
Currently, WS-Choreography (WS-CDL) defines an <import> element that imports a
choreography at the package level that overwrites the existing choreography. Import notes
Import definitions occur at the <package> level. The semantics:
• Allow the association of other namespaces in an imported definition.
• Necessitate that all choreographies in the package share the same token type, channel and

participant-role characteristics.
• Evaluate imports in the order they occur.
• Requires the import definition must be used if specified.

The import definitions should support WSDL, schema and BPEL types. The current (27 April
2004) schema fragment is:

................
<package
name="ncname"
author="xsd:string"?
version="xsd:string"
targetNamespace="uri"
xmlns="http://www.w3.org/2004/04/ws-chor/cdl">
importDefinitions*
informationType*
token*
tokenLocator*
role*
relationship*
participant*
channelType*
Choreography-Notation*
</package>..................

..........
<importDefinitions>
<import namespace="uri" location="uri"/>+
</importDefinitions>.......

The assumption with <import> was it would be compatible with or support WSDL, XML and BPEL.
The following issues have been raised about the <import> functionality with partial
recommendations or questions to the working group:

Issue # Description Comments
Issue 469 Names and
Namespaces

The semantics are associated to
bringing in names from namespaces
different that the current one. It can
never replace existing names.

Consider use of
substitution.

Issue 484: Top level
import only

Import statements need to apply
potentially other points within the
choreography apart from the top level.

Defer to a later version.
This could have
substantive impact on other
CDL structures. Need to
evaluate against
compatibility constraints as
well (with BPEL for
example).

Issue # Description Comments
Issue 485: Overriding How are definitions overridden? Substitution

Need more information to
evaluate further.

Are type and name
sufficient to allow the
import to occur? Why is
import used rather than
substitution?

Issue 561: Collisions,
Perform

1. How are collisions handled?

2. Are the variables, types, tokens
etc. required to be consistent between
the choreography and the interaction?

3. (editorial) Make it explicit the
choreography depends on message
exchange only.

4. Complex conditions could apply that
are not held in the choreography that
affect import.

1. Resolve with Issue 484.

2. Resolve with Issue 484.

3. Provide editorial
statement.

4. Allow implicit reference
to a semantic constraint via
the extensibility element.
Evaluate if explicit
reference made with Issue
484 resolution.

Issue 609: Rules outside
of the choreography

May be importing rules outside of the
choreography

Current function allows use
of the extensibility element
that could hold the
reference to a semantic
constraint (implicit
constraint).

Issue 611: Import
dependency on rules

What happens when a composed
choreography has dependencies
outside of itself and it is imported?

Place a constraint on the
imported choreography.
Evaluate if this is handled
as an implementation or
tools issue, with
implementer's note in the
specification. Also relates
to Issue 484 resolution.

Issue 687: Import vs.
perform

Need to clearly differentiate the two. Editors to clarify that a
performed choreography
declared outside of the
package must be imported
first.

Recommendations:
Near-term capabilities:
• Consider adding a type attribute to remain consistent with recent changes in WS-BPEL.
• Consider, for example, if we have a transaction mapping, we may have other mappings such

as references that place constraints on the import, perform, transactions, etc. Therefore,
do we allow these seeming contexts to be handled separately or allow another explicit generic
element to do so or use the extensibility element (tExtensibleElements) [implicit]?

• If the latter, recommend we re-evaluate the constraint on this extensibility element: "Extensions
MUST NOT change the semantics of any element or attribute from the WS-CDL namespace."
For example, the current import semantics state that the inclusion of an imported
choreography overwrites what exists, including parameters. Business process constraints (i.e.
business semantics) may dictate that the parameters on the choreography that the time-to-

complete is 1 day rather than the existing choreography that specifies 2 days duration (due to
performance contractual responsibility).

• In the specification, indicate that an imported or performed choreography (that is imported
first), must not carry its own dependencies that could affect the choreography to which it is
imported.

Future capabilities:
• Consider allowing import only at the interaction level. Note, suggest this be addressed in a later

version once more research is conducted. May have implications to error handling,
dependencies, etc. If interaction level import is allowed, need to ensure consistency in import
to variables, types and tokens at the level of the import (i.e. Schema, WSDL or BPEL).
Determine if this creates a potential conflict with BPEL support, that limits import to the
process level only.

• Consider what impact a semantic constraint has on a required import definition. For example, if
a time-to-complete on a choreography is 2 days and the imported definition indicates 3 days, a
business semantic constraint may either: (a) not allow the import to occur or (b) allow the 2-
day time-to-complete to be maintained.

Editorial:
• Explicitly indicate that import is limited to message exchange view and does not include

semantical constraints that may influence it although it may reference higher-level constructs
that define those semantic constraints.

• Isolation dirty-write allows immediate overwriting from other choreographies. Need to specify
that this applies to import and performed choreographies. If so, and an implicit or explicit
reference is used (see recommendations above), then indicate dirty-write may not be allowed
(constraint applies).

Schema changes for near-term recommendation capabilities only:

<importDefinitions>
<import namespace="uri" location="uri" importType="uri" />+
</importDefinitions>.......

Note: No change for extensibility for a semantic reference if that reference is
implicit. The explicit case is not modeled because not enough is understood about
the impacts in doing so.

