
XQuery Formal Semantics
State and Challenges

Peter Fankhauser
Integrated Publication and Information Systems Institute

Dolivostraße 15
D-64293 Darmstadt, Germany

fankhaus@darmstadt.gmd.de

ABSTRACT
The XQuery formalization is an ongoing effort of the W3C
XML Query working group to define a precise formal
semantics for XQuery. This paper briefly introduces the
current state of the formalization and discusses some of the
more demanding remaining challenges in formally
describing an expressive query language for XML.

General Terms
Standardization, Languages

Keywords
XML, databases, query languages, formal semantics

1. INTRODUCTION
XML has become the widely adopted standard to represent
semi-structured data. Building on the wealth of approaches
to querying semi-structured data [1], the W3C XML Query
Working Group has started in September 99 to design a
standardized query language for XML, now coined XQuery
[2]. Part of this effort is the XQuery Formal Semantics
document [4]. This document sets out XQuery Core as a
relatively small but fully expressive sub language of XQuery
[3], and provides a static semantics by means of type
inference rules and a dynamic semantics by means of value
inference rules, which map expressions of the core language
to simple operations on the XQuery Data Model [6]. In
addition, it defines a mapping of XQuery to the core
language and thus a precise dynamic and static semantics
for the complete language.

This paper briefly introduces the overall approach of
XQuery Core, the underlying processing model, and its
relationship to XQuery. It then discusses some of the more

demanding remaining challenges for querying XML.

2. XQUERY CORE
2.1 Overall Approach
XQuery Core is a functional language based on the algebra
for XML Query introduced in [8,7]. Since its initial release, it
has been syntactically adapted to XQuery and better
aligned with the XML family of standards. Furthermore, it
has been extended with some additional features such as
support for unordered sequences and more precisely typed
recursive navigation.

Four main design principles have guided its design:

Closure: Both input and output of a query expression are
fragments of XML documents, which are represented as
sequences of nodes and/or values in the XQuery Data
Model. This has some subtle consequences. Because the
primary structure of XML is a tree, elements may not have
multiple parents and need to be copied to become children
of a constructed result element. Furthermore, node
sequences cannot be nested, because XML only supports
nesting via explicit markup.

Compositionality: Operators can be arbitrarily composed
both semantically and syntactically. There are no side
effects; all operators are exclusively defined by their input
and output. For example, there exists no primitive operator
that hides edges or paths of an input tree, because the input
and output of such an operator cannot be described in
terms of node sequences.

Correctness: XQuery Core is a statically typed language,
which supports both, inferring an output schema from a
query and its input schema, and statically checking the
output type of a query against a given output schema.
XQuery Core is also rather rigid with respect to types. It
does not perform any implicit coercions or iterations, which
are heavily used in XPath 1.0, the now widely adopted
filtering and addressing language for XML. In XQuery Core
it is a static error to compare an element node with a value,
or to apply an operator that expects a single node to a node
sequence. This rigidity keeps the formal specification of
static and dynamic semantics at a manageable size, and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
Copyright 2001 ACM 1-58113-000-0/00/0000…

provides a framework for static optimizations, such as
avoiding costly iteration when not necessary. However, as
exemplified in Section 2.3, convenience features of the
XQuery surface language and its sub-language XPath, e.g.,
implicit existential quantification of predicates, can be
realized by appropriate mappings to XQuery Core.

Completeness: XQuery Core supports the equivalent of
selection, projection, and set operators, and thus is
arguably relationally complete. Furthermore, for every
constructor (element, attribute, and sequence) there exists
some form of deconstruction. Together this allows
expressing all query classes that have been identified in
Dave Maier’s database desiderata for querying XML [13]
and in the functional requirements of the XML Query
Working Group [3]. Completeness is certainly a mixed
blessing for a query language. In particular, XQuery Core
also supports user defined recursive functions, which are
difficult to optimize and to type generically. Nevertheless,
specific recursive functions, such as the widely used
recursive XPath-axis descendants-or-self, are
supported as a built-in function with specific type rules.

2.2 XQuery Processing Model
The three main constituents of the XQuery formalization are
static semantics, dynamic semantics, and a mapping
between XQuery and XQuery Core. In this section, their
role for XQuery is described along the (slightly idealized)
processing model in Figure 1.

