.a)) :=

// Map Association to one OWLObjectProperty
 OWLObjectProperty(m.a.p0

// Map name to localName
 localName(m.a.p0.name:String)
 {RDFSdomain(m.a.p0.c:OWLClass)}
 {RDFSrange (m.a.p0.t:OWLClass)))

OWLRestriction(m.a.p0.R
 {OWLonProperty(m.a.p0:OWLObjectProperty)}
 {OWLmincardinality (m.a.p0.l:Integer)}
 {OWLmaxcardinality (m.a.p0.u:Integer)})

OWLClass(m.a.p0.c
 {RDFSsubClassOf(m.a.p0.R)})

// Map Association to another OWLObjectProperty
 OWLObjectProperty(m.a.p1

// Map name to localName
 localName(m.a.p1.name:String)
 {RDFSdomain(m.a.p1.c:OWLClass)}
 {RDFSrange (m.a.p1.t:OWLClass)))

OWLRestriction(m.a.p1.R
 {OWLonProperty(m.a.p1:OWLObjectProperty)}
 {OWLmincardinality (m.a.p1.l:Integer)}
 {OWLmaxcardinality (m.a.p1.u:Integer)})

OWLClass(m.a.p1.c
 {RDFSsubClassOf(m.a.p1.R)})

18.2.4 InstanceSpecification

An instance specification may specify the existence of an entity in a modeled system. The entity conforms to the
specification of each classifier of the instance specification, and has features with values indicated by each slot of the
instance specification. Having no slot in an instance specification for some feature does not mean that the represented
entity does not have the feature, but merely that the feature is not of interest in the model. An InstanceSpecification
has,

• a name,

• a set of classifiers of the represented instance,

• a set of slots giving the value or values of a structure feature of the instance.

Therefore, the following URIs can be used to defined from the source UML model:

• m.i: the i-th InstanceSpecification of Package (m)

• m.i.c: the c-th classifier of the InstanceSpecification (m.i)
240 Ontology Definition Metamodel

• m.i.s: the s-th slot of the InstanceSpecification (m.i)

• m.i.s.v: the v-th value of the slot (m.i.s)

• m.i.s.d: the defining feature of the slot (m.i.s)

UML Abstract Syntax

The above description of an InstanceSpecification can be represented in the UML Abstract Syntax as follows:

InstanceSpecification (m.i

 name (String)
 {classisfier(m.i.c:Classifier)}c
 {slot(m.i.s:Slot)}s)

Slot (m.i.s

 {value(m.i.s.v:ValueSpecification)}v
 {definingFeature(m.i.s.d:StructureFeature)}d)

ODM OWL Abstract Syntax

An InstanceSpecification is mapped to an Individual in OWL, which contains:

• a name,

• a set of RDFtypes that specify the rdfs:type of the Individual,

• a set of DatatypeSlots that define the properties and related datatype values

• a set of ObjectSlots that define the properties and related individual values

So the Slot in UML can be mapped to either DatatypeSlot or ObjectSlot according to the value of the Slot. If the
value is an InstanceValue, the Slot should be mapped to ObjectSlot; If the value is an Expression, OpaqueExpression
or LiteralSpecification, the Slot should be mapped to DatatypeSlot. The resultant OWL model can be represented
using OWL abstract syntax as follows:

If value of slot is not InstanceValue

UML2OWL(InstanceSpecificaiton (m.i)) :=

// Map InstanceSpecification to Individual
 Individual(m.i

// Map name to localName
 localName(m.i. name:String)

// Map classifier to RDFtype
 {RDFtype(m.i.c:OWLClass)}c

// Map slot to DatatypeSlot
 {DatatypeSlot(m.i.c.s:DatatypeSlot)}s)

// Map Slot to DatatypeSlot
 DatatypeSlot(m.i.s

// Map value to content
 {content(m.i.s.v:dataLiteral)}v

// Map definingFeature to OWLDatatypeProperty
Ontology Definition Metamodel 241

 {property(m.i.s.d:OWLDatatypeProperty)}d)

If value of slot is InstanceValue

UML2OWL(InstanceSpecificaiton (m.i)) :=

// Map InstanceSpecification to Individual
 Individual(m.i

// Map name to localName
 localName(m.i. name:String)

// Map classifier to RDFtype
 {RDFtype(m.i.c:OWLClass)}c

// Map slot to ObjectSlot
 {ObjectSlot(m.i.c.s:ObjectSlot)}s)

// Map Slot to ObjectSlot
 DatatypeSlot(m.i.s

// Map value to content
 {content(m.i.s.v:Individual)}v

// Map definingFeature to OWLObjectProperty
 {property(m.i.s.d:OWLObjectProperty)}d)

Note: The remainder of this section will be completed for the next revision of the document.

18.3 OWL to UML Mapping
The elements of the OWL metamodel are mapped into elements of the UML metamodel as specified by the UML
Profile for OWL.

Note: This section will be completed for the next revision of the document.
242 Ontology Definition Metamodel

19 ER to OWL Mapping

19.1 Overview
This chapter describes the mappings or transformations between instances of the ER metamodel and those of the
OWL metamodel. The mappings are defined in both directions: from ER to OWL, and from OWL to ER.

Two informal frame-like abstract syntaxes are used for representing instances (i.e., models) of the ER metamodel and
those of the OWL metamodel, respectively. Mappings are defined using these syntaxes, which provide a conceptual
overview of the overall mapping. Nevertheless, both representations are machine processable, therefore the mapping
specifications can be used to automatically produce target models from source models.

In the future, when QVT [QVT] is finalized, the mappings will also be defined using QVT, thus providing formal and
concrete mapping specifications.

19.1.1 Representation of Source and Target Models

Informal frame-like abstract syntaxes are defined based on the instance model of the ER and OWL metamodels,
respectively. They are used to represent both the source and the target models of the mappings. Section 19.4 defines
the ER abstract syntax used in this chapter. Section 19.5 defines the ODM OWL abstract syntax. Using these abstract
syntaxes, Section 19.2 defines ER-to-OWL mapping and Section 19.3 defines OWL-to-ER mapping.

Each M1 instance (e.g., a Entity) of a M2 model element (e.g., Entity) is given an ID for the convenience of mapping
representation. IDs are grouped using the names corresponding to the M2 model elements. For example, all IDs of
the instances of Entity are called entityID. That is, each instance of Entity is given an entityID.

ID variables are used to index each model element in a M1 model. For example, an entityID m.e denotes the e-th
Entity of the m-th Model in the source ER model. When it is obvious from the context, some ID variables are not
shown. The ID variables are annotated with their types to be more informative. That is, a property p having an ID i
of type T is written as p(i:T).

Braces ({}) are used to denote inclusion of each element that can be indexed by the ID variables appearing in the
content of the braces. For example,

{ p(m.n.i:T) }i

denotes that p(m.n.i:T) is added for each m.n.i given m and n fixed but varying i from 1 to the maximum value of
i. That is, { p(m.n.i:T) }i is equivalent to p(m.n.1:T), p(m.n.2:T),..., p(m.n.N:T) where N is the maximum
number of i.

Alternatives are separated by vertical bars (|). Source contents that are not mapped to target contents are italicized.

19.1.2 Representation of Mapping Specifications

EROWL mappings are defined by two mapping functions: ER2OWL(e) and OWL2ER(e) where e is a model
element typed according to the source meta-model. The mapping functions map each typed element from a source
model to a set of elements typed according to the target meta-model.

A mapping specification is given for each type the mapping functions take. For example, a mapping of a model
element Entity(m.e) to OWL is defined as:

ER2OWL(Entity(m.e)) :=
OWLClass(m.e

RDFSsubClassOf(m.e.s:OWLClass) }s)
Ontology Definition Metamodel 243

Here, ER2OWL(Entity(m.e)) creates OWLClass(m.e) which has zero or more RDFSsubClassOf associations to
OWLClass(m.e.s).

19.2 ER to OWL Mapping
This section describes mappings from ODM ER models to ODM OWL models. Each mapping starts with element
IDs identifying each element in the source model. Then, a representation of the source model element is given using
the IDs. Then, the result of the mapping is followed.

Section Section describes how source models and target models are represented in the abstract syntaxes referring to
the ODM metamodels and how IDs are used to identify elements participating in the mappings. Since the approach is
basically the same throughout this chapter, it is verbosely described only in Section .

The followings are the types of IDs defined for ER model elements:

• modelID

• entityID

• attributeID

• relationshipID

• roleID

• keyID

Each ID in a source ER model defines a URI in the target OWL model and given properties according to the
semantics of the source model.

19.2.1 ER to OWL Mapping Summary

Table 43 shows a summary of the ER to OWL mapping.

Table 43 ER to OWL Mapping Summary

Source: ER Model Target: OWL Model

NamedElement RDFSResource

Model OWLOntology

Entity OWLClass

Generalization OWLsubClassOf (See Entity)

Attribute OWLDatatypeProperty
OWLRestriction

Relationship OWLClass

Role OWLObjectProperty
OWLRestriction
244 Ontology Definition Metamodel

19.2.2 NamedElement

In the ER metamodel, nearly all elements are NamedElement; in the OWL metamodel, nearly all elements are
RDFSResouce. In general a NamedElement in the ER metamodel is mapped to a RDFSResource in the OWL
metamodel. For convenience, the mapping that applies to all NamedElement in the ER metamodel is specified here
rather than repeated in each of the following sections.

ER Abstract Syntax

In the following “n” represents the ID of a NamedElement, e.g., “n” is “m” for a Model, “m.e” for an Entity, and
“m.e.a” for an Attribute.

NamedElement(n
name(String)

 uri(String)
label(String)
description(String))

ODM OWL Abstract Syntax
ER2OWL(NamedElement(n)) :=
RDFSResource(n

 localName(n.name:String) // use the source model name as localName
 uri(n.uri:String)
 RDFSlabel(n.lable:plainLiteral)
 RDFScomment(n.description:plainLiteral))

19.2.3 Model

The ODM ER metamodel says that a Model m, among other things, has

• a namespace,

• a set of imported models,

• a set of contents each of which is either an Entity or a Relationship,

Therefore, the following IDs can be used to index all elements appearing in this description:

• m: the m-th modelID of a model.

• m.e: the e-th entityID of Model(m).

• m.r: the r-th relationshipID of Model(m).

ER Abstract Syntax

The above description of a Model can be represented naturally in the ER abstract syntax (defined in Section 19.4) as
follows:

Model(m
 namespace(String)
 { import(n:Model) }n
 { contents(m.e:Entity) }e
 { contents(m.r:Relationship) }r)
Ontology Definition Metamodel 245

ODM OWL Abstract Syntax

A Model is mapped to a OWLOntology which contains all resources identified by the source model IDs. The ODM
OWL metamodel says that among other things, an OWLOntology has

• a namespace

• a set of imported OWLOnologies.

• a set of contained RDFResources,

For each entityID or relationshipID, we creates a OWLClass. That is, the IDs in the source model is used to identify
the model constructs in the target model. The resulting target model can be represented naturally as follows using the
ODM OWL abstract syntax (defined in Section 19.5):

ER2OWL(Model(m)) :=
OWLOntology(m

 namespace(m.namespace:String)
// Map import to OWLimports
{ OWLimports(m.n:OWLOntology) }n
// Map Entity to OWLClass
{ contains(m.e:OWLClass)

 // Map Attribute to OWLDatatypeProperty and OWLRestriction on the classes
 { contains(m.e.a:OWLDatatypeProperty }e

// Map Relationship to OWLClass
{ contains(m.r:OWLClass)

 // Map Role to OWLObjectProperty and OWLRestriction on the classes
 { contains(m.r.o:OWLObjectProperty)
 contains(m.r.o.R:OWLRestriction) }o }r)

The source ID variables appear in the target model are used to identify which source model element causes the
creation of each target model element. For example, the ID variables used in the above target model assert that each
Entity(m.e) is mapped to a OWLClass(m.e) and each Attribute(m.e.a) is mapped to a OWLDataTypeProperty(m.e.a).
This tractability can be used to update the target models when the source models are changed.

19.2.4 Entity

An Entity is a set of instances. The following IDs are defined from the source ER model:

• m.e: the e-th entityID of Model(m).

• m.e.s: the s-th supertype entityID of Entity(m.e). // indirectly through Entity.generalizations and
 // Generalization.supertpe

• m.e.a: the a-th attributeID of Entity(m.e).

• m.e.k: the n-th keyID of Entity(m.e).

ER Abstract Syntax
Entity(m.e

{ supertype(m.e.s:Entity) }s
{ attribute(m.e.a:Attribute) }a
{ key(m.e.k:Key) }n)
246 Ontology Definition Metamodel

ODM OWL Abstract Syntax

Attributes and Keys are mapped to properties. Restrictions for cardinality etc are added in Attributes and Key
mappings.

ER2OWL(Entity(m.e)) :=
OWLClass(m.e

{ RDFSsubClassOf(m.e.s:OWLClass) }s)

19.2.5 Attribute

An Attribute is mapped as a datatype property of an Entity. Its domain is the Entity, and its range is the datatype.

The following URIs are defined from the source ER model:

• e.a: the a-th attribute of Entity (e).

• e.a.dt: the datatype of Attribute(e.a).

ER Abstract Syntax
Attribute(e.a
 datatype(t.a.dt:String))

ODM OWL Abstract Syntax
ER2OWL(Attribute(e.a)) :=
OWLDatatypeProperty(e.a

RDFSdomain(e:OWLClass)
RDFSrange(e.a.dt:dataTypeID)))

19.2.6 Relationship and Role

A relationship involves two entities. The cardinalities of the entities involved in a relationship can be classified as
optional (0..*) and mandatory (n..*) where n is an integer greater than 0. The following URIs are defined for the
source ER model:

• m.r: the n-th relationshipID of Model(m).

• m.r.o1: the first roleID of Relationship(m.r).

• m.r.o2: the second roleID of Relationship(m.r).

The roles of Relationship(m.r):

• m.r.o.car: the cardinality value of Role(m.r.o)

• m.r.o.max: the maximum cardinality value of Role(m.r.o)

• m.r.o.min: the minimum cardinality value of Role(m.r.o)

• m.r.o.e: the entityID of Role(m.r.o)

• m.r.o.k: the keyID of Role(m.r.o).

ER Abstract Syntax
Relationship(m.r

[roles(m.r.o1:Role)]
Ontology Definition Metamodel 247

 [roles(m.r.o2:Role)])

Role(r.o1
entity(r.o1.e:Entity)

 cardinality(r.o1.card:Integer)
minCardinality(r.o1.max:Integer)
maxCardinality(r.o1.min:Integer)

 [key(r.o1.k:Key)])

Role(r.o2
entity(r.o2.e:Entity)

 cardinality(r.o2.card:Integer)
minCardinality(r.o2.max:Integer)
maxCardinality(r.o2.min:Integer)

 [key(r.o2.k:Key)])

ODM OWL Abstract Syntax
ER2OWL(Relationship(m.r)) : =
OWLClass(m.r // Relationship class

{ RDFSsubClassOf(m.r.o.R:OWLRestriction) }o)
OWLObjectProperty(m.r.o1

 OWLdomain(m.r:OWLClass)
 OWLrange(m.r.o1.entity:OWLClass))

OWLObjectProperty(m.r.o2
 OWLdomain(m.r:OWLClass)
 OWLrange(m.r.o2.entity:OWLClass))

OWLRestriction(m.r.o1.R
 OWLonProperty(m.r.o1:OWLObjectProperty)
 OWLcardinality(m.r.o1.card)
 OWLmincardinality(m.r.o1.min)
 OWLmaxcardinality(m.r.o1.max))

OWLRestriction(m.r.o2.R
 OWLonProperty(m.r.o2:OWLObjectProperty)
 OWLcardinality(m.r.o2.card)
 OWLmincardinality(m.r.o2.min)
 OWLmaxcardinality(m.r.o2.max)))

19.3 OWL to ER Mapping
This section describes mappings from ODM OWL models to ODM ER models. The followings are the types of IDs
defined for OWL model elements:

• ontologyID

• classID

• restrictionID

• dataTypePropertyID
248 Ontology Definition Metamodel

• objectPropertyID

• dataRangeID

Each ID in a source OWL model defines a URI in the target ER model and given properties according to the
semantics of the source model.

