May 8th, 2008

i wear my sunglasses at night

Of all the photographs that our robot emissaries have radioed back to Earth, my vote for the most stunning is the Hubble ACS image of the “Sombrero Galaxy”, M104. The glow of its halo makes the the idea of 100 billion stars seem comprehensible.

HST ACS mosaic of M104

It’s important to remember, however, that the Hubble image is actually a long CCD time-exposure to light gathered by a 240 cm mirror. If you could be somehow transported to a location in space where M104 looms large in the sky, you would see that HST imparts a severely inflated expectation. From a distance, say, of 300,000 light years, M104 would be so dim that you would see only a faintly ominous, faintly glowing flying saucer.

Approximate naked-eye view of M104 from ~300,000 light years distance

Indeed, the great Andromeda Galaxy, M31, subtends an angle larger than the full Moon in the sky, and it is literally almost directly overhead right now (9:36 PM, Dec 3, latitude 36.97 deg N). The storms from earlier this week have blown through. The sky sparkles with brilliant clarity. Yet when I step outside and look up, I can’t see the Andromeda Galaxy at all. It’s too faint. In a 1:10,000,000,000,000 scale model of M31, the stars are like fine grains of sand separated by miles. Our Galaxy, the Andromeda Galaxy, and the Sombrero Galaxy are all essentially just empty space. To zeroth, to first, to second approximation, a galaxy is nothing at all.

A Hot Jupiter, on the other hand, seen at similar angular size, is undeniably impressive.

HD 149026 b in the crescent phase

The dayside, blindingly illuminated by the scorching proximity of the star, is roughly 500 times brighter than desert sand dunes on a midsummer day. In order to look at the illuminated side of the planet at all, you need extremely dark wraparound sunglasses, or better yet, an eyeshield made from #10 welders glass (where #14 welder’s glass is recommended for those who stare at the sun).

With the brilliance of the dayside cut to a manageable level, what would you see? The majority of the light coming from the planet is simply reflected starlight. If the planet uniformly reflects the light that strikes it, then you simply see a blank white surface if the parent star is similar to the Sun, and a yellow-orange to orange-red expanse if the parent star is a cooler K-type or M-type dwarf star.

The gases that make up the outer layers of the planet do not reflect all frequencies of light equally, however. The air of the outer layers of a hot Jupiter is a scaldingly toxic witches brew of hydrogen, helium, steam, methane, ammonia, cyanide, acetylene, hydrogen sulfide, soot, and a whole host of other hardy, reactive, and generally unpleasant compounds.

In our solar system, for example, Uranus and Neptune have distinctive blue-green casts because at the level in their atmospheres where light is primarily reflected, the ambient methane gas is highly effective at absorbing red frequencies. The originally white sunlight is reflected with a blue-green hue by the selective removal of red.

Uranus and Neptune (from Voyager II)

The photo (mosaic) below was obtained by the Cassini spacecraft as it was flung past Jupiter on its way to Saturn. The images were processed to give the same view that the naked eye would see. Jupiter reflects an enormous amount of detail from its cloudy face.

True-color Cassini mosaic of Jupiter

Across the swathes of Jupiter where the visible clouds tower to great heights, the eye sees regions that are frigid, eighty degrees colder than the depths of an Antarctic winter (-200 F). In such a cold environment, icy compounds of Ammonia are stable, and their presence lends the clouds a reddish hue. Jupiter’s Great Red Spot is an example of just such a topographic high.

On other regions of Jupiter’s visible surface, the atmosphere is transparent to greater depths. As on Earth, where clear skies are associated with dry air, so too on Jupiter. When we look down into the drier Jovian regions, we see to lower lying decks of cloud where the temperature is about the same as a chilly Arctic night. Here, the chemistry in the clouds causes their color to tend toward lighter shades, whites, beiges, ochers.

Like any non-transparent object, Jupiter glows with its own radiation. Because the outer layers of Jupiter are so cold, this intrinsic light lies in the infrared. Seen with an infrared detector (such as this view made at 5 microns with the NASA IRTF) Jupiter is a dramatic sight.

IRTF 5 micron image of Jupiter

In the rattlesnakes-eye view, the Red Spot forms an oval of relative darkness. The high clouds act like a blanket that blocks the warmer underlying layers from view. In the infrared, the dry areas, where we see the deepest, glow the brightest. In an ironic twist of fate, the Galileo atmospheric probe parachuted into one of the driest regions of the Jovian atmosphere, a so-called 5 micron hot spot (circled in the image above).

On a hot Jupiter, the surface gas is heated to temperatures in the 1000-1500 K range on the dayside. Computer simulations show that winds of hellacious strength tear continually around the planet, carrying heat from the dayside and disgorging it into the night. The atmosphere on nightside glows brilliantly. Turbulent brick-red whorls merge into fiery tendrils of orange braided with dazzling white.