Parse

Compile

Evaluate

input type
tree

output type
tree

query DM
instance

query DM
inst. + type

Serialize

operator
tree

query DM
accessors

core op
tree

output
document

output
instance

output
schema

input
schema

XQuery input
document

Figure 1: XQuery Processing Model

Query processing involves four steps; the XQuery
formalization is mainly concerned about the second and the
third step.

Parse checks the query, schema, and document
syntactically, and generates an operator tree, a type tree,
and an instance of the query data model. The type tree may
be represented by means of the component model of XML
Schema [14]; the data model instance may be implemented
by means of an augmented DOM (Document Object Model)
or some (object-) relational instance.

Compile validates the data model instance against the input
schema and annotates it with type information. Furthermore,
using the mapping rules it translates the operator tree to an
operator tree of XQuery Core. As exemplified in Section 2.3,
input type information may be used to simplify the resulting
operator tree. The static semantics describes how the
output type is inferred from the core operator tree and the
input type.
Of course an actual implementation will not necessarily use
the core operator tree for evaluation, but further optimize it
using standard relational optimization techniques.
Furthermore, e.g. for path expressions, it will not use
XQuery Core at all, but translate them directly from XQuery
to specialized operators.

Evaluate processes the query by using the accessors and
constructors defined in the XQuery Data Model, and
produces a typed output instance. This is described by the
dynamic semantics . Of course this is also a massive
idealization; any actual implementation will recur to the
operators and data structures of an efficient physical
algebra instead. But also there, the idealized mapping
described by the dynamic semantics can provide a guideline
to implement more complex mappings to a physical algebra.

Finally, Serialize generates an XML document or fragment
from the output instance, and an output schema from the
output type tree.

2.3 XQuery vs. XQuery Core
The documents of the XML Query Working Group [1,3,4]
introduce numerous example queries, which cannot be
reasonably sampled with the given space limitations. Thus,
a different track is pursued here: A simple join query
expressed in XQuery’s surface syntax is mapped step by
step to XQuery Core, emphasizing the role of XQuery
Core’s type system.

Here are two simple elements. The type of the first element,
<bib>, which is declared after “:”, describes a sequence of
<book>s, consisting of an attribute year, exactly one
<title>, and one or more <author>s.

<bib>
 <book year="1999">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>

 <author>Suciu</author>
 </book>
 <book>
 <book year="2001">
 <title>XML Query</title>
 <author>Fernandez</title>
 <author>Suciu</title>
 </book>
</bib>:
ELEMENT bib {
 ELEMENT book {
 ATTRIBUTE year {Integer},
 ELEMENT title {String},
 ELEMENT author {String}+
 }*}

The type of the second element, <reviews>, describes a
sequence of <book>s containing exactly one <title>
and exactly one <review>.

<reviews>
 <book>
 <title>XML Query</title>
 <review>A darn fine book</review>
 </book>
 <book>
 <book>
 <title>Data on the Web</title>
 <review>This is great!</review>
 </book>
</reviews>:
ELEMENT reviews {
 ELEMENT book {
 ELEMENT title {string},
 ELEMENT review {string}
 }*}

With $bib0 bound to <bib> and $rev0 bound to
<reviews> the following XQuery expression joins
<book>s with <review>s and returns <book>s with
their <title>, <author>s and <review>.

FOR $b IN $bib0/book, $r IN $rev0/book
WHERE $b/title = $r/title
RETURN
 <book>
 {$b/title, $b/author, $r/review}
 </book>
=>
<book>
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 <review>A darn fine book</review>

<book>
<book>
 <title>XML Query</title>
 <author>Fernandez</author>
 <author>Suciu</author>
 <review>This is great!</review>
</book>:
ELEMENT book {
 ELEMENT title {string},
 ELEMENT author {string}+,
 ELEMENT review {string}
 }*

The inferred result type tells us that there are zero or more
<book>s, each with exactly one <title>, one or more
<author>s, and exactly one <review>.

This simple query translates to a quite complex expression
in XQuery Core. First, consider the translation of the path
expression $bib0/book , denoted by
[[$bib0/book]] .