19.3.1 OWL to ER Mapping Summary

Table 44shows a summary of the OWL to ER mapping.

19.3.2 RDFSResource

In the OWL metamodel, nearly all elements are RDFSResouce; in the ER metamodel, nearly all elements are
NamedElement. In general a RDFSResource in the OWL metamodel is mapped to a NamedElement in the ER
metamodel. For convenience, the mapping that applies to all RDFSResource in the OWL metamodel is specified here
rather than repeated in each of the following sections.

ODM OWL Abstract Syntax

In the following “r” represents the ID of a RDFSResource, e.g., “r” is “o” for a OWLOntology, “o.c” for an
OWLClass, and “m.d” for an OWLDataTypeProperty.

RDFSResource(r
 localName(String)
 uri(String)
 { RDFSlabel(r.label:plainLiteral) }label
 { RDFScomment(r.comment:plainLiteral) }comment)

ER Abstract Syntax
OWL2ER(RDFSResource(r)) :=
NamedElement(r

name(r.localName:String)
 uri(r.uri:String)

label(r.label:String) // one label only
description(r.comment:String)) // one comment only

Table 44 OWL to ER Mapping Summary

Source: OWL Model Target: ER Model

RDFSResource NamedElement

OWLOntology Model

OWLClass Entity

OWLRestriction See OWLDatatypeProperty and
OWLObjectProperty

OWLDatatypeProperty Attribute

OWLObjectProperty Relationship

OWLDataRange AtomicDomain
Ontology Definition Metamodel 249

19.3.3 OWLOntology

• o: the o-th ontologyID of OWLOntology(o)

• o.m: the m-th imported ontologyID of OWLOntology(o)

• o.c: the c-th classID of OWLOntology(o)

• o.r: the r-th restrictionID of OWLOntology(o)

• o.d: the d-th dataTypePropertyID of OWLOntology(o)

• o.o: the i-th objectPropertyID of OWLOntology(o)

• o.t: the t-th dataRangeID of OWLOntology(o)

The ontologyID of imported elements are o.m. Therefore, we have:

• o.m.c: the c-th classID of OWLOntology(o.m) and so on.

ODM OWL Abstract Syntax
OWLOntology(o

{ OWLimports(o.p:OWLOntology) }p
{ contains(o.c:OWLClass) }c
{ contains(o.d:OWLDatatypeProperty) }d
{ contains(o.o:OWLObjectProperty) }i
{ contains(o.t:OWLDataRange) }t)

ER Abstract Syntax
OWL2ER(OWLOntology(o)) :=
Model(o

// Map imports
{ import(o.p:Model) }p
// For each contained OWLClass(o.c),
{ contents(o.c:Entity) }c
// For each contained OWLDatatypeProperty(o.d),
{ contents(

 { Entity(o.d.Domain) // create a Domain entity
 Entity(o.d.Range))}d // create a Range entity

// For each contained OWLObjectProperty(o.i),
{ contents(o.o:Relationship // objectProperty to relationship

Entity(o.o.Domain) // create a Domain entity
 Entity(o.o.Range))}i // create a Range entity

// For each OWLDataRange(o.t),
{ contents(AtomicDomain(o.t))}t

19.3.4 OWLClass

A OWLClass is mapped to an Entity.

ODM OWL Abstract Syntax

• o.c: the c-th classID of OWLOntology(o)

• c.s: the s-th superclass classID of OWLClass(c)
250 Ontology Definition Metamodel

• c.r: the r-th superclass restrictionID of OWLClass(c)

OWLClass(c
{ RDFSsubClassOf(c.s:OWLClass) }s
{ RDFSsubClassOf(c.r:OWLClass) }r)

ER Abstract Syntax
OWL2ER(OWLClass(c)) :=
Entity(c

{ supertype(c.s:EREntity) }s)

19.3.5 OWLRestriction

OWLRestrictions are mapped by the mappings for OWLDataTypeProperty and OWLObjectProperty.

19.3.6 OWLDatatypeProperty

Instances of OWLDatatypeProperty can be mapped to instances of Attribute. A OWLDatatypeProperty can have
multiple domains and ranges. Multiple domains and ranges mean intersection of those domains and ranges. To
represent this, classes representing domains and ranges need to be created.

• d: the d-th dataTypePropertyID of OWLOntology(o)

• d.domain: the domain classID of OWLDatatypeProperty(d)

• d.range: the range dataTypeID of OWLDatatypeProperty(d)

ODM OWL Abstract Syntax

If only one domain is specified:

OWLDatatypeProperty(d
RDFSdomain(d.domain:OWLClass)
RDFSrange(d.range:RDFSDatatype))

ER Abstract Syntax
OWL2ER(OWLDatatypeProperty(d)) :=
Entity(d.domain

attribute(d:Attribute))
Attribute(d

datatype(d.range:String))

19.3.7 OWLObjectProperty

OWLObjectProperty can have multiple domains and ranges. Multiple domains and ranges mean intersection of those
domains and ranges. To represent this, classes representing domains and ranges need to be created.

• i: the i-th objectPropertyID of OWLOntology(o).

• i.domain: the domain classID of OWLObjectProperty(i).
Ontology Definition Metamodel 251

• i.range: the range classID of OWLObjectProperty(i).

ODM OWL Abstract Syntax

If only one domain is specified:

OWLObjectProperty(i
RDFSdomain(i.domain:OWLClass)
RDFSrange(i.range:OWLClass))

ER Abstract Syntax

• i.domain.Role: a new roleID of the domain side of OWLObjectProperty(d).

• i.range.Role: a new roleID of the range side of OWLObjectProperty(d).

OWL2ER(OWLObjectProperty(i)) :=
Entity(i.domain)
Entity(i.range)
Relationship(i

roles(i.domain.Role:Role)
roles(i.range.Role:Role))

Role(i.domain.Role
entity(i.domain:Entity))

Role(i.range.Role
entity(i.range:Entity))

19.3.8 OWLDataRange

• r: the r-th dataTypeID of OWLOnoloty(o).

• r.s: the s-th subClassOf classID of OWLDataRange(r)

ODM OWL Abstract Syntax
OWLDataRange(r

{ OWLoneOf(rdfsLiteralID) }
{ RDFSsubClassOf(r.s:OWLDataRange) }s)

ER Abstract Syntax
OWL2ER(OWLDataRange(r)) :=
AtomicDomain(r // to add: DomainConstraint

baseType(r.s:AtomicDomain))

19.4 ER Abstract Syntax
The syntax notations are based on Section 2 of [W3OWL-ABS:04]. Therefore, its description is exactly borrowed
from it:
252 Ontology Definition Metamodel

The abstract syntax is specified here by means of a version of Extended BNF, very similar to the EBNF notation used
for XML. Terminals are quoted; non-terminals are bold and not quoted. Alternatives are either separated by vertical
bars (|) or are given in different productions. Components that can occur at most once are enclosed in square brackets
([]); components that can occur any number of times (including zero) are enclosed in braces ({}). Whitespace is
ignored in the productions here.

namedElementContent :=
'name(' String ')'

 ‘uri(‘ String ‘)’
'label(' String ')'
'description(' String ')' ‘)’

model ::= 'Model(' modelID
 ‘namespace(‘ String ‘)’
 { ‘prefixes(‘ namespacePrefixID ‘)’ }
 { 'contents(' domainID | entityID | relationshipID ')' }
 { ‘import(‘ modelID ‘)’ }
 [‘parent(‘ modelID ‘)’] // inverse: children
 namedElementContent)'

entity ::= 'Entity(' entityID // owned by Model
{ 'supertype(' entityID ')' } // indirectly through generalizations and Generalization.supertype

// inverse: subtype
{ 'attributes(' attributeID ')' }
{ 'keys(' keyID ')' }
{ 'constraints(' constraintID ')' }
{ 'relationships(' relationshipID ')' } // inverse: Relationship.owningEntity

 abbreviation(‘ String “)’
 namedElementContent ')'

attribute ::= 'Attribute(' attributeID // owned by Entity
'datatype(' String ')'

 ‘defaultValue(‘ String ‘)’
 ‘required(‘ boolean ‘)’

'derived(' boolean ')'
 ‘surrogateKey(‘ boolean ‘)’
 namedElementContent ')'

relationship ::= 'Relationship(' relationshipID// owned by Model
roles(roleID)

 roles(roleID)
['relationshipType(' integer ')']

 abbreviation(‘ String “)’
 namedElementContent ')'

role ::= 'Role(' roleID // owned by Relationship
 ‘verbPhrase(‘ String ‘)’
 ‘navigable(‘ boolean ‘)’
 ‘cardinality(‘ integer ‘)’
Ontology Definition Metamodel 253

 ‘maxCardinality(‘ integer ‘)’
 ‘minCardinality(‘ integer ‘)’

'entity(' entityID ')' // inverse: Entity.role
 ‘key(‘ keyID ‘)’ // inverse: Key.role (Key: AlternateKey, ForeignKey, InversionEntry,

// PrimaryKey)
namedElementContent ')'

19.5 ODM OWL Abstract Syntax
The following abstract syntax for OWL is based on the ODM OWL metamodel and differs in many areas from W3
OWL abstract syntax.

rdfsResourceContent :: =
'namespace(' String ')'
'localName(' String ')'
'uri(' String ')'
{ 'RDFtype(' classID | restrictionID ')' }
{ 'RDFSseeAlso(' resourceID ')' }
{ 'RDFSisDefinedBy(' resourceID ')' }
{ 'RDFvalue(' resourceID ')' }
{ 'RDFSmember(' resourceID ')' }
{ 'RDFScomment(' plainLiteral ')' }
{ 'RDFSlabel(' plainLiteral ')' }

owlOntology ::= 'OWLOntology(' ontologyID
{ ‘OWLversionInfo(‘ rdfsLiteralID ‘)’ }

 { 'OWLbackwardCompatibleWith(' ontologyID ')' }
{ 'OWLincompatableWith(' ontologyID ')' }
{ 'OWLpriorVersion(' ontologyID ')' }
{ 'OWLimports(' ontologyID ')' }
{ 'contains('
 classID
 | resrictionID
 | dataTypePropertyID | objectPropertyID
 | ontologyPropertyID | annotationPropertyID
 | dataTypeID
 | individualID ')' }

 rdfsResourceContent ')'

ontologyID ::= URIreference
classID ::= URIreference
restrictionID ::= URIreference
dataTypePropertyID ::= URIreference
objectPropertyID ::= URIreference
ontologyPropertyID ::= URIreference
annotationPropertyID ::= URIreference
datatypeID ::= URIreference
254 Ontology Definition Metamodel

individualID ::= URIreference

dataLiteral ::= typedLiteral | plainLiteral
typedLiteral ::= lexicalForm^^URIreference
plainLiteral ::= lexicalForm | lexicalForm@languageTag
lexicalForm ::= a Unicode string in normal form C
languageTag ::= an XML language tag

owlClass ::= 'OWLClass(' classID
'deprecated(' Boolean(false) ')'
{ 'RDFSsubClassOf(' classID | restrictionID ')' }
{ 'OWLdisjointWith(' classID ')' }
{ 'OWLequivalentClass(' classID ')' }
 rdfsResourceContent
 | 'OWLClass(' classID
 { 'OWLoneOf(' individualID ')' }
 | ['OWLcomplementOf(' classID ')']
 | { 'OWLintersectionOf(' classID ')' }
 | { 'OWLunionOf(' classID ')' } ')' ‘)’

owlRestriction ::= 'OWLRestriction(' restrictionID
'OWLonProperty(' objectPropertyID
| dataTypePropertyID
| ontologyPropertyID
| annotationPropertyID ')'
['OWLhasValue(' classID
 | dataTypeID
 | objectPropertyID
 | dataTypePropertyID
 | ontologyPropertyID
 | annotationPropertyID ')']
['OWLallValuesFrom(' classID | dataTypeID ')']
['OWLsomeValuesFrom(' classID | dataTypeID ')']
['OWLminCardinality(' nonNegativeInteger ')']
['OWLmaxCardinality(' nonNegativeInteger ')']
 ['OWLcardinality(' nonNegativeInteger') '] ')'

owlDataTypeProperty ::= 'OWLDatatypeProperty(' dataTypePropertyID
'deprecated(' Boolean(false) ')'
'functional(' Boolean(false) ')'
{ 'OWLequivalentProperties(' dataTypePropertyID | objectPropertyID ') '}
{ 'RDFSsubPropertyOf(' dataTypePropertyID ')' }
{ 'RDFSdomain(' classID | anonClassID | restrictionID ')' }
{ 'RDFSrange(' dataTypeID ')' }
 rdfsResourceContent ')'

owlObjectProperty ::= 'OWLObjectProperty(' objectPropertyID
'deprecated(' Boolean(false) ')'
'functional(' Boolean(false) ')'
'inverseFunctional(' Boolean(false) ')'
Ontology Definition Metamodel 255

'symmetric(' Boolean(false) ')'
'transitive(' Boolean(false) ')'
{ 'OWLequivalentProperties(' dataTypePropertyID | objectPropertyID ')' }
['OWLinverseOf(' objectPropertyID ')']
{ 'RDFSsubPropertyOf(' objectPropertyID ')' }
{ 'RDFSdomain(' classID | anonClassID | restrictionID ')' }
{ 'RDFSrange(' classID | anonClassID | restrictionID ')'}
 rdfsResourceContent ')'

owlDataRange ::= 'OWLDataRange(' dataTypeID
{ 'OWLoneOf(' rdfsLiteralID ')' }

 { ‘RDFSsubClassOf(‘ OWLDataRange ‘)’ }
 rdfsResourceContent ')'
256 Ontology Definition Metamodel

20 Mapping Topic Maps to OWL

20.1 Overview
The mapping defined below uses a Tefkat like syntax. Tefkat is the concrete syntax proposed for one of the original
MOF Q/V/T proposals by DSTC.

The following functions and operators have been defined that are beyond the current Tefkat syntax:

• genid()- Creates a new unique identifier.

• new() - Creates a new instances of the specified meta-class.

• <element>.identifier() - Returns the unique identifier for a Topic Map element, nominally sourceLo-
cator.value.

• <collection>.contains(<element>) – returns true if and only if <element> is contained in the <col-
lection>

• <element1>.instanceOf(<element2>) – returns true if and only if <element1> is of type
<element2>

• <collection>[i] – index to the i-th element in the collection, using 1-based indexing.

Where <collection> represents a multi-valued MOF association end, and <element> represents a single
MOF element.

In the processing of the mapping rules, it is assumed that:

• Empty element and null values will not be processed, and

• Equivalent elements will be merged, rather than producing duplicates.

20.2 Topic Maps to OWL Full Mapping

20.2.1 Overview

The elements of the Topic Maps MOF meta-model are mapped into the OWL Full MOF model as shown in the
overview table below. In many cases a Topic Map construct can map into several different OWL Full constructs,
depending on the usage pattern in the TM meta-model.

There is no equivalent in OWL for the Topic Map concept of Scope, which is not mapped.

20.2.2 Basic Constructs

20.2.2.1 TopicMap

The TopicMap element is mapped into an OWL Ontology. The ID of the ontology is determined by what identifiers
are available for the Topic Map.

TopicMap Rules
RULE TMap_Onto_Source (tmap, onto)

FORALL
TopicMap tmap

WHERE
tmap.identifier() != NULL
Ontology Definition Metamodel 257

MAKE
OWLOntology onto
onto.type = OWLOntology
onto.ID = tmap.identifier();

RULE TMap_Onto_Base (tmap, onto)
FORALL

TopicMap tmap
WHERE

tmap.identifier() == NULL
MAKE

OWLOntology onto
onto.type = OWLOntology
onto.ID = tmap.baseLocator.value;

20.2.2.2 Topic

Topics may be mapped to OWL Classes or OWL Individuals or both depending on their usage. The Topic_Class
mapping rule checks for three patterns that imply the Topic is being used like a Class.

