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ABSTRACT 
The XQuery formalization is an ongoing effort of the W3C 
XML Query working group to define a precise formal 
semantics for XQuery. This paper briefly introduces the 
current state of the formalization and discusses some of the 
more demanding remaining challenges in formally 
describing an expressive query language for XML. 
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1. INTRODUCTION 
XML has become the widely adopted standard to represent 
semi-structured data. Building on the wealth of approaches 
to querying semi-structured data [1], the W3C XML Query 
Working Group has started in September 99 to design a 
standardized query language for XML, now coined XQuery 
[2]. Part of this effort is the XQuery Formal Semantics 
document [4]. This document sets out XQuery Core as  a 
relatively small but fully expressive sub language of XQuery 
[3], and provides a static semantics by means of type 
inference rules and a dynamic semantics by means of value 
inference rules, which map expressions of the core language 
to simple operations on the XQuery Data Model [6]. In 
addition, it defines a mapping of XQuery to the core 
language and thus a precise dynamic and static semantics 
for the complete language. 

This paper briefly introduces the overall approach of 
XQuery Core, the underlying processing model, and its 
relationship to XQuery. It then discusses some of the more 

demanding remaining challenges for querying XML.  

2. XQUERY CORE 
2.1 Overall Approach 
XQuery Core is a functional language based on the algebra 
for XML Query introduced in [8,7]. Since its initial release, it 
has been syntactically adapted to XQuery and better 
aligned with the XML family of standards. Furthermore, it 
has been extended with some additional features such as 
support for unordered sequences and more precisely typed 
recursive navigation. 

Four main design principles have guided its design: 

Closure: Both input and output of a query expression are 
fragments of XML documents, which are represented as 
sequences of nodes and/or values in the XQuery Data 
Model. This has some subtle consequences. Because the 
primary structure of XML is a tree, elements may not have 
multiple parents and need to be copied to become children 
of a constructed result element. Furthermore, node 
sequences cannot be nested, because XML only supports 
nesting via explicit markup. 

Compositionality: Operators can be arbitrarily composed 
both semantically and syntactically. There are no side 
effects; all operators are exclusively defined by their input 
and output. For example, there exists no primitive operator 
that hides edges or paths of an input tree, because the input 
and output of such an operator cannot be described in 
terms of node sequences. 

Correctness: XQuery Core is a statically typed language, 
which supports both, inferring an output schema from a 
query and its input schema, and statically checking the 
output type of a query against a given output schema. 
XQuery Core is also rather rigid with respect to types. It 
does not perform any implicit coercions or iterations, which 
are heavily used in XPath 1.0, the now widely adopted 
filtering and addressing language for XML. In XQuery Core 
it is a static error to compare an element node with a value, 
or to apply an operator that expects a single node to a node 
sequence. This rigidity keeps the formal specification of 
static and dynamic semantics at a manageable size, and 
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provides a framework for static optimizations, such as 
avoiding costly iteration when not necessary. However, as 
exemplified in Section 2.3, convenience features of the 
XQuery surface language and its sub-language XPath, e.g., 
implicit existential quantification of predicates, can be 
realized by appropriate mappings to XQuery Core. 

Completeness: XQuery Core supports the equivalent of 
selection, projection, and set operators, and thus is 
arguably relationally complete. Furthermore, for every 
constructor (element, attribute, and sequence) there exists 
some form of deconstruction. Together this allows 
expressing all query classes that have been identified in 
Dave Maier’s database desiderata for querying XML [13] 
and in the functional requirements of the XML Query 
Working Group [3]. Completeness is certainly a mixed 
blessing for a query language. In particular, XQuery Core 
also supports user defined recursive functions, which are 
difficult to optimize and to type generically. Nevertheless, 
specific recursive functions, such as the widely used 
recursive XPath-axis descendants-or-self, are 
supported as a built-in function with specific type rules.  

2.2 XQuery Processing Model 
The three main constituents of the XQuery formalization are 
static semantics, dynamic semantics, and a mapping 
between XQuery and XQuery Core. In this section, their 
role for XQuery is described along the (slightly idealized) 
processing model in Figure 1.  
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Figure 1: XQuery Processing Model 

Query processing involves four steps; the XQuery 
formalization is mainly concerned about the second and the 
third step. 

Parse checks the query, schema, and document 
syntactically, and generates an operator tree, a type tree, 
and an instance of the query data model. The type tree may 
be represented by means of the component model of XML 
Schema [14]; the data model instance may be implemented 
by means of an augmented DOM (Document Object Model) 
or some (object-) relational instance. 