FOR $v1 IN $bib0 RETURN
 FOR $v2 IN NODES($v1) RETURN
 TYPESWITCH ($v2) AS $v3
 CASE ELEMENT book {ANYTYPE}
 RETURN $v3
 DEFAULT RETURN ()

XQuery Core does not directly support path expressions of
the form $v/name1/…/namen. Instead, each
$bib0/book is translated into a nested for-loop. This
loop first iterates over all nodes $v1 in $bib0, then over
all attribute and child nodes $v2 in $v1 to match their
type against the type ELEMENT book {AnyType}.
This is expressed by the TYPESWITCH operator, which
returns the node in $v2 if its dynamic type is subsumed by
the type declared in the CASE s tatement, and returns the
empty list “()” otherwise. With the given input type of
$bib0, however, this complex expression can be
significantly simplified statically using standard
techniques: First, $bib0 is known to contain only one
<bib>-element, therefo re the outer for-loop can be
discarded. This leads to:

FOR $v2 IN NODES($bib0) RETURN (…)

Second, $bib0 is known to only contain <book>-
elements, thus the DEFAULT-case in TYPESWITCH can be
discarded as well. Because only one CASE remains, the
entire TYPESWITCH can be simplified, leading to

FOR $v2 IN NODES($bib0) RETURN $v2

which in turn simplifies to NODES($bib0) . Similarly, with
the given input type $rev0/book translates to
NODES($rev0).

From XPath 1.0, XQuery inherits the implicit existential
quantification of predicates. For example, the simple
comparison $b/title = $r/title evaluates to true
if there exists some title in $b whose content is equal to the
content of some title in $r. Consequently, the comparison
translates to a rather baroque expression, where
[[$b/title]] is translated along the lines described
above.

NOT(EMPTY(
 FOR $v1 IN [[$b/title]] RETURN
 FOR $v2 IN [[$r/review]] RETURN
 IF EQ($v1,$v2) THEN $v1 ELSE ()))

Because one can statically determine that each $b and each
$r has exactly one <title>-element, the existential
quantification can be removed, leading to:

NOT(EMPTY(
 IF EQ([[$b/title]],[[$r/review]])
 THEN [[$b/title]] ELSE ())

This can be further simplified to:

EQ([[$b/title]], [[$r/review]])

Finally, the FOR-clause which binds both $b and $r needs
to be translated into a nested loop, binding first $b and
then $r, and the WHERE-clause needs to be translated into
an IF-THEN-ELSE expression. Together this leads to the
final translation:

FOR $b IN NODES($bib0) RETURN
FOR $r IN NODES($review0) RETURN
IF (EQ[[$b/title]], [[$r/review]]) THEN
ELEMENT book {
 [[$b/title, $b/author, $r/review]]}

Both, the translation of XQuery to XQuery Core, and the
type inference discussed above heavily use the given input
schema. However, XQuery Core does not require an input
schema; it can also deal with well-formed documents, which
are typed with AnyType. In this case, the translated
XQuery Core expression cannot be simplified, and the
inferred type would be as follows:

ELEMENT book {
 ELEMENT title {AnyType}*,
 ELEMENT author {AnyType}*,
 ELEMENT review {AnyType}*
 }*

This type is still more specific than AnyType; it guarantees
that the result consists of nothing but <book>s, which
contain nothing but a sequence of <title>, <author>,
and <review> elements.

3. CHALLENGES
Since their first release, XQuery and XQuery Core have
converged and matured. First implementations have been
presented at XML DevCon 2001 Spring in April 2001. A lot
of the current work is devoted to polishing the designs at
hand and to fully aligning XQuery with the existing family
of XML standards. Apart from these rather tedious tasks,
there also exist some challenges that probably go beyond
what a standardization committee can and should achieve,
at least for Version 1. Support for updates is a very obvious
challenge, but discussing their implication goes beyond the
scope of this paper. Here is a highly subjective and
certainly not exhaustive selection of some other, maybe not
so obvious challenges.