1. If the topic is the value of topicPlayingRole for any instance AssociationRole in an Association with the type-
subject10 of tmcore:supertype-subtype

2. If the topic has as its type another Topic with the type-subject of tmcore:type, from a tmcore:type-instance Asso-
ciation.

3. If the topic is the value of another topics type property.

Throughout this section the namespace prefix ‘tmcore:’ is used for the URI http://psi.topicmaps.org/sam/1.0/# This
namespace and its included published subjects are defined in the Topic Map Data Model [TMDM] in Section 15.4.

The Topic_Individual mapping rule checks for the inverse of conditions 2 and 3 above.

Topic Rules

RULE Topic_Class (top, oc, asr_ti, asr_ss)
FORALL

Topic top
Topic inst
AssociationRole asr_ti
AssociationRole asr_ss

WHERE
inst.type == top OR
(asr_ti.parent.type == 'tmcore:type-instance' AND
 asr_ti.topicPlaingRole == top AND
 asr_it.type.subjectIdentifier == 'tmcore:type'
) OR
(asr_ss.parent.type == 'tmcore:supertype-subtype' AND
 asr_ss.topicPlayingRole == top
)

MAKE
OWLClass oc
oc.type = OWLClass
oc.ID = top.identifier();

10. Note that the phrase ‘with the type-subject is’ is shorthand for ‘with a type that is a topic whose subjectIdentifier is’.
258 Ontology Definition Metamodel

RULE Topic_Individual (top, indv, asr_ti, asr_ss)
FORALL

Topic top
Topic inst
AssociationRole asr_ti
AssociationRole asr_ss

WHERE
top.type != NULL OR
(asr_ti.parent.type == 'tmcore:type-instance' AND
 asr_ti.topicPlayingRole == top AND
 asr_ti.type.subjectIdentifier == 'tmcore:instance'
)

MAKE
OWLIndividual indv
indv.type = OWLIndividual
indv.ID = top.identifier();

20.2.2.3 Associations and Association Roles

Topic Map Associations and Association Roles are mapped to OWL Object Properties. If no identifier() is available
for the TM construct, then a generated identifier is used for the Object Property.

Association Mapping Rules

RULE Assoc_ObjProp (as, oop)
FORALL

Association as
WHERE

assoc.identifier() != NULL
MAKE

OWLObjectProperty oop
oop.type = OWLObjectProperty
oop.ID = as.identifier()

RULE Assoc_ObjProp_Anon (as, oop)
FORALL

Association as
WHERE

assoc.identifier() == NULL
MAKE

OWLObjectProperty oop
oop.type = OWLObjectProperty
oop.ID = genid()

RULE Role_ObjProp (ar, oop)
FORALL

AssociationRole ar
WHERE

ar.identifier() != NULL
MAKE

OWLObjectProperty oop
oop.type = OWLObjectProperty
oop.ID = ar.identifier()

RULE Role_ObjProp_Anon (as, oop)
FORALL

AssociationRole ar
WHERE
Ontology Definition Metamodel 259

ar.identifier() == NULL
MAKE

OWLObjectProperty oop
oop.type = OWLObjectProperty
oop.ID = genid()

20.2.2.4 Occurrences

Occurrences may be mapped to either OWL Object Properties or to OWL DatatypeProperties. Occurrences with a
resource that is an instance of Locator become Object Properties, those with a resource that is an instance of Data
become Datatype Properties.

If no identifier() is available for the TM construct, then a generated identifier is used for the OWL property construct.

Occurrence Rules

RULE Ocrr_DTyProp (ar, dtp)
FORALL

Occurrence ocr
WHERE

ocr.identifier() != NULL AND
ocr.resource.instanceOf(Data)

MAKE
OWLDatatypeProperty dtp
dtp.type = OWLDatatypeProperty
dtp.ID = ocr.identifier();

RULE Ocrr_DTyProp_Anon (as, dtp)
FORALL

Occurrence ocr
WHERE

ocr.identifier() == NULL AND
ocr.resource.instanceOf(Data)

MAKE
OWLDatatypeProperty dtp
dtp.type = OWLDatatypeProperty
dtp.ID = genid();

RULE Ocrr_ObjProp (ar, oop)
FORALL

Occurrence ocr
WHERE

ocr.identifier() != NULL AND
ocr.resource.instanceOf(Locator)

MAKE
OWLObjectProperty oop
oop.type = OWLObjectProperty
oop.ID = ocr.identifier();

RULE Ocrr_OBjProp_Anon (as, oop)
FORALL

Occurrence ocr
WHERE

ocr.identifier() == NULL AND
ocr.resource.instanceOf(Locator)

MAKE
OWLObjectProperty oop
oop.type = OWLObjectProperty
260 Ontology Definition Metamodel

oop.ID = genid();

20.2.3 Property Restriction Patterns

Each of the OWL property constructs created by a basic pattern rule may also map to class property restrictions in
OWL.

Property Restriction Rules

RULE Role_PropRestiction (as, asr_s, asr_o, ocls, oop_s, rdfs_o, res)
FORALL

Association as
AssociationRole asr_s
AssociationRole asr_o
OWLClass ocls
OWLObjectProperty oop_s
RDFSResource rdfs_o

WHERE
as.roles.contains(asr_s) AND
as.roles.contains(asr_o) AND
as.type.identifier() == ocls.ID AND
asr_s.type.identifier() == oop_s.ID AND
asr_o.type.identifier() == rdfs_o.ID

MAKE
OWLRestriction res
res.type = OWLRestriction
ocls.subClassOf = res
res.onProperty = oop_s
res.someValuesFrom = rdfs_o

RULE Ocr_ObjPropRestiction (top, top_ocr, ocls, oop, rdfsr, res)
FORALL

Topic top
Occurrence top_ocr
OWLClass ocls
OWLObjectProperty oop
RDFSResource rdfsr

WHERE
top.occurrences.contains(top_ocr) AND
top_ocr.resource.instanceOf(Locator) AND
top.identifier() == ocls.ID AND
top_ocr.identifier() == oop.ID AND
top_ocr.type.identifier() == rdfsr.ID

MAKE
OWLRestriction res
res.type = OWLRestriction
ocls.subClassOf = res
res.onProperty = oop
res.someValuesFrom = rdfsr

RULE Ocr_DTPropRestiction (top, top_ocr, ocls, dtp, rdfsr, res)
FORALL

Topic top
Occurrence top_ocr
OWLClass ocls
OWLDatatypeProperty dtp
Ontology Definition Metamodel 261

RDFSResource rdfsr
WHERE

top.occurrences.contains(top_ocr) AND
top_ocr.resource.instanceOf(Data) AND
top.identifier() == ocls.ID AND
top_ocr.identifier() == dtp.ID AND
top_ocr.type.identifier() == rdfsr.ID

MAKE
OWLRestriction res
res.type = OWLRestriction
ocls.subClassOf = res
res.onProperty = dtp
res.someValuesFrom = rdfsr

20.2.4 Type Hierarchy Pattern

Associations having the type of tmcore:supertype-subtype are mapped into RDFS subClassOf relations.

Type Hierarchy Rules

RULE ClassHeirarchy (as, asr_sup, asr_sub, sup_ocls, sub_ocls)
FORALL

Association as
AssociationRole asr_sup
AssociationRole asr_sub
OWLClass sup_ocls
OWLClass sub_ocls

WHERE
as.subjectIdentifier == 'tmcore:superType-subType' AND
as.roles.contains(asr_sup) AND
asr_sup.subjectIdentifier == 'tmcore:superType' AND
as.roles.contains(asr_sub) AND
asr_sub.subjectIdentifier == 'tmcore:subType' AND
asr_sup.identifier() == sup_ocls.ID AND
asr_sub.identifier() == sub_ocls.ID

MAKE
asr_sub.subClassOf = asr_sup;

20.2.5 Naming Patterns

Topic Names and Variant Names are converted into OWL Labels. For Variant Names, two possibilities exist. Those
with resources that are instances of Data are mapped to labels having literal values, however those with resources that
are instances of Locator are mapped to OWL labels having resource references.

Naming Rules

RULE TopicName_Label (top, ocls, ch_tn)
FORALL

Topic top,
OWLClass ocls,
TopicName ch_tn

WHERE
 top.identifier() == ocls.ID AND

top.characteristics.contains(ch_tn)
MAKE
262 Ontology Definition Metamodel

ocls.label = new RDFSLiteral(ch_tn.value) // M1

RULE VariantName_Object (top, oidv, ch_tn, tn_vn, oobp, obpv)
FORALL

Topic top,
OWLIndividual oidv,
TopicName ch_tn,
VariantName tn_vn,
OWLObjectProperty oobp

WHERE
 top.identifier() == oidv.ID AND

top.characteristics.contains(ch_tn) AND
ch_tn.variants.contains(tn_vn) AND
tn_vn.resource.instanceOf(Locator) AND
tn_vn.resource.notation == 'URI' AND
tn_vn.type == oobp.ID

MAKE
ObjectPropertyValue obpv
oidv.objectValue = obpv
obpv.property = OWLLabel
obpv.content = new(RDFSResource(tn_vn.resource.value)) //M1

RULE VariantName_Data (top, ocls, ch_tn, tn_vn)
FORALL

Topic top,
OWLClass ocls,
TopicName ch_tn,
VariantName tn_vn

WHERE
 top.identifier() == ocls.ID AND

top.characteristics.contains(ch_tn) AND
ch_tn.variants.contains(tn_vn) AND
tn_vn.resource.instanceOf(Data)

MAKE
ocls.label = new RDFSLiteral(tn_vn.value) // M1

20.2.6 Instance Patterns

Topic, Associations and Occurrence instances in Topic Maps are mapped into Object and Datatype property values.

Instance Rules

RULE Topic_Indiv (top, rdfsr)
FORALL

Topic top
RDFSResource rdfsr

WHERE
top.indentifier() == rdfsr AND
top.type.size() > 0

MAKE
rdfsr.type = OWLIndividual;

RULE Topic_OccurInstn_Indiv (top, oidv, ch_oc, oobp, obpv, rdfsr)
FORALL

Topic top,
OWLIndividual oidv,
Occurrence ch_oc,
Ontology Definition Metamodel 263

OWLObjectProperty oobp
RDFSResource rdfsr

WHERE
 top.identifier() == oidv.ID AND

top.occurrences.contains(ch_oc) AND
ch_oc.resource.instanceOf(Locator) AND
ch_oc.resource.notation == 'URI' AND
ch_oc.resource.value == rdfsr.ID AND
ch_oc.type == oobp.ID

MAKE
ObjectPropertyValue obpv
oidv.objectValue = obpv
obpv.property = oobp
obpv.content = rdfsr;

RULE Topic_OccurInstn_DTy (top, oidv, ch_oc, odtp, dtpv)
FORALL

Topic top,
OWLIndividual oidv,
Occurrence ch_oc,
OWLDatatypeProperty odtp

WHERE
 top.identifier() == oidv.ID AND

top.characteristics.contains(ch_oc) AND
ch_oc.resource.instanceOf(Data) AND
ch_oc.type == odtp.ID

MAKE
DatatypePropertyValue dtpv
oidv.datatypeValue = dtpv
dtpv.property = odtp
dtpv.content = new(RDFSLiteral(ch_oc.resource.value)); //M1

RULE Topic_OccurInstn_Obj (as, asr_s, asr_o, rdfs_s, rdfs_o, obpv)
FORALL

Association as
AssociationRole asr_s
AssociationRole asr_o
RDFSResource rdfs_s
RDFSResource rdfs_o

WHERE
as.roles.contains(asr_s) AND
as.roles.contains(asr_o) AND
rdfs_s == asr_s.topicPlayingRole AND
rdfs_o == asr_o.topicPlayingRole

MAKE
ObjectPropertyValue obpv
rdfs_s.objectValue = obpv
obpv.property = asr_s.type
obpv.content = rdfs_o;
264 Ontology Definition Metamodel

20.3 OWL to Topic Maps Mapping

20.3.1 Overview

The constructs in the OWL MOF Meta-model, which can be mapped into the Topic Maps MOF meta-model, are
shown below in Table 15-2. Those constructs in OWL that are not included in the table have no equivalent Topic
Map construct and are not included in this mapping. For example, there is no concept in Topic Maps for restricting
the type or cardinality of a property.

OWL Resources that are multiple types are mapped into a single Topic with appropriately merged characteristics. For
example consider and OWL Class and OWL Individual. The Class-ness of the Topic would result in it being used as
the value of another Topic Map Constructs type relation; its individual-ness would result in it having a subject
identifier relation.

20.3.2 Basic Constructs

20.3.2.1 Ontology

OWL Ontologies are mapped to Topic Maps. The URI of the Ontology becomes the source locator of the Topic Map.

Ontology Rule

RULE TMap_Onto_Source (tmap, onto)
FORALL

OWLOntology onto
WHERE

onto.ID != NULL
MAKE

TopicMap tmap
tmap.sourceLocator.value = onto.ID
tmap.sourceLocator.notation = 'URI';

20.3.2.2 Class

OWL Classes are mapped to Topics. The Class’ URI becomes the Topic’s subject Identifier.

Class Rules
RULE Class_Topic (top, oc)

FORALL
OWLClass oc

WHERE
oc.type.contains(OWLClass)

MAKE
Topic top
top.sourceLocator.value = oc.ID
top.sourceLocator.notation = 'URI';

20.3.2.3 Individual

OWL Individuals are mapped to Topics. The Individual’s URI becomes the Topic’s subject Identifier.

Mapping Rules

RULE Individual_Topic (top, indv)
FORALL
Ontology Definition Metamodel 265

OWLIndividual indv
WHERE

indv.type.contains(OWLIndividual)

MAKE
Topic top
top.subjectIdentifier.value = indv.ID
top.subjectIdentifier.notation = 'URI';

20.3.2.4 Properties

OWL Object Properties are mapped to Topic Map Association Roles, while OWL Datatype Properties are mapped
into Topic Map Occurrences. This results in a slight asymmetry in the round trip mapping. Occurrences that have
Locators as their resource value will become Associations as the result of a round trip mapping through OWL.

Property Rules

RULE ObjProp_Role (ar, oop)
FORALL

OWLObjectProperty oop
WHERE

oop.type.contains(OWLObjectProperty)
MAKE

AssociationRole ar
ar.sourceLocator.value = oop.ID
ar.sourceLocator.notation = 'URI';

RULE DTyProp_Occr (ocr, dtp)
FORALL

OWLDatatypeProperty dtp
WHERE

oop.type.contains(OWLDatatypeProperty)
MAKE

Occurrence ocr
ocr.sourceLocator.value = dtp.ID
ocr.sourceLocator.notation = 'URI';

20.3.2.5 Property Restrictions

OWL Property restrictions are used to associate Association Roles and Occurrences with Topics.

Property Restriction Rules
RULE ObjPropRest_Role (res, ocls, oop_s, rdfs_o, ocls_top, as, asr_s, asr_o)

FORALL
OWLRestriction res
OWLClass ocls
OWLObjectProperty oop_s
RDFSResource rdfs_o
Topic ocls_top

WHERE
ocls.subClassOf.contains(res) AND
ocls_top.identifier() == ocls.ID AND
res.onProperty == oop_s AND
res.somValuesFrom == rdfs_o

MAKE
Association as
AssociationRole asr_s
266 Ontology Definition Metamodel

AssociationRole asr_o

as.type = ocls_top
asr_s.subjectIdentifier = oop_s.ID
as.roles = asr_s
asr_o.subjectIdentifier = rdfs_o.ID
as.roles = asr_o;

RULE DTypPropRest_Occr (res, ocls, dtp_s, rdfs_o, ocls_top, ocr)
FORALL

OWLRestriction res
OWLClass ocls
OWLDatatypeProperty dtp_s
RDFSResource rdfs_o
Topic ocls_top

WHERE
ocls.subClassOf.contains(res) AND
ocls_top.identifier() == ocls.ID AND
res.onProperty == dtp_s AND
res.somValuesFrom == rdfs_o

MAKE
Occurrence ocr
ocr.type = rdfs_o
ocr.subjectIdentifier = dtp_s.ID
ocr.parent = ocls_top;

20.3.3 Class Hierarchy

OWL Class hierarchies expressed using OWL subClassOf properties are mapped into type hierarchies in Topic Maps.
There is no equivalent mapping for OWL subPropertyOf.