Compile validates the data model instance against the input 
schema and annotates it with type information. Furthermore, 
using the mapping rules  it translates the operator tree to an 
operator tree of XQuery Core. As exemplified in Section 2.3, 
input type information may be used to simplify the resulting 
operator tree. The static semantics describes how the 
output type is inferred from the core operator tree and the 
input type. 
Of course an actual implementation will not necessarily use 
the core operator tree for evaluation, but further optimize it 
using standard relational optimization techniques. 
Furthermore, e.g. for path expressions, it will not use 
XQuery Core at all, but translate them directly from XQuery 
to specialized operators. 

Evaluate processes the query by using the accessors and 
constructors defined in the XQuery Data Model, and 
produces a typed output instance. This is described by the 
dynamic semantics . Of course this is also a massive 
idealization; any actual implementation will recur to the 
operators and data structures of an efficient physical 
algebra instead. But also there, the idealized mapping 
described by the dynamic semantics can provide a guideline 
to implement more complex mappings to a physical algebra. 

Finally, Serialize generates an XML document or fragment 
from the output instance, and an output schema from the 
output type tree. 

2.3 XQuery vs. XQuery Core  
The documents of the XML Query Working Group [1,3,4] 
introduce numerous example queries, which cannot be 
reasonably sampled with the given space limitations.  Thus, 
a different track is pursued here: A simple join query 
expressed in XQuery’s surface syntax is mapped step by 
step to XQuery Core, emphasizing the role of XQuery 
Core’s type system.  

Here are two simple elements. The type of the first element, 
<bib>, which is declared after “:”, describes a sequence of  
<book>s, consisting of an attribute year, exactly one 
<title>, and one or more <author>s. 

<bib> 
 <book year="1999"> 
   <title>Data on the Web</title> 
   <author>Abiteboul</author> 
   <author>Buneman</author> 



   <author>Suciu</author> 
  </book> 
  <book> 
   <book year="2001"> 
   <title>XML Query</title> 
   <author>Fernandez</title> 
   <author>Suciu</title> 
  </book> 
</bib>: 
ELEMENT bib { 
 ELEMENT book { 
  ATTRIBUTE year {Integer}, 
  ELEMENT title {String}, 
  ELEMENT author {String}+ 
 }*} 

The type of the second element, <reviews>, describes a 
sequence of <book>s containing exactly one <title> 
and exactly one <review>.  

<reviews> 
 <book> 
   <title>XML Query</title> 
   <review>A darn fine book</review> 
 </book> 
 <book> 
 <book> 
  <title>Data on the Web</title> 
  <review>This is great!</review> 
 </book> 
</reviews>: 
ELEMENT reviews { 
 ELEMENT book { 
  ELEMENT title {string}, 
  ELEMENT review {string} 
 }*} 

With $bib0  bound to <bib> and $rev0 bound to 
<reviews> the following XQuery expression joins 
<book>s with <review>s and returns <book>s with 
their <title>, <author>s and <review>.  

FOR $b IN $bib0/book, $r IN $rev0/book 
WHERE $b/title = $r/title 
RETURN 
 <book> 
  {$b/title, $b/author, $r/review} 
 </book> 
=> 
<book> 
 <title>Data on the Web</title> 
 <author>Abiteboul</author> 
 <author>Buneman</author> 
 <author>Suciu</author> 
 <review>A darn fine book</review> 

<book> 
<book> 
 <title>XML Query</title> 
 <author>Fernandez</author> 
 <author>Suciu</author> 
 <review>This is great!</review> 
</book>:  
ELEMENT book { 
 ELEMENT title {string}, 
 ELEMENT author {string}+, 
 ELEMENT review {string} 
 }* 

The inferred result type tells us that there are zero or more 
<book>s, each with exactly one <title>, one or more 
<author>s, and exactly one <review>. 

This simple query translates to a quite complex expression 
in XQuery Core. First, consider the translation of the path 
expression $bib0/book , denoted by 
[[$bib0/book]] . 