3.1 Expression Level
While XQuery and XQuery Core are good at selecting and
recombining portions of documents, queries that introduce
nesting structure on a flat node sequence are not that easy
to express:

One such class of queries are group-by queries that
partition a flat set, typically the 1:1 XML representation of a
flat relational table, into a set of equivalence classes,
typically a nested XML document. Such queries can be
expressed by nested queries. However, arbitrary nested
queries are difficult to optimize; they often require more
than one pass through the document, whereas explicit
group-by queries can be processed in one pass. An early
version of XQuery Core contained an explicit group-by
operator; other approaches are being discussed.

A similar, more challenging class of queries are queries that
segment a flat sequence according to some pattern,
typically a combination of a regular expression with some
additional predicates. Such queries are important for
linguistic applications, where the patterns describe, e.g.,
some phrase structure to be matched in a flat sequence of
tokens, in bio-informatics, where patterns may describe
subsequences of, e.g., genetic sequences, but also for
extracting structure from semi structured sources. An early
version of XQuery Core had included regular expression
comprehension as a possible basis for such query classes,
other promising approaches are described in [11,12].

Another rather blind spot of XQuery (Core) is ranked
information retrieval. Conventional full-text predicates
includin g proximity operators can be supported via user-
defined functions. But queries that need to combine
rankings obtained from structural similarity and content-
related similarity cannot be expressed generically. Some
initial approaches to add information retrieval capabilities to
query languages for XML can be found in [15, 9].

3.2 Type Level
Inspired by the type system of XDuce [10], XQuery Core’s
type system has succeeded in transferring much of the
state-of-the art of typing functional programming languages
to the regular tree types underlying XML-DTDs and XML-
Schema. A few, rather subtle technical challenges remain:

The first one is very much an implementation problem: For
static type checking, XQuery Core’s type system needs to
determine whether an inferred type T1 is a subtype of a
given type T2, i.e., whether T2 accepts a superset of the
instances T1 accepts. If the given type T2 is an arbitrary
regular tree (or forest) this is exponential. However, if the
given type adheres to the 1-unambiguity constraint
imposed by XML-DTDs and XML-Schema, there exists an
efficient polynomial algorithm to decide about subtyping
[12]. It therefore may be prudent to impose XML-Schema’s
1-unambiguity constraint on explicitly declared types.

The second challenge arises from the rather rich subtyping
mechanisms supported by XML-Schema. XML-Schema
allows deriving a type T1 from another type T2 by extending
T2 with arbitrary elements, including elements that are
already in T2. This makes it difficult to view an instance of
T1 as an instance of T2, which should hide all additional
elements of T2.

The third challenge comes from typing parameter
polymorphic, recursive functions. XQuery Core requires
that the input- and output type of a function is declared
explicitly. For polymorphic functions that accept any well-
formed document, the most specific output-type that can be
declared explicitly is often AnyType . For such functions it
would be useful to infer a more specific output type from
the concrete type of their actual parameter. For general
recursive functions this is difficult, but there may exist
function classes, such as some forms of structural
recursion, for which a generic approach can be
accomplished.

3.3 Non Issues
Some of the qualms that have been raised with regard to
XQuery Core do not really qualify as genuine challenges.

One qualm is that due to its strong reliance on static typing
XQuery Core cannot deal with irregularly structured, well-
formed documents. This is not the case. XML Query Core’s
type system consistently supports AnyType as an upper
bound, and thus certainly does not require the existence of
a DTD or a Schema.

Another qualm is that inferred types do not adhere to all the
constraints of XML-Schema, such as 1-unambiguity or the
consistent element restriction, which requires that any
element has exactly one content-model in a particular
context. While certainly useful and appropriate for efficient

parsing and subtyping, these constraints destroy closure of
the type system, and thus can not be reasonably obeyed for
the inferred type of a query that selects and recombines
arbitrary portions of a document. However, for every
inferred type a possibly more general valid XML-Schema
can be given by means of an explicit type declaration.

Finally, XQuery Core is sometimes questioned as a basis for
query optimization. This is only partially true. Much of the
traditional relational optimization of logical query plans,
such as shuffling joins on unordered sequences or pushing
down selections, can be expressed within the fra mework of
XQuery Core. However, indeed some of the useful
optimization techniques for querying XML, such as
deploying special index structures for path expressions do
require specialized physical operators, which can be more
easily generated from XQuery directly rather than via
XQuery Core.