Class Hierarchy Rule

RULE ClassHeirarchy (as, asr_sup, asr_sub, sup_ocls, sub_ocls)
FORALL

OWLClass sup_ocls
OWLClass sub_ocls
Topic sup_top
Topic sub_top

WHERE
sub_ocls.subClassOf.contains(sup_ocls) AND
sup_top.identifier() == sup_ocls.ID AND
sub_top.identifier() == sub_ocls.ID

MAKE
Association as
AssociationRole asr_sup
AssociationRole asr_sub

as.subjectIdentifier = 'tmcore:superType-subType'
as.roles = asr_sup
asr_sup.subjectIdentifier = 'tmcore:superType'
asr_sup.topicPlayingRole = sup_top
as.roles = asr_sub
asr_sub.subjectIdentifier = 'tmcore:subType'
asr_sub.topicPlayingRole = sub_top;
Ontology Definition Metamodel 267

20.3.4 Labels

OWL Labels are mapped to Topic Map base names.

Label Rule

RULE Label_TopicName (top, ocls, ch_tn)
FORALL

Topic top,
OWLClass ocls,

WHERE
 top.identifier() == ocls.ID AND
 ocls.label != NULL
MAKE

TopicName ch_tn
ch_tn.value = ocls.label
top.baseName = ch_tn;

20.3.5 Instances

The datatype and object property values of OWL Individuals are mapped into Topic Map Occurrences and
Associations respectively.

Instance Rules

RULE Topic_OccurInstn_DTy (oidv, top, dtpv, ch_oc, ch_oc_dt)
FORALL

OWLIndividual oidv,
Topic top,
DatatypePropertyValue dtpv

WHERE
 oidv.ID == top.identifier() AND

dtpv == oidv.datatypeValue
MAKE

Occurrence ch_oc
Data ch_oc_dt
top.occurrences = ch_oc
ch_oc.resource = ch_oc_dt
ch_oc.type = dtpv.property.ID
ch_oc_dt.value = dtpv.content;

RULE ObjProp_AssocInst (oidv, top, obpv, as, asr_s, asr_o)
FORALL

OWLIndividual oidv,
Topic top,
ObjectPropertyValue obpv
Association as

WHERE
 oidv.ID == top.identifier() AND

obpv == oidv.objectValue
MAKE

AssociationRole asr_s
AssociationRole asr_o
as.roles = asr_s
as.roles = asr_o
asr_s.type = obpv.property.ID
268 Ontology Definition Metamodel

asr_s.topicPlayingRole = obpv.parent.ID
asr_o.topciPlayingRole = obpv.content.ID;

20.3.6 Example

Table 45 below summarizes some equivalent Topic Map and OWL constructs, serialized using their respective XML
representations.

Table 45 Equivalent Topic Map and OWL Constructs

Topic Map XTM OWL RDF/XML

<topic id="Car">
<baseName><baseNameString>Car</baseNameString>
</baseName>

</topic>

<Class rdf:ID="Car">
<label>Car</label>

</Class>

<topic id="PersonalCar">
<baseName>

<baseNameString>Personal Car</baseNameString>
</baseName>
<instanceOf>

<topicRef xlink:href="#Car"/>
</instanceOf>

</topic>

<Class rdf:ID="PersonalCar">
<label>Personal Car</label>
<subClassOf rdf:resource="#Car"/>

</Class>

<topic id="CarlsRedCar">
<baseName>

<baseNameString>Carl's Red Car</baseNameString>
</baseName>
<instanceOf>

<topicRef xlink:href="#PersonalCar"/>
</instanceOf>

</topic>

<PersonalCar rdf:ID="CarlsRedCar"/>

<association id="CarlsRedCarIsRed">
<instanceOf>

<topicRef xlink:href="#hasColor"/>
</instanceOf>
<member>

<roleSpec>
<topicRef xlink:href="#ColorOf"/>

</roleSpec>
<topicRef xlink:href="#CarlsRedCar"/>

</member>
<member>

<roleSpec>
<topicRef xlink:href="#IsColor"/>

</roleSpec>
<topicRef xlink:href="#Red"/>

</member>
</association>

<ObjectProperty rdf:ID="hasColor"/>
<Description rdf:about="CarlsRedCar">

<subClassOf>
<Restriction>

<onProperty rdf:resource="hasColor"/>
<hasValue>

<Color rdf:ID="Red"/>
</hasValue>

</Restriction>
</subClassOf>

</Description>
Ontology Definition Metamodel 269

270 Ontology Definition Metamodel

21 Mapping RDFS and OWL to CL

21.1 Overview
Mapping from the W3C Semantic Web languages, the Resource Description Framework [RDF Primer] [RDF
Concepts] and the Web Ontology Language [OWL S&AS] to Common Logic (CL) is relatively straightforward, as
per the draft mapping under development by Pat Hayes [SCL Translation] for incorporation in ISO 24707 [ISO
24707]. The mapping supports translation of RDF vocabularies and OWL ontologies from the RDFS and OWL
metamodels, respectively, to the CL metamodel, in the spirit of the language mapping. Users are encouraged to
familiarize themselves with the original translation specification and to recognize that the overarching goal is to
preserve not only the abstract syntax of the source languages but their underlying semantics, such that CL reasoners
can accurately represent and reason about content represented in knowledge bases that reflect those models. The
mapping, as it stands, is intended to take an RDFS/OWL ontology as input and map it directly to CL from the triple
format. Additional work, including (1) a direct mapping from an RDFS/OWL ontology represented solely in a UML/
MOF environment using the metamodels and profiles contained herein, (2) representation of the mappings using
MOF QVT, (3) a lossy, reverse mapping from CL to RDFS/OWL using MOF QVT to preserve lossy information, and
(4) bi-directional mappings from CL to and from UML 2, again using MOF QVT to preserve lossy information, are
planned.

Note that we have not attempted to address the issues raised in [SCL Translation] regarding the distinction between
an embedded or translation approach to determining how to map language constructs – such decisions are left to the
vendor, depending on the target application(s).

21.2 RDFS to CL Mapping
The separation between RDF and RDF Schema given in [SCL Translation] is not maintained in the ODM, which
supports RDF Schema by design. As discussed in the Design Rationale, maintaining that separation from a MOF/
UML perspective did not make sense, since (1) it is difficult, at best, to separate the abstract syntax of RDF from that
of RDF Schema, and (2) the goal of ODM is to support ontology definition in MOF and UML tools, which is most
commonly done using RDF Schema, OWL, or another knowledge representation language. Basic RDF graphs can be
translated to CL using the mapping described herein, however.

21.2.1 RDF Triples

Any simple RDF triple (expressed as subject predicate object), can be embedded in CL as (rdf_triple subject
predicate object)1 and/or translated to an CL atomic sentence directly (predicate subject object)2.
These mappings can be expressed in terms of the metamodel elements shown inTable 46.

Table 46 RDF Triple to CL Mapping

RDFS
Metamodel
Element

RDFS Metamodel
Property

CL Metamodel
Element

CL Metamodel Property

RDFStatement Relation1 predicate: rdf_triple

RDFsubject arguments [1]

RDFpredicate arguments [2]

RDFobject arguments [3]
Ontology Definition Metamodel 271

These two approaches are completely compatible, and the relationship between them can be expressed through the
axiom:

(forall (x y z)(iff (rdf_triple y x z)(x y z)))

The translation extends this notion further through to ensure that the predicate expressed by the triple is indeed a
valid RDF property, the “cautious translation approach”:

RDF Property Axiom
(forall (x y z)(iff (rdf_triple y x z)(and (rdf:Property x)(x y z))))

RDF Promiscuity Axiom
(forall (x)(rdf:Property x))

For the purposes of this specification, any RDF or RDFS predicate that is not explicitly mapped to CL can be
translated directly using this method.

21.2.2 RDF Literals

Literals in RDF can be defined as either “plain literals” or “typed literals”, corresponding to classes of the same
names in the RDFS metamodel. Plain literals translate into CL quoted strings, possibly paired with a language tag,
and in both RDF and CL they are understood to denote themselves. The function stringInLang is used to indicate
the pair consisting of a plain literal and a language tag. Typed literals in RDFS and OWL have two parts: a character
string representing the lexical form of the literal, and a datatype name that indicates a function from a lexical form to
a value. In RDFS/OWL these two components are incorporated into a special literal syntax; in CL, the datatype is
represented as a function name applied to the lexical form as an argument. Table 47 provides the corresponding
metamodel mappings.

21.2.3 RDF URIs and Graphs

URIs and URI references can be used directly as CL names. Blank nodes in an RDF graph translate to existentially
bound variables with a quantifier whose scope is the entire graph. A graph is the conjunction of the triples it contains.
Basic translation for the corresponding metamodel elements is given in Table 47.

RDFStatement RDFpredicate Relation2 predicate

RDFsubject arguments [1]

RDFobject arguments [2]

Table 47 Basic RDF to CL Mapping

RDFS
Metamodel
Element

RDFS Metamodel Property CL Metamodel
Element

CL Metamodel Property

RDFSResource URI reference “aaa” –or–
namespace and local name “aaa” –or–
blank node ID “_:aaa”

LogicalName string: aaa

PlainLiteral lexicalForm: “aaa” SpecialName specialNameKind:
quotedString,
string: aaa

Table 46 RDF Triple to CL Mapping
272 Ontology Definition Metamodel

For example, the RDF graph

_:x ex:firstName "Jack"^^xsd:string .
_:x rdf:type ex:Human .
_:x Married _:y .
_:y ex:firstName "Jill"^^xsd:string .

maps into the CL sentence:

(exists (x y)(and
(ex:firstName x (xsd:string 'Jack'))
(rdf:type x ex:Human)
(Married x y)
(ex:firstName y (xsd:string 'Jill'))

))

The RDF vocabularies for reification, containers and values have no special semantic conditions, so translate
uniformly into CL using the above conversion methods.

21.2.4 RDF Lists

[SCL Translation] includes a discussion relevant to both RDFS and OWL ontologies regarding the mapping of lists
that represent relations between multiple arguments to CL. Since RDF triple syntax can directly express only unary
and binary relations, relations of higher arity must be encoded, and OWL in particular uses lists to do this encoding.
Axioms for translating such lists, derived from [Fikes & McGuinness], are provided in [SCL Translation] and are
incorporated herein by reference.

21.2.5 RDF Schema

As discussed in [SCL Translation], RDF Schema extends RDF through semantic constraints that impose additional
meaning on the RDFS vocabulary. In particular, it gives a special interpretation to rdf:type as being a relationship
between a ‘thing’ and a 'class', which approximates the set-membership relationship in set theory. This relationship is
captured in several axioms, repeated here due to their importance with regard to streamlining the mapping.

RDFS Class Axiom
(forall (x y)(iff (rdf:type x y) (and (rdfs:Class y)(y x))))

RDFS Promiscuity Axiom
(forall (x) (rdfs:Class x))

PlainLiteral lexicalForm: “aaa”
languageTag: “tag”

Function operator:
stringInLang,
arguments [1]: aaa,
arguments [2]: tag

TypedLiteral lexicalForm: “aaa”
datatypeURI: “ddd”

Function operator: ddd
arguments [1]: aaa

RDFDescription contains: RDFSResource CLModule CLText: Phrase

RDF graph
(set of triples)
{ttt1,...,tttn}

Sentence (exists(bbb1...bbbm)
(and ttt1 ... tttn)
where _:bbb1... _:bbbm
are all the blank node
IDs in the graph.

Table 47 Basic RDF to CL Mapping
Ontology Definition Metamodel 273

RDFS Universal Resource Axiom
(forall (x) (rdfs:Resource x))

Taken together, these axioms justify the more efficient mapping of RDFS triples to CL given in Table 48, to be used
in place of Table 46.

The translations are ordered, with the second used only when the first does not apply.

The above example now translates into the more intuitive form

(exists (x y)
(and

(ex:firstName x (xsd:string 'Jack'))

(ex:Human x)
(Married x y)

(ex:firstName y (xsd:string 'Jill'))

))

where ex:Human is a genuine predicate.

Similarly to the case for RDF, this assumes that every unary predicate corresponds to an RDFS class; to be more
cautious, one would omit the promiscuity axiom and insert an extra assumption explicitly as part of the translation
process: if (1), add axiom (rdfs:Class bbb); otherwise, (2) add axiom: (rdf:Property ppp).

21.2.6 RDFS Semantics

In [RDF Semantics], several of the constraints are expressed as RDFS assertions (“axiomatic triples”), but others are
too complex to be represented in RDFS and so must be stated explicitly as external model-theoretic constraints on
RDFS interpretations. All of these can be expressed directly as CL axioms, however. An CL encoding of RDFS is
obtained by following the translation rules and adding a larger set of axioms. RDFS interpretations of a graph can be
identified with CL interpretations of the translation of the graph with the RDF and RDFS axioms added.

A series of tables encoding numerous axioms is provided in [SCL Translation] which reflect the axiomatic triples,
RDFS “semantic conditions”, and extensional axioms, as well as axioms for interpreting datatypes, which are
incorporated herein by reference. Some of these are summarized in an RDFS extensional logical form translation
table, which may be more efficient than deriving the translation from the embedding and axioms. These are provided
in Table 49, mapped to the appropriate metamodel elements.

Where possible clauses included in sentences, such as the antecedent and consequent of an implication, are expanded
for further clarification. The translations are ordered, with the final one used only when the others do not apply.

Table 48 RDFS Triple to CL Mapping

RDFS
Metamodel
Element

RDFS Metamodel
Property

CL Metamodel
Element

CL Metamodel Property

(1) RDFStatement RDFsubject (aaa)
RDFpredicate (rdf:type)
RDFobject (bbb)

Relation predicate: bbb
arguments [1]: aaa

(2) RDFStatement,
(any other triple)

RDFsubject (aaa)
RDFpredicate (ppp)
RDFobject (bbb)

Relation predicate: ppp
arguments [1]: aaa
arguments [2]: bbb
274 Ontology Definition Metamodel

erty ‘Cautious’ Axiom(s)

(rdfs:Class bbb)

(rdfs:Class bbb)
(rdf:Property aaa)

 y)3

)

(rdfs:Class bbb)
(rdf:Property aaa)

 y)
)

(rdfs:Class bbb)
(rdfs:Class aaa)

)
)

Table 49 RDFS Extensional Logical Form Translation

RDFS Metamodel Element RDFS Metamodel Property CL Metamodel Element CL Metamodel Prop

RDFStatement RDFsubject (aaa)
RDFpredicate (rdf:type)
RDFobject (bbb)

Relation predicate: bbb
arguments [1]: aaa

RDFStatement RDFsubject (aaa)
RDFpredicate (rdfs:domain)
RDFobject (bbb)

UniversalQuantification Binding: Term: u
Term: y

Implication antecedent: (aaa u
consequent: (bbb u

3Relation predicate: aaa
arguments [1]: u
arguments [2]: y

Relation predicate: bbb
arguments [1]: u

RDFStatement RDFsubject (aaa)
RDFpredicate (rdfs:range)
RDFobject (bbb)

UniversalQuantification Binding: Term: u
Term: y

Implication antecedent: (aaa u
consequent: (bbb y

Relation predicate: aaa
arguments [1]: u
arguments [2]: y

Relation predicate: bbb
arguments [1]: y

RDFStatement RDFsubject (aaa)
RDFpredicate (rdfs:subClassOf)
RDFobject (bbb)

UniversalQuantification Binding: Term: u

Implication antecedent: (aaa u
consequent: (bbb u

Relation predicate:aaa
arguments [1]: u

Relation predicate: bbb
arguments [1]: u

(rdf:Property bbb)
(rdf:Property aaa)

 y)
 y)

(rdf:Property ppp)
RDFStatement RDFsubject (aaa)
RDFpredicate (rdfs:subPropertyOf)
RDFobject (bbb)

UniversalQuantification Binding: Term: u
Term: y

Implication antecedent: (aaa u
consequent: (bbb u

Relation predicate: aaa
arguments [1]: u
arguments [2]: y

Relation predicate: bbb
arguments [1]: u
arguments [2]: y

RDFStatement (any other triple) RDFsubject (aaa)
RDFpredicate (ppp)
RDFobject (bbb)

Relation predicate: ppp
arguments [1]: aaa
arguments [2]: bbb

Table 49 RDFS Extensional Logical Form Translation

21.3 OWL to CL Mapping
As described in the relevant specifications, the Web Ontology Language (OWL) is actually three closely related
dialects rather than a single language, which share a common set of basic definitions but differ in scope and by the
degree to which their syntactic forms are restricted. The OWL metamodel given in Chapter 12 of this specification is
intended to represent the abstract syntax for OWL Full, but can also represent the abstract syntax for OWL DL, as
long as restrictions to support the more constrained semantics of OWL DL are applied.