FOR $v1 IN $bib0 RETURN 
 FOR $v2 IN NODES($v1) RETURN 
  TYPESWITCH ($v2) AS $v3 
   CASE ELEMENT book {ANYTYPE} 
           RETURN $v3 
   DEFAULT RETURN () 

XQuery Core does not directly support path expressions of 
the form $v/name1/…/namen. Instead, each 
$bib0/book  is translated into a nested for-loop. This 
loop first iterates over all nodes $v1 in $bib0, then over 
all attribute and child nodes $v2 in $v1 to match their 
type against the type ELEMENT book {AnyType}. 
This is expressed by the TYPESWITCH operator, which 
returns the node in $v2 if its dynamic type is subsumed by 
the type declared in the CASE s tatement, and returns the 
empty list “()” otherwise. With the given input type of  
$bib0, however, this complex expression can be 
significantly simplified statically using standard 
techniques: First, $bib0  is known to contain only one 
<bib>-element, therefo re the outer for-loop can be 
discarded. This leads to: 

FOR $v2 IN NODES($bib0) RETURN (…)   

Second, $bib0 is known to only contain <book>-
elements, thus the DEFAULT-case in TYPESWITCH can be 
discarded as well. Because only one CASE remains, the 
entire TYPESWITCH can be simplified, leading to 

FOR $v2 IN NODES($bib0) RETURN $v2 

which in turn simplifies to NODES($bib0) . Similarly, with 
the given input type $rev0/book translates to 
NODES($rev0). 



From XPath 1.0, XQuery inherits the implicit existential 
quantification of predicates. For example, the simple 
comparison $b/title = $r/title evaluates to true 
if there exists some title in $b whose content is equal to the 
content of some title in $r. Consequently, the comparison 
translates to a rather baroque expression, where 
[[$b/title]] is translated along the lines described 
above. 

 
NOT(EMPTY( 
     FOR $v1 IN [[$b/title]] RETURN 
     FOR $v2 IN [[$r/review]] RETURN 
       IF EQ($v1,$v2) THEN $v1 ELSE ())) 

Because one can statically determine that each $b and each 
$r has exactly one <title>-element, the existential 
quantification can be removed, leading to:  

NOT(EMPTY( 
  IF EQ([[$b/title]],[[$r/review]]) 
  THEN [[$b/title]] ELSE ()) 

This can be further simplified to: 

EQ([[$b/title]], [[$r/review]]) 

Finally, the FOR-clause which binds both $b and $r needs 
to be translated into a nested loop, binding first $b and 
then $r, and the WHERE-clause needs to be translated into 
an IF-THEN-ELSE expression. Together this leads to the 
final translation: 

 
FOR $b IN NODES($bib0) RETURN 
FOR $r IN NODES($review0) RETURN 
IF (EQ[[$b/title]], [[$r/review]]) THEN 
ELEMENT book { 
  [[$b/title, $b/author, $r/review]]} 

Both, the translation of XQuery to XQuery Core, and the 
type inference discussed above heavily use the given input 
schema. However, XQuery Core does not require an input 
schema; it can also deal with well-formed documents, which 
are typed with AnyType. In this case, the translated 
XQuery Core expression cannot be simplified, and the 
inferred type would be as follows: 
 
ELEMENT book { 
 ELEMENT title {AnyType}*, 
 ELEMENT author {AnyType}*, 
 ELEMENT review {AnyType}* 
 }*  

This type is still more specific than AnyType; it guarantees 
that the result consists of nothing but <book>s, which 
contain nothing but a sequence of <title>, <author>, 
and <review> elements.   

3. CHALLENGES 
Since their first release, XQuery and XQuery Core have 
converged and matured. First implementations have been 
presented at XML DevCon 2001 Spring in April 2001. A lot 
of the current work is devoted to polishing the designs at 
hand and to fully aligning XQuery with the existing family 
of XML standards. Apart from these rather tedious tasks, 
there also exist some challenges that probably go beyond 
what a standardization committee can and should achieve, 
at least for Version 1. Support for updates is a very obvious 
challenge, but discussing their implication goes beyond the 
scope of this paper. Here is a highly subjective and 
certainly not exhaustive selection of some other, maybe not 
so obvious challenges. 

3.1 Expression Level 
While XQuery and XQuery Core are good at selecting and 
recombining portions of documents, queries that introduce 
nesting structure on a flat node sequence are not that easy 
to express: 

One such class of queries are group-by queries that 
partition a flat set, typically the 1:1 XML representation of a 
flat relational table, into a set of equivalence classes, 
typically a nested XML document. Such queries can be 
expressed by nested queries. However, arbitrary nested 
queries are difficult to optimize; they often require more 
than one pass through the document, whereas explicit 
group-by queries can be processed in one pass. An early 
version of XQuery Core contained an explicit group-by 
operator; other approaches are being discussed. 