8 Responses to 'i wear my sunglasses at night'

  1. 1systemic - Agglomeration
    April 26th, 2006 at 6:25 am

    […] [A continuation of posts 1, 2, 3, and 4 on the formation of Jovian planets.] […]


  2. 2systemic - Oligarchic Growth
    April 30th, 2006 at 7:34 am

    […] [A continuation of posts 1, 2, 3, 4 and 5 on the formation of Jovian planets.] […]


  3. 3systemic - G.I. No
    May 2nd, 2006 at 2:31 am

    […] To be fair, there are also some thorny problems associated with core-accretion. In the next few posts of the giant planet formation series [1, 2, 3, 4 and 5] that we’ve been running, I’ll describe these in more detail. […]


  4. 4systemic - Shallow Water
    June 17th, 2006 at 8:58 pm

    […] I like the Winn-Holman hypothesis because it’s potentially testable. If the planet is in Cassini state 2, then the pattern of illumination on the surface, and hence the time-dependant global infrared signature, will be very different than if it is locked into the standard upright configuration. In the standard scenario, a hot Jupiter has a fixed substellar point on its equator that does not wander significantly as the planet executes its orbit. One hemisphere of the planet is in perpetual day, while the other hemisphere experiences an endless night. Hydrodynamic calculations by James Cho and his collaborators (link), and by Adam Showman and his students (link), suggest that hot Jupiters should have a single strong equatorial jet that advects heat from the hot dayside to the cool night side. The oklo splash image has been adapted from Cho’s calculations, and shows this jet in action (see this post for more discussion). […]


  5. 5Centauri Dreams » Blog Archive » Unveiling the Large Magellanic Cloud
    November 2nd, 2006 at 7:37 pm

    […] Centauri Dreams‘ note: Speaking of celestial views, as we have recently in these pages, I used to marvel at what an optical view of our Milky Way must be like from the LMC (although further study shows it might not be as spectacular as I had once imagined). Galaxies are, in fact, rather hard to see, as planet-hunter Greg Laughlin (UC-Santa Cruz) once pointed out: Indeed, the great Andromeda Galaxy, M31, subtends an angle larger than the full Moon in the sky, and it is literally almost directly overhead right now (9:36 PM, Dec 3, latitude 36.97 deg N). The storms from earlier this week have blown through. The sky sparkles with brilliant clarity. Yet when I step outside and look up, I can’t see the Andromeda Galaxy at all. It’s too faint. In a 1:10,000,000,000,000 scale model of M31, the stars are like fine grains of sand separated by miles. Our Galaxy, the Andromeda Galaxy, and the Sombrero Galaxy are all essentially just empty space. To zeroth, to first, to second approximation, a galaxy is nothing at all. […]


  6. 6systemic - Lonely Planet Guide to the Hyades
    February 9th, 2007 at 7:23 am

    […] For more information, this series: 1, 2, 3, 4 and 5, 6, and 7. of oklo posts that compare and contrast the gravitational instability and core accretion theories for giant planet formation. […]


  7. 7systemic - Armchair Planet Hunting
    May 31st, 2007 at 4:59 am

    […] There are several ways that you can use and participate in systemic. Our project home page is a weblog (updated fairly frequently) that gives an insider’s perspective on the latest developments and discoveries in the fast-moving fields of extrasolar planets and solar-system exploration. We write for a target audience of non-astronomers who are interested in astronomy. To get a flavor for the blog, keep reading the posts below, or have a look at a few of our past articles, such as our take on last Summer’s big “is Pluto a planet debate”, our exploration of what planets and galaxies really look like, or our series [1, 2, 3, 4] on the feasibility of detecting habitable terrestrial planets in the Alpha Centauri System. […]


  8. 8Centauri Dreams » Blog Archive » Star Formation in the Hinterlands
    April 18th, 2008 at 5:52 pm

    […] So what would you see if you were actually viewing M83 from the viewport of an intergalactic spaceship? Greg Laughlin wrote up this question a few years back with regard to the Sombrero Galaxy, M104, noting that if you could somehow place yourself 300,000 light years from it, your human eyes would see a galaxy so dim that it would appear only as a faint, glowing patch. For that matter, try to see M31, the Andromeda Galaxy, subtending an angle larger than the full Moon in the sky, and you’ll see precisely nothing there. Laughlin describes this key fact: The storms from earlier this week have blown through. The sky sparkles with brilliant clarity. Yet when I step outside and look up, I can’t see the Andromeda Galaxy at all. It’s too faint. In a 1:10,000,000,000,000 scale model of M31, the stars are like fine grains of sand separated by miles. Our Galaxy, the Andromeda Galaxy, and the Sombrero Galaxy are all essentially just empty space. To zeroth, to first, to second approximation, a galaxy is nothing at all. […]


Leave a Response

Imhotep theme designed by Chris Lin. Powered by Wordpress.
Console | RSS | Comments RSS