The discussion provided in [SCL Translation] provides additional insight into the variations among OWL dialects. It
then provides an unrestricted translation from the OWL vocabulary to CL, and further refines it for each dialect given
a common starting point. There are a number of important considerations provided in that discussion, including a
series of axioms applicable to any CL reasoning environment designed to support OWL ontologies as input.

Table 50 provides a summary translation from RDFS/OWL triples, as represented in the metamodel triple constructs,
mapped to the appropriate high-level CL metamodel sentence constructs. We’ve taken this approach in keeping with
the translation, but also due to the fact that what is mapped in some cases is actually a subgraph consisting of
multiple RDFS/OWL statements as well as for increased clarity. Further refinement of some of the CL sentences will
be accomplished during the finalization phase of the specification, along with inclusion of examples. The translation
assumes the axioms stated in Section 21.1 and Section 21.2, as well as the following identity axioms:

(forall ((x owl:Thing)(y owl:Thing))(iff (owl:differentFrom x y)(not (= x y))))

(forall ((x owl:Thing))(not (owl:Nothing x)))

Note that OWL assertions involving annotation and ontology properties are not covered explicitly, and should be
simply transcribed as atomic assertions in CL, using the same mechanisms described for RDF triples.

To use the table below to translate an OWL/RDF graph, simply generate the corresponding CL for every subgraph
that matches the pattern specified in the leftmost two columns. The notation ALLDIFFERENT is used as a shorthand
for conjunction of n(n-1) “inequations” which assert that the terms are all distinct:

[ALLDIFFERENT x1 ... xn]

means:
(and

(not (= x1 x2)) (not (=x1 x3)) ... (not (= x1 xn))
(not (= x2 x3)) ... (not (= x2 xn))
(not (= x3 xn)) ...
...
(not (= xn-1 xn))

)

Note that the negation of this is a disjunction of equations. owl_Property should be read as shorthand for the union
of owl:DatatypeProperty and owl:ObjectProperty.

Unlike the RDFS translation, this translates entire RDF subgraphs into logical sentences. To achieve a full translation,
all matching subgraphs must be translated, and then any remaining triples rendered into logical atoms using the RDF
translation. Note that a triple in the graph may occur in more than one subgraph; in particular, the owl:onProperty
triples will often occur in several subgraph patterns when cardinality and value restrictions are used together.
Ontology Definition Metamodel 277

Assumption(s)

wl:Thing))

(owl:Restriction
rrr)
(rdf:Property ppp)

1 ... xn+1])

(owl:Restriction
rrr)
(rdf:Property ppp)

wl:Thing))

ies

)

(owl:Restriction
rrr)
(rdf:Property ppp)

Table 50 RDFS/OWL to CL Metamodel Translation

RDFS/OWL
Metamodel
Element

RDFS/OWL Metamodel
Property

CL Metamodel
Element

CL Metamodel Property

Subgraph:
RDFStatement

RDFStatement

RDFsubject (rrr)
RDFpredicate (owl:onProperty)
RDFobject (ppp)

RDFsubject (rrr)
RDFpredicate (owl:minCardinality)
RDFobject (n)

UniversalQuantification

Implication

Binding: (Term: (x owl:Thing))

antecedent: (rrr x)
consequent:
(exists ((x1 owl:Thing) ... (xn o
(and
 [ALLDIFFERENT x1 ... xn]
 (ppp x x1) ...(ppp x xn)
))

subgraph:
RDFStatement

RDFStatement

RDFsubject (rrr)
RDFpredicate (owl:onProperty)
RDFobject (ppp)

RDFsubject (rrr)
RDFpredicate (owl:maxCardinality)
RDFobject (n)

UniversalQuantification

Implication

Binding: (
 Term:(x owl:Thing)
 Term:(x1 owl:Thing)
 ...
 Term: (xn+1 owl:Thing)
)

antecedent:
(and (rrr x)
 (ppp x x1) ...(ppp x xn+1)
)
consequent: (not [ALLDIFFERENT x

subgraph
RDFStatement

RDFStatement

RDFsubject (rrr)
RDFpredicate (owl:onProperty)
RDFobject (ppp)

RDFsubject (rrr)
RDFpredicate (owl:cardinality)
RDFobject (n)

UniversalQuantification

Implication

Binding: (Term: (x owl:Thing))

antecedent: (rrr x)
consequent:
(exists ((x1 owl:Thing) ... (xn o
(and
 [ALLDIFFERENT x1 ... xn]
 (ppp x x1) ...(ppp x xn)
 (forall ((z owl:Thing))(impl
 (ppp x z)
 (or (= z x1) ... (= z xn)
))
))

x y)(ccc y)))

(owl:Restriction
rrr)
(rdf:Property ppp)

)(ccc y)))

(owl:Restriction
rrr)
(rdf:Property ppp)

(owl:Restriction
rrr)
(rdf:Property ppp)
subgraph
RDFStatement

RDFStatement

RDFsubject (rrr)
RDFpredicate (owl:onProperty)
RDFobject (ppp)

RDFsubject (rrr)
RDFpredicate (owl:allValuesFrom)
RDFobject (ccc)

UniversalQuantification

Equivalence

Binding: (Term: (x owl:Thing))

lvalue: (rrr x)
rvalue: (forall (y)(implies (ppp

subgraph
RDFStatement

RDFStatement

RDFsubject (rrr)
RDFpredicate (owl:onProperty)
RDFobject (ppp)

RDFsubject (rrr)
RDFpredicate
(owl:someValuesFrom)
RDFobject (ccc)

UniversalQuantification

Equivalence

Binding: (Term: (x owl:Thing))

lvalue: (rrr x)
rvalue: (exists (y)(and (ppp x y

subgraph
RDFStatement

RDFStatement

RDFsubject (rrr)
RDFpredicate (owl:onProperty)
RDFobject (ppp)

RDFsubject (rrr)
RDFpredicate (owl:hasValue)
RDFobject (vvv)

UniversalQuantification

Equivalence

Binding: (Term: (x owl:Thing))

lvalue: (rrr x)
rvalue: (ppp x vvv)

Table 50 RDFS/OWL to CL Metamodel Translation

g: (

pp x z))

 z))

(owl_Property ppp)

 x))

(owl:ObjectPropert
y ppp)

(owl:ObjectPropert
y ppp)

 z))

(owl:ObjectPropert
y ppp)
RDFStatement RDFsubject (ppp)
RDFpredicate (rdf:type)
RDFobject (owl:FunctionalProperty)

-or-

Conjunction

UniversalQuantification

Implication

UniversalQuantification: Bindin
 Term: (x owl:Thing)
 Term: (y owl:Thing)
 Term: (z owl:Thing)
)

Implication: (
 antecedent: (and (ppp x y)(p
 consequent: (= y z)
)

Binding: (
 Term: (x owl:Thing)
 Term: (y rdfs:Literal)
 Term: (z rdfs:Literal)
)

antecedent: (and (ppp x y)(ppp x
consequent: (= y z)

RDFStatement RDFsubject (ppp)
RDFpredicate (rdf:type)
RDFobject(owl:InverseFunctionalP
roperty)

UniversalQuantification

Implication

Binding: (
 Term: (x owl:Thing)
 Term: (y owl:Thing)
 Term: (z owl:Thing)
)

antecedent: (and (ppp y x)(ppp z
consequent: (= y z)

RDFStatement RDFsubject (ppp)
RDFpredicate (rdf:type)
RDFobject(owl:SymmetricProperty)

UniversalQuantification

Implication

Binding: (
 Term: (x owl:Thing)
 Term:(y owl:Thing)
)

antecedent: (ppp x y)
consequent: (ppp y x)

RDFStatement RDFsubject (ppp)
RDFpredicate (rdf:type)
RDFobject (owl:TransitiveProperty)

UniversalQuantification

Implication

Binding: (
 Term: (x owl:Thing)
 Term: (y owl:Thing)
 Term: (z owl:Thing)
)

antecedent: (and (ppp x y)(ppp y
consequent: (ppp x z)

Table 50 RDFS/OWL to CL Metamodel Translation

(owl_Property ppp)
(owl_Property qqq)

(owl_Property ppp)
(owl_Property qqq)

(owl:Class ccc)
(owl:Class ddd)

(owl:Class ccc)
(owl:Class ddd)

(owl:Class ccc)
(owl:Class ddd)
RDFStatement RDFsubject (ppp)
RDFpredicate(owl:equivalentProperty)
RDFobject (qqq)

UniversalQuantification

Implication

Binding: (
 Term: (x owl:Thing)
 Term:(y owl:Thing)
)

antecedent: (ppp x y)
consequent: (qqq x y)

RDFStatement RDFsubject (ppp)
RDFpredicate (owl:inverseOf)
RDFobject (qqq)

UniversalQuantification

Implication

Binding: (
 Term: (x owl:Thing)
 Term:(y owl:Thing)
)

antecedent: (ppp x y)
consequent: (qqq y x)

RDFStatement RDFsubject (ccc)
RDFpredicate (owl:equivalentClass)
RDFobject (ddd)

UniversalQuantification

Implication

Binding: (Term: (x owl:Thing))

antecedent: (ccc x)
consequent: (ddd x)

RDFStatement RDFsubject (ccc)
RDFpredicate (owl:disjointWith)
RDFobject (ddd)

UniversalQuantification

Negation

Binding: (Term: (x owl:Thing))

Sentence: (
 Conjunction: (
 Sentence: (ccc x)
 Sentence: (ddd x)
))

RDFStatement RDFsubject (ccc)
RDFpredicate (owl:complementOf)
RDFobject (ddd)

UniversalQuantification

Implication

Binding: (Term: (x owl:Thing))

antecedent: (ccc x)
consequent: (not(ddd x))

Table 50 RDFS/OWL to CL Metamodel Translation

aaa-n x))

(owl:Class ccc)
RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc)
RDFpredicate (owl:intersectionOf)
RDFobject (lll-1)

RDFsubject (lll-1)
RDFpredicate (rdf:first)
RDFobject (aaa-1)

RDFsubject (lll-1)
RDFpredicate (rdf:rest)
RDFobject (lll-2)

…

RDFsubject (lll-n)
RDFpredicate (rdf:first)
RDFobject (aaa-n)

RDFsubject (lll-n)
RDFpredicate (rdf:rest)
RDFobject (rdf:nil)

UniversalQuantification

Implication

Binding: (Term: (x owl:Thing))

antecedent: (ccc x)
consequent: (and (aaa-1 x) ... (

Table 50 RDFS/OWL to CL Metamodel Translation

aa-n x))

(owl:Class ccc)
RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc)
RDFpredicate (owl:unionOf)
RDFobject (lll-1)

RDFsubject (lll-1)
RDFpredicate (rdf:first)
RDFobject (aaa-1)

RDFsubject (lll-1)
RDFpredicate (rdf:rest)
RDFobject (lll-2)

…

RDFsubject (lll-n)
RDFpredicate (rdf:first)
RDFobject (aaa-n)

RDFsubject (lll-n)
RDFpredicate (rdf:rest)
RDFobject (rdf:nil)

UniversalQuantification

Implication

Binding: (Term: (x owl:Thing))

antecedent: (ccc x)
consequent: (or (aaa-1 x) ... (a

Table 50 RDFS/OWL to CL Metamodel Translation

(= aaa-n x))

(owl:Class ccc)
RDFStatement

RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc)
RDFpredicate (owl:oneOf)
RDFobject (lll-1)

RDFsubject (ccc)
RDFpredicate (rdf:type)
RDFobject (owl:Class)

RDFsubject (lll-1)
RDFpredicate (rdf:first)
RDFobject (aaa-1)

RDFsubject (lll-1)
RDFpredicate (rdf:rest)
RDFobject (lll-2)

…

RDFsubject (lll-n)
RDFpredicate (rdf:first)
RDFobject (aaa-n)

RDFsubject (lll-n)
RDFpredicate (rdf:rest)
RDFobject (rdf:nil)

UniversalQuantification

Implication

Binding: (Term: (x owl:Thing))

antecedent: (ccc x)
consequent: (or (= aaa-1 x) ...

Table 50 RDFS/OWL to CL Metamodel Translation

)

(= aaa-n x))

(owl:DataRange ccc)
RDFStatement

RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc)
RDFpredicate (owl:oneOf)
RDFobject (lll-1)

RDFsubject (ccc)
RDFpredicate (rdf:type)
RDFobject (owl:DataRange)

RDFsubject (lll-1)
RDFpredicate (rdf:first)
RDFobject (aaa-1)

RDFsubject (lll-1)
RDFpredicate (rdf:rest)
RDFobject (lll-2)

…

RDFsubject (lll-n)
RDFpredicate (rdf:first)
RDFobject (aaa-n)

RDFsubject (lll-n)
RDFpredicate (rdf:rest)
RDFobject (rdf:nil)

UniversalQuantification

Implication

Binding: (Term: (x rdfs:Literal)

antecedent: (ccc x)
consequent: (or (= aaa-1 x) ...

Table 50 RDFS/OWL to CL Metamodel Translation

(= aaa-n x))

(owl:Class ccc)

(owl:Class bbb)

(owl:Class bbb)
(rdf:Property aaa)
RDFStatement

RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc)
RDFpredicate (rdf:type)
RDFobject (owl:AllDifferent)

RDFsubject (ccc)
RDFpredicate(owl:distinctMembers)
RDFobject (lll-1)

RDFsubject (lll-1)
RDFpredicate (rdf:first)
RDFobject (aaa-1)

RDFsubject (lll-1)
RDFpredicate (rdf:rest)
RDFobject (lll-2)

…

RDFsubject (lll-n)
RDFpredicate (rdf:first)
RDFobject (aaa-n)

RDFsubject (lll-n)
RDFpredicate (rdf:rest)
RDFobject (rdf:nil)

UniversalQuantification

Implication

Sentence

Binding: (Term: (x owl:Thing))

antecedent: (ccc x)
consequent: (or (= aaa-1 x) ...