A similar, more challenging class of queries are queries that 
segment a flat sequence according to some pattern, 
typically a combination of a regular expression with some 
additional predicates. Such queries are important for 
linguistic applications, where the patterns describe, e.g., 
some phrase structure to be matched in a flat sequence of 
tokens, in bio-informatics, where patterns may describe 
subsequences of, e.g., genetic sequences, but also for 
extracting structure from semi structured sources. An early 
version of XQuery Core had included regular expression 
comprehension as a possible basis for such query classes, 
other promising approaches are described in [11,12].  

Another rather blind spot of XQuery (Core) is ranked 
information retrieval. Conventional full-text predicates 
includin g proximity operators can be supported via user-
defined functions. But queries that need to combine 
rankings obtained from structural similarity and content-
related similarity cannot be expressed generically. Some 
initial approaches to add information retrieval capabilities to 
query languages for XML can be found in [15, 9].  



3.2 Type Level 
Inspired by the type system of XDuce [10], XQuery Core’s 
type system has succeeded in transferring much of the 
state-of-the art of typing functional programming languages 
to the regular tree types underlying XML-DTDs and XML-
Schema. A few, rather subtle technical challenges remain: 

The first one is very much an implementation problem: For 
static type checking, XQuery Core’s type system needs to 
determine whether an inferred type T1 is a subtype of a 
given type T2, i.e., whether T2 accepts a superset of the 
instances T1 accepts. If the given type T2 is an arbitrary 
regular tree (or forest) this is exponential. However, if the 
given type adheres to the 1-unambiguity constraint 
imposed by XML-DTDs and XML-Schema, there exists an 
efficient polynomial algorithm to decide about subtyping 
[12]. It therefore may be prudent to impose XML-Schema’s 
1-unambiguity constraint on explicitly declared types. 

The second challenge arises from the rather rich subtyping 
mechanisms supported by XML-Schema. XML-Schema 
allows deriving a type T1 from another type T2 by extending 
T2 with arbitrary elements, including elements that are 
already in T2. This makes it difficult to view an instance of 
T1 as an instance of T2, which should hide all additional 
elements of T2. 

The third challenge comes from typing parameter 
polymorphic, recursive functions.  XQuery Core requires 
that the input- and output type of a function is declared 
explicitly. For polymorphic functions that accept any well-
formed document, the most specific output-type that can be 
declared explicitly is often AnyType . For such functions it 
would be useful to infer a more specific output type from 
the concrete type of their actual parameter. For general 
recursive functions this is difficult, but there may exist 
function classes, such as some forms of structural 
recursion, for which a generic approach can be 
accomplished.        

3.3 Non Issues 
Some of the qualms that have been raised with regard to 
XQuery Core do not really qualify as genuine challenges. 

One qualm is that due to its strong reliance on static typing 
XQuery Core cannot deal with irregularly structured, well-
formed documents. This is not the case. XML Query Core’s 
type system consistently supports AnyType as an upper 
bound, and thus certainly does not require the existence of 
a DTD or a Schema. 

Another qualm is that inferred types do not adhere to all the 
constraints of XML-Schema, such as 1-unambiguity or the 
consistent element restriction, which requires that any 
element has exactly one content-model in a particular 
context. While certainly useful and appropriate for efficient 

parsing and subtyping, these constraints destroy closure of 
the type system, and thus can not be reasonably obeyed for 
the inferred type of a query that selects and recombines 
arbitrary portions of a document. However, for every 
inferred type a possibly more general valid XML-Schema 
can be given by means of an explicit type declaration. 

Finally, XQuery Core is sometimes questioned as a basis for 
query optimization. This is only partially true. Much of the 
traditional relational optimization of logical query plans, 
such as shuffling joins on unordered sequences or pushing 
down selections, can be expressed within the fra mework of 
XQuery Core. However, indeed some of the useful 
optimization techniques for querying XML, such as 
deploying special index structures for path expressions do 
require specialized physical operators, which can be more 
easily generated from XQuery directly rather than via 
XQuery Core.   

4. CONCLUSIONS 
From its rather concise beginnings, the XQuery Formal 
Semantics document has grown into something quite big. 
This is probably the fate of any research result meeting 
standardization. However, its core constituents, static 
semantics, dynamic semantics and mapping from XQuery to 
XQuery core, have remained remarkably stable, and have 
certainly helped in polishing the design of XQuery (a bi-
directional process), and in specifying a strong type system 
for XQuery. This paper has tried to illustrate that the role of 
the XQuery formalization goes beyond just an academic 
exercise. All its constituents can be used rather directly to 
arrive at interoperable and efficient implementations of 
XQuery. In addition, they can provide a framework to 
investigate some of the more taunting challenges ahead.   
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