4. CONCLUSIONS
From its rather concise beginnings, the XQuery Formal
Semantics document has grown into something quite big.
This is probably the fate of any research result meeting
standardization. However, its core constituents, static
semantics, dynamic semantics and mapping from XQuery to
XQuery core, have remained remarkably stable, and have
certainly helped in polishing the design of XQuery (a bi-
directional process), and in specifying a strong type system
for XQuery. This paper has tried to illustrate that the role of
the XQuery formalization goes beyond just an academic
exercise. All its constituents can be used rather directly to
arrive at interoperable and efficient implementations of
XQuery. In addition, they can provide a framework to
investigate some of the more taunting challenges ahead.

5. ACKNOWLEDGMENTS
I am indebted to the co-editors of the XQuery Formalization
working draft, and to the rest of the XML Query working
group for a great learning experience. I also want to thank
Tobias Groh and Sven Overhage of TU Darmstadt for their
valiant efforts in implementing the moving target of XQuery
Core, and providing very valuable feedback on the way.
The assessments given in this paper are my personal
position and flaws are due to me.

6. REFERENCES
[1] Serge Abitboul. Querying Semi-Structured Data. In:

Proceedings of the 6th International Conference on
Database Theory (ICDT'97),1--18, Delphy, Greece,
January 1997

[2] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon,
M. Stefanescu: XQuery 1.0: An XML Query Language.
W3C Working Draft 2001. Available at:
www.w3.org/TR/xquery/

[3] D. Chamberlin, P. Fankhauser, M. Marchiori, J. Robie.
XML Query Requirements. W3C Working Draft 2001,
Available at:
www.w3.org/XML/Group/xmlquery/xmlquery-req

[4] D. Chamberlin, P. Fankhauser, M. Marchiori, J. Robie.
XML Query Use Cases. W3C Working Draft 2001.
Available at:
www.w3.org/XML/Group/xmlquery/xmlquery-use-cases

[5] P. Fankhauser, M. Fernandez, J. Siméon, A. Malhotra,
M. Rys, P. Wadler. XQuery 1.0 Fo rmal Semantics.
Available at: www.w3.org/TR/query-algebra/

[6] M. Fernandez, Jonathan Marsh. XQuery 1.0 and XPath
2.0 Data Model. W3C Working Draft 2001. Available at:
www.w3.org/TR/query-datamodel/

[7] Mary Fernandez, Jérôme Siméon, and Philip Wadler, A
semi-monad for semi-structured data. In: Proceedings
of the International Conference on Database Theory
(ICDT'2001), January 2001, London, UK.

[8] Mary Fernandez, Jérôme Siméon, and Philip Wadler, An
Algebra for XML Query, FST TCS, Delhi, December
2000.

[9] N. Fuhr, K. Großjohann. XIRQL - An Extension of XQL
for Information Retrieval. In: Proceedings of the ACM
SIGIR 2000 Workshop on XML and Information
Retrieval. (Athens, Greece, July 2000), ACM.

[10] Haruo Hosoya, Jérôme Vouillon, and Benjamin C.
Pierce. Regular Expression Types for XML. In:
Proceedings of the International Conference on
Functional Programming (ICFP), 2000.

[11] Haruo Hosoya, Benjamin C. Pierce. Regular Expression
Pattern Matching for XML. In: Proceedings of the 25th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2001.

[12] Andreas Neumann. Parsing and Querying XML
Documents in SML, PHD-Thesis, Trier, Germany,
December 1999

[13] David Maier. Database Desiderata for an XML Query
Language. W3C Query Language Workshop, Boston,
December 1998. Available at:
www.w3.org/TandS/QL/QL98/pp/maier.html.

[14] Henry S. Thompson, David Beech, Murray Maloney,
Noah Mendelson (eds.). XML Schema Part 1:
Structures. W3C Recommendation 2001, Available at:
www.w3.org/TR/xmlschema -1/

[15] A. Theobald, G. Weikum. Adding Relevance to XML.
In: Proc. of 3rd International Workshop on the Web
and Databases (WebDB), (Dallas, USA, May 2000).