[ALLDIFFERENT aaa-1 ... aaa-n]

RDFStatement RDFsubject (aaa)
RDFpredicate (rdf:type)
RDFobject (bbb)

Relation predicate: bbb
arguments [1]: aaa

RDFStatement RDFsubject (aaa)
RDFpredicate (rdfs:domain)
RDFobject (bbb)

UniversalQuantification

Implication

Binding: (
 Term: (u rdfs:Resource)
 Term: (y rdfs:Resource)
)

antecedent: (aaa u y)
consequent: (bbb u)

Table 50 RDFS/OWL to CL Metamodel Translation

(owl:Class bbb)
(rdf:Property aaa)

(owl:Class bbb)
(owl:Class aaa)

(rdf:Property bbb)
(rdf:Property aaa)

(rdf:Property ppp)
RDFStatement RDFsubject (aaa)
RDFpredicate (rdfs:range)
RDFobject (bbb)

UniversalQuantification

Implication

Binding: (
 Term: (u rdfs:Resource)
 Term: (y rdfs:Resource)
)

antecedent: (aaa u y)
consequent: (bbb y)

RDFStatement RDFsubject (aaa)
RDFpredicate (rdfs:subClassOf)
RDFobject (bbb)

UniversalQuantification

Implication

Binding: Term: (u rdfs:Resource)

antecedent: (aaa u)
consequent: (bbb u)

RDFStatement RDFsubject (aaa)
RDFpredicate(rdfs:subPropertyOf)
RDFobject (bbb)

UniversalQuantification

Implication

Binding: (
 Term: (u rdfs:Resource)
 Term: (y rdfs:Resource)
)

antecedent: (aaa u y)
consequent: (bbb u y)

any other triple
RDFStatement

RDFsubject (aaa)
RDFpredicate (ppp)
RDFobject (bbb)

Relation predicate: ppp
arguments [1]: aaa
arguments [2]: bbb

Table 50 RDFS/OWL to CL Metamodel Translation

In addition, depending on the dialect of OWL (OWL DL or OWL Full) in question, certain hierarchical axioms are
assumed, which enforce the distinction between owl:ObjectProperty and owl:DatatypeProperty, for example. For
OWL DL, they also enforce the strict segregation between classes, properties, and individuals. These are summarized
below for comparison purposes.

OWL Hierarchy Axioms
(forall ((x owl:Thing)(y owl:Thing))(iff (owl:sameAs x y)(= x y)))
(forall (x) (implies (rdfs:Class x) (rdfs:Resource x))
(forall (x) (implies (rdf:Property x) (rdfs:Resource x))
(forall (x) (implies (rdfs:Datatype x) (rdfs:Class x))
(forall (x) (implies (owl:Thing x) (rdfs:Resource x))
(forall (x) (implies (owl_Property x) (rdf:Property x))
(forall (x) (implies (owl:Class x) (rdfs:Class x))
(forall (x) (implies (owl:DataRange x) (rdfs:Class x))
(forall (x) (implies (owl:Restriction x) (owl:Class x))
(forall (x) (implies (owl:ObjectProperty x) (owl_Property x))
(forall (x) (implies (owl:DatatypeProperty x) (owl_Property x))
(forall (x) (implies (owl:Thing x) (rdfs:Resource x))
(forall (x) (not (and (owl:Thing x)(rdfs:Literal x))))
(forall (x) (not (and (owl:Thing x)(owl:Ontology x))))
(forall (x) (not (and (owl:ObjectProperty x)(owl:DatatypeProperty x))))

OWL-DL Specific Hierarchy Axioms
(forall (x) (not (and (owl:Thing x)(owl_Property x))))
(forall (x) (not (and (owl:Thing x)(owl:Class x))))
(forall (x) (not (and (owl:Class x)(owl_Property x))))
(forall (x) (not (and (owl:OntologyProperty x)(owl_Property x))))
(forall (x) (not (and (owl:AnnotationProperty x)(owl_Property x))))
288 Ontology Definition Metamodel

22 References (non-normative)
[BCMNP] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider editors;The Description Logic
Handbook: Theory, Implementation and Applications; Cambridge University Press, January 2003

[CGS] Sowa, J.F., Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading, MA,
1984.

[DOLCE] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari and L. Schneider, Sweetening Ontologies with DOLCE,
13th International Conference on Knowledge Engineering and Knowledge Management (EKAW02), 1-4 October 2002,
Siguenza, Spain.

[Fikes & McGuinness] An Axiomatic Semantics for RDF, RDF Schema and DAML+OIL <http://www.ksl.stanford.edu/
people/dlm/daml-semantics/abstract-axiomatic-semantics-august2001.html> Fikes, R., McGuinness, D. L., KSL
Technical Report KSL-01-01, August 2001.

[GE] J. Paul, S. Withanachchi, R. Mockler, M. Gartenfeld, W. Bistline and D. Dologite, Enabling B2B Marketplaces: the
case of GE Global Exchange Services, in Annals Of Cases On Information Technology, Hershey, PA : Idea Group, 2003

[GuarWel] N. Guarino and C. Welty, Identity, Unity and Individuality: Towards a Formal Toolkit for Ontological
Analysis, in: W. Horn (ed) Proceedings of ECAI-2000: The European Conference on Artificial Intelligence IOS Press,
Amsterdam, 2000.

[KIF] M. R. Genesereth & R. E. Fikes, Knowledge Interchange Format, Version 3.0 Reference Manual. KSL Report
KSL-92-86, Knowledge Systems Laboratory, Stanford University, June 1992.

[MSDW] R. Colomb, A. Gerber and M. Lawley, Issues in Mapping Metamodels in the Ontology Definition Metamodel,
1st International Workshop on the Model-Driven Semantic Web (MSDW 2004) Monterey, California, USA. 20-24
September, 2004.

[ODM RFP] Ontology Definition Metamodel Request for Proposal, OMG Document ad/2003-03-40.

[OntoClean] N. Guarino and C. Welty. Evaluating Ontological Decisions with OntoClean, Communications of the
ACM, 45(2) (2002) 61-65.

[OWL OV] OWL Web Ontology Language Overview, W3C Recommendation 10 February 2004. Deborah L.
McGuinness and Frank van Harmelen eds. Latest version is available at: http://www.w3.org/TR/owl-features/.

[OWL Reference] OWL Web Ontology Language Reference. W3C Recommendation 10 February 2004, Mike Dean,
Guus Schreiber, eds. Latest version is available at http://www.w3.org/TR/owl-ref/.

[OWL XML Syntax] OWL Web Ontology Language XML Presentation Syntax. Masahiro Hori, Jérôme Euzenat, and
Peter F. Patel-Schneider, Editors. W3C Note, 11 June 2003. Latest version is available at http://www.w3.org/TR/
owl-xmlsyntax/.

[QVT] MOF 2.0 Query/View/Transformation. Second Revised Submission to MOF 2.0 QVT RFP, ad/2002-04-10.
Latest version is available at http://www.omg.org/docs/ad/05-03-02.pdf.

[RDF/TM] W3C A survey of RDF/Topic Maps Interoperability Proposals W3C Working Draft
29 March, 2005. Latest version is available at http://www.w3.org/TR/2005/WD-rdftm-survey-20050329.

[Rose] IBM Rational Rose, http://www-130.ibm.com/developerworks/rational/products/rose.

[SCL Translation] Translating Semantic Web Languages into SCL, Patrick Hayes, IHMC, November 2004. Latest
version available at http://www.ihmc.us/users/phayes/CL/SW2SCL.html.

[WinChafHerr] M. Winston, R. Chaffin, and D. Herrmann, (1987). A taxonomy of part-whole relations. Cognitive
Science 11, 417-444.
Ontology Definition Metamodel 289

290 Ontology Definition Metamodel

A Foundation Ontology (M1) for RDFS and OWL

As noted in the Design Rationale, it is impossible to completely capture RDF, RDF Schema, and OWL semantics in
an M2-level MOF metamodel. RDF, RDF Schema, and OWL do not make clear distinction between M3, M2 and M1
objects (in MOF terms). By design choice, all RDF, RDF Schema, and OWL constructs have been modeled as M2
objects.

An M1 instance of either the RDFS or OWL metamodels will generally include some built-in resources as M1
instances of some M2 classes. Table 51 gives a foundation ontology containing some of the more significant such
resources. An M1 instance of an RDFS or OWL ontology will generally wish to include these resources..

Table 51 Foundation Ontology (M1) for RDFS and OWL

M1 Object Properties

owl:Nothing RDFSsubclassOf every instance of OWLClass

owl:Thing Every instance of OWLClass is RDFSsubclassOf owl:Thing.
Default domain and range of every instance of OWLObjectProperty.
Default domain of every instance of OWLDatatypeProperty.
Every MOF instance of Individual is directly or indirectly of rdf:type owl:Thing.

rdf:nil Special instance of RDFList indicating termination of an RDFList.

XML Schema
built-in datatypes
(see Section 11)

xsd:string, xsd:boolean, xsd:decimal, xsd:float, xsd:double, xsd:dateTime, xsd:time,
xsd:date, xsd:gYearMonth, xsd:gYear, xsd:gMonthDay, xsd:gDay, xsd:gMonth,
xsd:hexBinary, xsd:base64Binary, xsd:anyURI, xsd:normalizedString, xsd:token,
xsd:language, xsd:NMTOKEN, xsd:Name, xsd:NCName, xsd:integer, xsd:nonPosi-
tiveInteger, xsd:negativeInteger,xsd:long, xsd:int, xsd:short, xsd:byte, xsd:nonNeg-
ativeInteger, xsd:unsignedLong, xsd:unsignedInt, xsd:unsignedShort,
xsd:unsignedByte, and xsd:positiveInteger
Ontology Definition Metamodel 291

292 Ontology Definition Metamodel

B A Description Logic Metamodel

This appendix provides an introduction to Description Logics through the elaboration of a exemplar Description
Logic Meta-Model.

B.1 Introduction
The Description Logic (DL) meta-model defines a basic, minimally constrained DL. In use, DLs are typically found
in the Knowledge-Base of a Knowledge Representation System, as shown in Figure 80 .

Figure 80 Knowledge Representation System

A DL Knowledge Base is traditionally divided into three principal parts:

• Terminology or schema, the vocabulary of application domain, called the “TBox”,

• Assertions, which are named individuals expressed in terms of the vocabulary, called the “ABox” and

• Description Language that define terms and operators for build expressions.

Note that the TBox and ABox elements represent two separate meta-levels in the application domain.

Knowledge Representation System

Knowledge Base

TBoxTBox

ABoxABox
Description
Language

Description
Language ReasonerReasoner

Knowledge Representation System

Knowledge Base

TBoxTBox

ABoxABox
Description
Language

Description
Language ReasonerReasoner
Ontology Definition Metamodel 293

B.2 Containers
Basic containment constructs of this DL meta-model, as shown in Figure 81 , are provided through the TBox and
ABox elements, which correspond directly to the TBox and ABox concepts from description logics.

Figure 81 Basic Containment Constructs

B.2.1 TBox

Description

A TBox contains all of a DL model’s terminology. The TBox may include Terms and any of the sub-classes of Term.
Note that this includes Instances to allow supporting predefined, delineated instances as ‘special terms’ in the ABox.
An example of this would be OWL Thing.

Associations

• Containment.content[0..n]: Term – the terminology contained in this TBox.

• instances[0..n]: ABox – the TBox that uses terms and instances from this TBox.

• terminology[1]: TBox – the TBox that contains the terminology used by this TBox (or ABox)

B.2.2 ABox

Description

An ABox contains all of a DL model’s instances. The ABox extends TBox and restricts its content to be only the sub-
classes Instance.

Associations

• Containment.content[0..n]: Instance – the instances contained in this ABox, redefining containment from TBox.

Semantics

All the instances in an ABox are expressed using the terminology from exactly one TBox.

ABox
Instance

1 0..n1 +content 0..n

containment
{redefines}

TBox
1

+instances
0..n

instantiates

+terminology1 Term
Identifier : String

1 0..n1 +content 0..n

containment

ABox
Instance

1 0..n1 +content 0..n

containment
{redefines}

TBox
1

+instances
0..n

instantiates

+terminology1 Term
Identifier : String

1 0..n1 +content 0..n

containment
294 Ontology Definition Metamodel

B.3 Concepts and Roles

B.3.1 Element

Description

Element is an abstract base class of all atomic components in a DL as seen in Figure 82 . It defines the notion of
unique identity so that references may be made to elements using that identifier.

Figure 82 Element Model

Attributes

• UniqueIdentifier: String - Uniquely identifies a Element and all Elements are identified by a single value. That is
if UniqueIdentifiers of two Elements are different, then the Elements are different. Note that this is different than
URIs. UniqueIdentifier is required.

B.3.2 Concept

Description

Concept is a set of Instances which are define as having something in common.

Concept is a specialization of Element.

Similar Terms

Class, Entity, Topic, Type

ABox
Elements

TBox
Elements

Individual

Concept

0..n

1..n

+member
0..n

+type
1..n

isA

Role

Instance

Assertion

0..n

1..n

+member
0..n
{unique member.UniqueIdentifier

+type
1..n

{unique type.UniqueIdentifier}

isA

1

0..n

+subject
1

0..n
subject

1

0..n

+object
1

0..n
object

Element
UniqueIdentifier : String
Ontology Definition Metamodel 295

Associations

• isA.member: Individual[0..n] -- The set of Individuals that are the extent of the concept.

B.3.3 Instance

Description

Instance provides an abstract base class for all ABox constructs. Instance is a specialization of Term.

Similar Terms

Object, Instantiation

B.3.4 Role

Description

A Role is a set of binary tuples, specifically (subject, object), that asset that this role for subject is satisfied by object.
Role is a specialization of Element.

Similar Terms

Association, Attribute, Property, Slot

Associations

• isA.member: Assertion [0..n] -- The set of Assertions that are the extent of the concept.

B.3.5 Individual

Description

Individual is an instance of a Concept. An Individual is a specialization of Instance

Similar Terms

Object

Associations

• isA.type: Concept[1..n] – The set of concept sets that has this individual as a member.

B.3.6 Assertion

Description

Assertions are the specific binary tuples that are instances of Roles. An Assertion is a specialization of Instance.

Similar Terms

Link, Statement, Fact

Associations

• subject.subject: Instance[1] – The Instance that is the subject of the assertion.

• object.object: Instance[1] – The Instance that is the object of the assertion.
296 Ontology Definition Metamodel

• sA.type: Concept[1..n] – The set of Roles that has this assertion as a member.

• predicate: Instance[1] – A derived reference to the Role which this assertion is an instance of. (Not shown in dia-
gram.)

B.4 Datatypes

B.4.1 Datatype

Description

A Datatype is a specialization of Concept. Datatypes are those concepts whose members have no identity except their
value, that is the members of a datatype are literals, as shown in Figure 83 . Datatype may represent primitive types,
for example integer, string, or boolean; or user defined type, for example time-interval or length-in-meters.

Figure 83 DataType Model

Associations

• isA.member: Literal[0..n] – the set of literals that are members of this datatype.

B.4.2 Literal

Description

Literals are the specification of instances of datatypes. The UniqueIdentifier inherited from Element is for a literal,
uniquely defined by the literal’s value itself.

Attributes

• value: Any – The implementation and Datatype dependent value of this literal.

Associations

• type: Datatype[0..n] – the possibly empty set of datatypes in which this literal is a member.

Literal
value : A ny

DataTy pe

0..n

0..n

+ type
{unique type.UniqueIdentifier} 0..n

+m em ber
{unique m em ber.UniqueIdentifier} 0..n

isA Individual

Concep t
Ontology Definition Metamodel 297

Constraints

Restricts range of Concept.type to a set of Datatypes.

Semantics

Element.UniqueIdentifier has a functional relation with Literal.value.

Literal.value has a functional relation with Element.UniqueIdentifier.

B.5 Collections

B.5.1 Collection

Description

A Collection is a specialization of Concept. Collection allows instances to be brought together as a group and
referenced as a single collective. The class diagram for Collection is shown in Figure 84 .

Collection is conceptually a ‘bag’, that is un-order and allowing duplicate members..

Figure 84 Collection Model

Similar Terms

Container; and Sequence, List, Bag, Set as specific types.

Associations

• isA.member: Extent[0..n] – The set of instances of a particular kind of collection.

B.5.2 List

Description

List is a specialization of Collection. List requires that the member instances that are in the collection are ordered in
a user defined way.

L is tS e t

C o lle c t io n

I ns t ance

E x t en t

1 . .n

0 . .n

+ ty p e
1 . .n

+ m e m be r
0 . .n

0 . .n
+ c o n ta in s

0 . .n

In d ivid u a l

C o n c e p t
298 Ontology Definition Metamodel

Semantics

For all ai , aj members of the list, there is a comparator function C() such that C(ai) < C(aj) if i < j

B.5.3 Set

Description

Set is a specialization of Collection. Set requires that the member instances in the collection are unique.

Semantics

For all ai , aj members of the list, there is a identity function I() such that I(ai)=I(aj) iff i = j

B.5.4 Extent

Description

Extent is a specialization of Instance. Extent is the set of all instances of a collection of a particular type, for example
the set of all Alphabetical-Lists.

Associations

• containment.contains: Instance[0..n] – Those instances that are in this instance of a collection.

• isA.type: Collection - The set of collection sets that has this extent as a member.

B.6 Expressions and Constructors
Expressions provide the mechanism for constructing class definitions and implications about TBox elements. They
provide a hook for more expressive constraint and rule languages.

A number of common expression constructors, shown in Figure 85 , are provided as specializations of Constructor.
Ontology Definition Metamodel 299

Figure 85 Specialisations of Constructor

B.6.1 Term

Description

Terms are the components used to build expressions. They are an abstract root class of most DL classes, excluding
only ABox, TBox, and Constructors.

Similar Terms

Word, Component

Attributes

• Identifier: String [0..1] – An optional identifier for this term.

B.6.2 Expression

Description

Expressions are the representation of the DL Knowledge Base Description Language, shown in Figure 80 .
Expressions are an extension of Term and are also constructed from Terms using Constructors. Thus allowing
arbitrarily complex expressions to be created.

Similar Terms

Statement, Formula

Intersect
ion

UnionNegation Quantifie
r

Implicati
on

Definitio
n

Inclusion

ForAllExistential NumberRestiction

Constructor

Expression

1
+constructor

1

Term
Identifier : String

0..1

+term_2

0..1

1

+term_1

1

300 Ontology Definition Metamodel

Associations

• term_1: Term[1] – The required term for the constructor.

• term_2: Term[0..1] – The optional term for the constructor.

• constructor: Constructor[1] – a monadic or dyadic operator applied to the terms.

B.6.3 Constructor

Description

A Constructor is an operator that is used to build expressions. A Constructor may be either monadic or dyadic.

Note that individual specializations of constructor may have additional semantics and restrictions that are not
elaborated here.

Similar Terms

Operator

Semantics

• Monadic constructors have term_2.multiplicity = 0

• Dyadic constructors have term_2.multiplicity = 1

B.6.4 Intersection

Description

The Intersection constructor is a dyadic constructor. It results in the set of instances that are members of both the left-
hand term and the right-hand term.

B.6.5 Negation

Description

The Negation constructor is a monadic constructor. It results in the set containing all instances not contained in the
right-hand term.

B.6.6 Union

Description

The Union constructor is a dyadic constructor. It results is the set containing any instance that is a member of either
the left-hand or right-hand term.

B.6.7 Quantifier

Description

A Quantifier is a specialization of Constructor. It is a monadic constructor. They are operators that bind the number
of a role’s assertions by specifying their quantity in a logical formula.
Ontology Definition Metamodel 301

B.6.8 ForAll

Description

ForAll is a specialization of Quantifier. ForAll specifies that all members of term_1 must have the binding value for
the specified role.

B.6.9 Existential

Description

Existential is a specialization of Quantifier. Existential specifies that at least one member of term_1 has the binding
value for the specified role.

B.6.10 NumberRestriction

Description

NumberRestriction is a specialization of Quantifier. NumberRestriction specifies that a specified number of members
have a value for the specified role, similar to cardinality or multiplicity.

Further specializations of NumberRestriction may include upper bound, lower bound and exact number
specifications.

B.6.11 Definition

Description

Definition is a specialization of Constructor. It is dyadic. Definition is used in axioms to define the left-hand term as
exactly the right-hand term.

B.6.12 Implication

Description

Implication is a specialization of Constructor. It is dyadic. Implication is a logical relationship between the term_1
and term_2, that states term_2 is true if term_1 is true.

B.6.13 Inclusion

Description

Inclusion is a specialization of Constructor. It is dyadic. Inclusion is a relation between the term_1 and the term_2
that states all members of the first are also members of the second. Inclusion is similar to sub-types, in that all
members of a sub-type are included in the super-type.

B.7 Examples
The following two examples, in Figures A1-7 and A1-8, illustrate the representation of simple statements as instance
models of the DL meta-model.
302 Ontology Definition Metamodel

B.7.1 Example One

Figure 86 Example One

A PersonalCar is a Car
that is owned by a person.

Car is a type of Vehicle.

owns : Role

PersonalCar :
Concept

e1 : Expression

e2 : Expression

Car : Concept e4 : Expression

 : Definition

 : Intersection

 : Existentia

e5 : Expression

Vehicle : Concept

 : Inclusion
Person : Concept
Ontology Definition Metamodel 303

B.7.2 Example Two

Figure 87 Example Two

blue :
Literal

Carl : Individual

 : Assertion

e : Extent

owns : Role

a : Assertion b : Assertioncolor : Role

Car : Concept

red :
Literal

thing1 :
Individual

thing2 :
Individual

Carl owns a car that is red
and another car that is blue.

Color : DataType

'owns' is more
association-like.

'color' is more
attribute-like

subject

object

typemember

subject

content

type member

subject

content

object

typemember

object
type member
304 Ontology Definition Metamodel

TBox

ABox
B.8 Overview Diagram
Figure 88 provides a overview of the complete class hierarchy and key associations in the DL meta-model.

Figure 88 Complete DL Metamodel

ents

ents

DataTy pe

Literal
v alue : Any

0..n

0..n

+ty pe
0..n

+m ember
0..n

A

Indiv idual

Concept

0..n

1.. n

+member
0..n

+ty pe
1.. n

isA
Collection

Extent

1.. n

0.. n

+ty pe
1.. n

+member
0.. n

isA

Role

Ins tance 10..n 1
+content

0..n
containment
{redef ines}

0..n
+contains

0..n

containment

Assert ion

0..n

1.. n

+member
0..n

+ty pe
1.. n

isA
1

0..n

+subject
1

0..n
subject

1

0..n

+object
1

0..n
object

Element
UniqueIdentif ier : String

ConstructorEx pres sion

1+constructor1

Term
Identif ier : String

0..1 +term_20..1

1 +term_11

1

0.. n

1

+content0.. n containment
Ontology Definition Metamodel 305

306 Ontology Definition Metamodel

C Extending the ODM

C.1 Extendibility
From the Usage Scenarios and Goals of Chapter 7, there is an enormous variety of kinds of application for
ontologies. They can be used at design time only or at both design and run time. They can be schemas only or
involve both schemas and instances. Their structure can be imposed from outside their domain or can emerge from
the activities of interoperating parties. And so on.

Many of these kinds of application have special requirements which are common to many application instances but
which are not at all universal. The ODM submission has limited its efforts to the most general structural issues.

However, in practice one can envisage particular extensions to the general structures which support significant
numbers of application instances, which would be published by third parties outside the OMG ODM process but
which would be consistent with the ODM, in much the same way as the Dublin Core metadata standard is published
as an RDFS namespace. These extensions would use the MOF Package as a medium.

We will illustrate this facility with three examples, all of which use model elements from OWL packages so are seen
as extending OWL. The examples are respectively of metaclass taxonomies, semantic domain instance models, and n-
ary associations.

C.2 Metaclass Taxonomy
The first example, shown in Figure 89 , that of a metaclass taxonomy, extends OWLClass with the distinction
between countable and bulk classes as advocated by Guarino and Welty [GuarWel]. A countable class has an extent
consisting of identifiable individuals while a bulk class is a sort of amorphous mass like length measured in metres
or value measured in Euros. In a model instance, classes would be instances of one of the specialized subclasses
rather than of the more general OWLClass.

Figure 89 Countable/Bulk Package Extending OWL

This same approach can be used with other taxonomies of metaclasses, for example the taxonomy of endurants and
perdurants proposed in the DOLCE system [DOLCE].

on

withStatustakesValue

withRespectTo

OWLClass (from OWL)

Metaproperty

<<enumeration>>
MetaPropertyKind

essential
rigid
identity
unity

necessarily
necessarily not
not necessarily

<<enumeration>>
StatusKind

Property (from OWL)
Ontology Definition Metamodel 307

It is possible to develop these packages as extensions to one of the metamodels, in this case OWL, then use the ODM
mapping facilities to migrate it to any of the other metamodels. Note that all of the metamodels supported by the
ODM permit multiple inheritance, so that several such extensions can be used simultaneously.

C.3 Models of General Kinds of Application Domains
A feature of OWL is that properties are by default defined globally, with range and domain both Thing. This makes
it possible to represent mereological relationships as instances of property. Instances of metaclasses can be modeled
using semantic domain models, a facility of MOF 2.0. For example, Figure 90 defines a version of isPartOf which is
transitive, every part belongs to at least one whole (and by transitivity to all the wholes up the chain), and a part
cannot exist without its corresponding whole. This kind of part-of relation could be suitable for modeling say the
Olympic family. An athlete is part of an event (if a competitor), an event is part of a sporting program, a sporting
program is part of the Olympics of a given Olympiad, and anyone who competes in any event in any program in any
Olympics is a part of the Olympic family. But an Olympics cannot exist without at least one program, a program must
have at least one event, and an event at least one competitor.

Figure 90 Semantic Domain Model for isPartOf Property

There are a large number of varieties of mereotopological relationships [WinChafHerr], including those specified in
UML. They could be catalogued and published as a package, perhaps with specialized software.

C.4 N-ary Associations
A key aspect of the OntoClean methodology [OntoClean] is the concept of a metaproperty. For example, a property
has the metaproperty essential with respect to a class if being an instance of that class determines the value of the
property. Besides essential, the metaproperties include rigid, identity and unity. A property with respect to a class can
necessarily, necessarily not or not necessarily have a given metaproperty. A natural way to model metaproperties is as
quaternary associations.

OWLminCardinality

OWLminCardinality

isPartOf: OWLTransitiveProperty

OWLonProperty

:OWLRestriction

OWLinverseOf

:OWLTransitiveProperty

OWLonProperty

:OWLRestriction

1:RDFSLiteral

1:RDFSLiteral
308 Ontology Definition Metamodel

Most of the metamodels in the ODM permit n-ary associations, except RDFS/OWL. But an n-ary association can be
represented as a class with n binary properties. To be consistent with the previous examples, a possible package to
model metaproperties in Figure 91 extends the OWL metamodel. Note that the metaproperty is modeled as a
subclass of OWLClass. This can facilitate mapping from OWL to an n-ary association or equivalent in another
metamodel. Note also the enumerations, which are instances of the MOF element type.

Figure 91 Metaproperty Package for OWL

on

with Status tak esV alue

wit hRespe ctTo

OWLClass (from OWL)

Metaproper ty

<< enumeration >>
MetaPropertyK ind

esse ntial
rigid
iden tity
unity

nec essa rily
nec essa rily not
not ne cessarily

<<enume ration >>
StatusK ind

Prope rty (from O WL)
Ontology Definition Metamodel 309

310 Ontology Definition Metamodel

D Open Issues

A small set of open issues exists primarily due to limitations on time and resource availability. It is the desire of the
team that the issues be corrected before the finalization of the standard.

The primary area of concern at this point is with regard to the structure and packaging of the RDFS Metamodel.
Several issues were raised by team members and other supporters regarding the need for support for certain RDF
concepts in the RDFS (or a related, subordinate) metamodel. These elements facilitate interoperability among tools
that exchange several concrete syntax representations of RDF, and have a direct downstream impact on the
representation of individuals, in particular, in OWL. Numerous working meetings including RDF language experts
have been held since these issues were first raised. Recently, additional expertise from within IBM has been focused
on assisting us in finalizing an approach. This extended team has raised issues with the W3C regarding ambiguities
in the RDF specifications, which have contributed to the lack of consensus within the core ODM team. We believe
that with the help of this expanded ODM development team and RDF language authors, agreement and a finalized
specification are within reach.

Thus, this draft revised submission reflects no change from the prior draft to the RDFS and OWL metamodels,
pending resolution of these outstanding issues in the RDFS metamodel:

• Incorporation (and possibly repackaging / refactoring) of the RDF-related metamodel extensions currently speci-
fied in Chapter 16, UML Profiles for RDF Schema and OWL - specifically revisions to better support RDF state-
ments, reification, graphs, and blank node semantics, as well as to provide a number of concrete syntax related
elements that are common to several RDF serialization formats

• Determination of whether or not (and how) to separate RDF-specific constructs from those of RDF Schema, and
related to that, whether or not the RDF Schema metamodel should be able to stand alone, without the RDF con-
structs

• Agreement on the appropriate representation for RDF statements, or triples, and whether or not they should be
considered resources

• Agreement on the appropriate representation for blank nodes, and whether or not they should be considered
resources

In addition to these issues, the other area of note is with regard to whether the language mappings should be
normative and the nature of the representation. In the process of attempting to map the Topic Maps metamodel to the
RDFS and OWL metamodels in particular, DSTC discovered issues in the metamodels as well as issues with the
mapping representation, which have led us to the conclusion that the mappings should be non-normative. More on
this topic is given in Chapter 8, Design Rationale, and in Appendix E, Mappings - Informative, Not Normative.
Nonetheless, we believe the mappings are important and will provide guidelines for those attempting to use this
specification, and thus are planning to complete them (Chapters 18-21), in the MOF QVT Relations language, over
the course of the next revision cycle.

Finally, the following additional minor issues remain open:

• Open issues with respect to Chapter 12 OWL Metamodel include (1) aspects of the metamodel concerning repre-
sentation of individuals, (2) issues in navigation from an ontology to the statements it contains, (3) minor issues
with regard to missing value restrictions and class inheritance for a couple of OWL features, and (4) the need for a
section at the end of the chapter concerning constraints required to differentiate OWL DL from OWL Full.

• An open issue exists related to the technical completeness of the RDFS, OWL and ER metamodels. Missing are
some multiplicities, role names and OCL specifications for non-graphically conveyed constraints.

• A minor issue exists related to the completeness of Chapter 16 UML Profiles for RDFS and OWL -- primarily
with regard to a few missing example diagrams in the OWL profile.
Ontology Definition Metamodel 311

• An open issue exists with respect to Chapter 18 Mapping UML to OWL -- this chapter is incomplete (primarily
with regard to the mapping from OWL to UML), and depends on chapters 11, 12, and 16 (thus modifications to
those chapters must be synchronized with this mapping).

• A minor issue exists with respect to Chapter 21 Mapping RDFS and OWL to CL -- a few corrections to the map-
ping are needed due to recent modifications to the metamodel to align with the ISO CD revision.

• An open issue exists regarding the model library defined in Appendix A -- this needs to be updated to reflect
recent metamodel and profile modifications.

• No MOF2-compliant tool available for graphically defining metamodels. This submission uses IBM Rational
Software Modeler (recent modifications only), which is “close” and IBM Rational Rose for graphically defining
metamodels. The submitters hope to migrate to UML2 compliant tools (or versions of tools) as they become more
readily available.

• No UML2-compliant tool available for defining UML profiles. This submission uses text (primarily) for defining
UML profiles.

• No MOF2-compliant tool available fo generating XMI artifacts from metamodels.

• No MOF2-compliant tool available for generating JMI artifacts from metamodels.
312 Ontology Definition Metamodel

E Mappings - Informative, Not Normative

The RFP calls for mappings (6.2) which are two-way and bounded (6.5.3, 6.5.3.1). However, in developing the
mappings for the various ODM languages, the team concluded that the mappings we specify can not in practice be
normative.

In our discussion in 10.2.3, for example we see that there are two different ways to map n-ary associations from UML
to OWL, depending on whether we take OWL Full or OWL DL as target. In 10.2.2, we note that OWL has a
mandatory universal superclass (owl:Thing) which can map to a universal superclass in UML, but this is contrary
to normal practice in UML modelling. A particular project might analyze the uses of universal properties in the OWL
source model and choose to declare a number of more general but not universal superclasses in the UML target.

In the W3C Semantic Web Best Practices and Deployment task force’s report on Topic Map mappings [RDF/TM],
the point is made several times that there are different ways to map particular structures, and that each way has its
advantages and disadvantages. In any particular project, design decisions will be taken in favor of advantages and
against disadvantages so different projects will map in different ways.

There are several kinds of problems. One we can call structure conflation, where two constructs in one system map
to a single construct in the other. In this case, a general-purpose mapping doesn't round trip. UML binary associations
and class-valued attributes map to OWL properties, for example. In topic maps, three different kinds of identifiers
map to one kind in OWL.

But there is nothing to stop a particular project from specifying naming conventions so there is a record in the target
of what construct the source was, and from maintaining that convention in subsequent development.

A second kind of problem we will call structure loss. Here a complex construct is mapped to a collection of simpler
constructs. There is insufficient information in the target metamodel for a general mapping to map collections of
simple constructs to complex constructs in the source metamodel. Examples here are UML N-ary associations and
association classes, which get mapped to a class and a collection of properties. In Topic Maps, the Association
construct is typed itself and has N typed roles. The association maps to a class and the typed roles to properties. It is
in general impossible to reliably map the reverse.

But again, there is nothing to stop a particular project from using naming conventions or annotations to retain a
memory of the structure, and maintaining those conventions in subsequent maintenance so as to be able to reverse
map.

Alternatively, a TM project could decide to limit itself to binary associations, making possible mapping associations
directly to properties in that particular case.

The third kind of problem we will call trapdoor mappings, where a kind of construct in the source is mapped to a
very specific arrangement of a general structure in the target. The analogy is with cryptography, where the encryption
function takes any plaintext into an encrypted text, but almost no encrypted texts map back to plain text.

In topic maps, this occurs with the mapping of scope and variant names to specific properties in OWL identified with
TM URIs. OWL properties map to TM associations with specific roles named with OWL URIs. Unless the source for
a reverse mapping happened to maintain these conventions, it would be impossible to reverse in a sensible way.

A fourth kind of problem stems from what we will call feature lack, that the target metamodel lacks a feature present
in the source. In this case there is no apparent general way to map the feature from the source. But in a particular
project the feature may for example be used in a particular way leading to a mapping to target features particularized
by naming conventions. OWL restriction classes relative to UML or Topic Map are of this kind.
Ontology Definition Metamodel 313

The fifth kind of problem is what we will call incompatible structural principles. The different metamodels are
organized very differently. UML is organized around classes, with instances as subordinate objects. OWL has both
classes and individuals typed only by a universal superclass. In Topic Maps, a Topic instance can be either typed or
not. But a particular project might use a particular discipline in its use of these structures leading to mappings not
otherwise feasible.

In practice, the mappings provided in the ODM can be useful, though. First, they show feasibility of one set of design
choices for the mappings, providing a baseline from which a particular project can vary. Second, they bring clearly to
the fore the detailed relationships among the metamodels. These relationships can help those who understand one of
the target languages to come to an understanding of the others. UML is similar to ER, but both are very different
from RDFS/OWL, and all are quite different from TM. CL has far greater functionality than any of the others.

So although normative mappings are not feasible, we argue that the mappings presented have strong informative
value.
314 Ontology Definition Metamodel

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read This Specification
	6.3 Contributors
	6.4 Primary Contacts
	6.5 Acknowledgements
	6.6 Resolution of RFP Mandatory Requirements
	6.7 Optional Requirements
	6.8 Issues To Be Discussed
	6.9 Evaluation Criteria
	6.10 Proof of Concept

	7 Usage Scenarios and Goals
	7.1 Introduction
	7.2 Perspectives
	7.2.1 Model-Centric Perspectives
	7.2.2 Application-Centric Perspectives

	7.3 Usage Scenarios
	7.4 Business Applications
	7.4.1 Run Time Interoperation
	7.4.2 Application Generation
	7.4.3 Ontology Lifecycle

	7.5 Analytic Applications
	7.5.1 Emergent Property Discovery
	7.5.2 Exchange of Complex Data Sets

	7.6 Engineering Applications
	7.6.1 Information Systems Development
	7.6.2 Ontology Engineering

	7.7 Goals for Generic Ontologies and Tools

	8 Design Rationale
	8.1 Design Principles
	8.2 Why Not Simply Use or Extend the UML 2.0 Metamodel?
	8.3 Component Metamodel Selection
	8.4 Relationships among Metamodels
	8.4.1 The Need for Translation
	8.4.2 UML Profiles
	8.4.3 Mappings
	8.4.4 Mappings Are Informative, Not Normative

	8.5 Why Common Logic over OCL?
	8.6 Why EMOF?
	8.7 M1 Issues

	9 ODM Overview
	10 The UML2 Metamodel
	10.1 Introduction
	10.2 Features in Common (More or Less)
	10.2.1 UML Kernel
	10.2.2 Class and Property - Basics
	10.2.3 More Advanced Concepts
	10.2.4 Summary of More-or-Less Common Features

	10.3 OWL but not UML
	10.3.1 Predicate Definition Language
	10.3.2 Names
	10.3.3 Other OWL Developments

	10.4 In UML But Not OWL
	10.4.1 Behavioral and Related Features
	10.4.2 Complex Objects
	10.4.3 Access Control
	10.4.4 Keywords

	11 The RDF Schema Metamodel
	11.1 Overview
	11.1.1 Organization of the RDFS Metamodel
	11.1.2 Design Considerations

	11.2 The Classes and Utilities Diagrams
	11.2.1 PlainLiteral
	11.2.2 RDFSClass
	11.2.3 RDFSDatatype
	11.2.4 RDFSLiteral
	11.2.5 RDFSResource
	11.2.6 RDFXMLLiteral
	11.2.7 TypedLiteral

	11.3 The Properties Diagram
	11.3.1 RDFProperty

	11.4 The Containers Diagram
	11.4.1 RDFAlt
	11.4.2 RDFBag
	11.4.3 RDFSContainer
	11.4.4 RDFSContainerMembershipProperty
	11.4.5 RDFSeq

	11.5 The Collections Diagram
	11.5.1 RDFList

	11.6 The Reification Diagram
	11.6.1 RDFStatement

	11.7 The Ontology Diagram
	11.7.1 Ontology

	11.8 Language Mappings
	11.8.1 Classes and Utilities
	11.8.2 Properties
	11.8.3 Containers
	11.8.4 Collections
	11.8.5 Reification
	11.8.6 Ontology

	12 The OWL Metamodel
	12.1 Overview
	12.1.1 Organization of the OWL Metamodel
	12.1.2 Design Considerations

	12.2 The Classes and Restrictions Diagrams
	12.2.1 AllValuesFromRestriction
	12.2.2 CardinalityRestriction
	12.2.3 ComplementClass
	12.2.4 EnumeratedClass
	12.2.5 HasValueRestriction
	12.2.6 IntersectionClass
	12.2.7 MaxCardinalityRestriction
	12.2.8 MinCardinalityRestriction
	12.2.9 OWLClass
	12.2.10 OWLRestriction
	12.2.11 SomeValuesFromRestriction
	12.2.12 UnionClass

	12.3 The Properties Diagram
	12.3.1 OWLDatatypeProperty
	12.3.2 OWLObjectProperty
	12.3.3 Property

	12.4 The Individuals Diagram
	12.4.1 DatatypeSlot
	12.4.2 Individual
	12.4.3 ObjectSlot
	12.4.4 OWLAllDifferent

	12.5 The Datatypes Diagram
	12.5.1 OWLDataRange

	12.6 The Utilities Diagram
	12.6.1 OWLAnnotationProperty

	12.7 The Ontology Diagram
	12.7.1 OWLOntology
	12.7.2 OWLOntologyProperty

	12.8 Language Mappings
	12.8.1 Classes and Restrictions
	12.8.2 Properties
	12.8.3 Individuals
	12.8.4 Datatypes
	12.8.5 Utilities
	12.8.6 Ontology

	13 The Common Logic Metamodel
	13.1 Overview
	13.1.1 Design Considerations
	13.1.2 Modeling Notes

	13.2 The Phrases Diagram
	13.2.1 Comment
	13.2.2 ExclusionSet
	13.2.3 Identifier
	13.2.4 Importation
	13.2.5 LogicalName
	13.2.6 Module
	13.2.7 Phrase
	13.2.8 Sentence
	13.2.9 Text

	13.3 The Terms Diagram
	13.3.1 CommentedTerm
	13.3.2 FunctionalTerm
	13.3.3 SequenceVariable
	13.3.4 Term

	13.4 The Atoms Diagram
	13.4.1 Atom
	13.4.2 AtomicSentence
	13.4.3 Equation

	13.5 The Sentences Diagram
	13.5.1 Biconditional
	13.5.2 CommentedSentence
	13.5.3 Conjunction
	13.5.4 Disjunction
	13.5.5 ExistentialQuantification
	13.5.6 Implication
	13.5.7 IrregularSentence
	13.5.8 Negation
	13.5.9 QuantifiedSentence
	13.5.10 UniversalQuantification

	13.6 The Boolean Sentences Diagram
	13.7 The Quantified Sentences Diagram
	13.8 Summary of CL Metamodel Elements with Interpretation

	14 The ER Metamodel
	14.1 Overview
	14.1.1 Organization of the ER Metamodel

	14.2 The Model Diagram
	14.2.1 Model
	14.2.2 ModelElement
	14.2.3 Package
	14.2.4 SubjectArea

	14.3 The Domain Diagram
	14.3.1 AtomicDomain
	14.3.2 Domain
	14.3.3 DomainConstraint
	14.3.4 ListDomain
	14.3.5 UnionDomain

	14.4 The Entity Diagrams
	14.4.1 Attribute
	14.4.2 Entity
	14.4.3 EntityConstraint
	14.4.4 Generalization

	14.5 The Relationship Diagram
	14.5.1 Relationship
	14.5.2 Role

	14.6 The Key Diagram
	14.6.1 AlternateKey
	14.6.2 ForeignKey
	14.6.3 InversionEntry
	14.6.4 Key
	14.6.5 PrimaryKey

	14.7 The Instance Diagram
	14.7.1 AttributeInstance
	14.7.2 EntityInstance
	14.7.3 Extent
	14.7.4 Instance
	14.7.5 RelationshipInstance
	14.7.6 RoleInstance

	14.8 The Inheritance Diagram
	14.8.1 NamedElement

	14.9 Examples

	15 The Topic Map Metamodel
	15.1 Topic Map Constructs
	15.1.1 TopicMapConstruct
	15.1.2 TopicMap
	15.1.3 MapItem
	15.1.4 Topic
	15.1.5 Association

	15.2 Scope and Type
	15.2.1 Scope_able
	15.2.2 Type_able

	15.3 Characteristics
	15.3.1 Characteristic
	15.3.2 AssociationRole
	15.3.3 Occurrence
	15.3.4 TopicName
	15.3.5 VariantName

	15.4 Published Subjects
	15.5 Example

	16 UML Profiles for RDF Schema and OWL
	16.1 UML Profile for RDF Schema
	16.1.1 RDF Document Syntax (Optional)
	16.1.2 RDF Graph Model (Optional)
	16.1.3 RDF Schema Profile Package
	16.1.4 RDFS Ontology
	16.1.5 RDF Document (optional)
	16.1.6 Classes and Utilities
	16.1.7 Properties in RDF/S
	16.1.8 Containers and Collections
	16.1.9 Reification
	16.1.10 RDF Graphs and Nodes (optional)

	16.2 UML Profile for OWL
	16.2.1 OWL Profile Package
	16.2.2 OWL Ontology Document
	16.2.3 OWL Annotation Properties
	16.2.4 OWL Ontology Properties
	16.2.5 OWL Classes, Restrictions, and Class Axioms
	16.2.6 Properties
	16.2.7 Individuals
	16.2.8 Datatypes

	17 The Topic Map Profile
	17.1 Stereotypes
	17.1.1 Topic Map
	17.1.2 Topic
	17.1.3 Association
	17.1.4 Characteristics

	17.2 Abstract Bases
	17.2.1 TopicMapElement
	17.2.2 Scoped Element
	17.2.3 TypedElement

	17.3 Example

	18 Mapping UML to OWL
	18.1 Overview
	18.2 UML to OWL Mapping
	18.2.1 Package
	18.2.2 Class
	18.2.3 Association
	18.2.4 InstanceSpecification

	18.3 OWL to UML Mapping

	19 ER to OWL Mapping
	19.1 Overview
	19.1.1 Representation of Source and Target Models
	19.1.2 Representation of Mapping Specifications

	19.2 ER to OWL Mapping
	19.2.1 ER to OWL Mapping Summary
	19.2.2 NamedElement
	19.2.3 Model
	19.2.4 Entity
	19.2.5 Attribute
	19.2.6 Relationship and Role

	19.3 OWL to ER Mapping
	19.3.1 OWL to ER Mapping Summary
	19.3.2 RDFSResource
	19.3.3 OWLOntology
	19.3.4 OWLClass
	19.3.5 OWLRestriction
	19.3.6 OWLDatatypeProperty
	19.3.7 OWLObjectProperty
	19.3.8 OWLDataRange

	19.4 ER Abstract Syntax
	19.5 ODM OWL Abstract Syntax

	20 Mapping Topic Maps to OWL
	20.1 Overview
	20.2 Topic Maps to OWL Full Mapping
	20.2.1 Overview
	20.2.2 Basic Constructs
	20.2.3 Property Restriction Patterns
	20.2.4 Type Hierarchy Pattern
	20.2.5 Naming Patterns
	20.2.6 Instance Patterns

	20.3 OWL to Topic Maps Mapping
	20.3.1 Overview
	20.3.2 Basic Constructs
	20.3.3 Class Hierarchy
	20.3.4 Labels
	20.3.5 Instances
	20.3.6 Example

	21 Mapping RDFS and OWL to CL
	21.1 Overview
	21.2 RDFS to CL Mapping
	21.2.1 RDF Triples
	21.2.2 RDF Literals
	21.2.3 RDF URIs and Graphs
	21.2.4 RDF Lists
	21.2.5 RDF Schema
	21.2.6 RDFS Semantics

	21.3 OWL to CL Mapping

	22 References (non-normative)
	A Foundation Ontology (M1) for RDFS and OWL
	B A Description Logic Metamodel
	B.1 Introduction
	B.2 Containers
	B.2.1 TBox
	B.2.2 ABox

	B.3 Concepts and Roles
	B.3.1 Element
	B.3.2 Concept
	B.3.3 Instance
	B.3.4 Role
	B.3.5 Individual
	B.3.6 Assertion

	B.4 Datatypes
	B.4.1 Datatype
	B.4.2 Literal

	B.5 Collections
	B.5.1 Collection
	B.5.2 List
	B.5.3 Set
	B.5.4 Extent

	B.6 Expressions and Constructors
	B.6.1 Term
	B.6.2 Expression
	B.6.3 Constructor
	B.6.4 Intersection
	B.6.5 Negation
	B.6.6 Union
	B.6.7 Quantifier
	B.6.8 ForAll
	B.6.9 Existential
	B.6.10 NumberRestriction
	B.6.11 Definition
	B.6.12 Implication
	B.6.13 Inclusion

	B.7 Examples
	B.7.1 Example One
	B.7.2 Example Two

	B.8 Overview Diagram

	C Extending the ODM
	C.1 Extendibility
	C.2 Metaclass Taxonomy
	C.3 Models of General Kinds of Application Domains
	C.4 N-ary Associations

	D Open Issues
	E Mappings - Informative, Not Normative

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

