
RAPID USER INTERFACE

DEVELOPMENT WITH THE

SCRIPT LANGUAGE GIST

G

Groningen Dissertations in Linguistics 8

ISSN 0928{0030

R�ksuniversiteit Groningen

Rapid user interface

development with the

script language Gist

proefschrift

ter verkr�ging van het doctoraat in de Letteren

aan de R�ksuniversiteit Groningen op gezag

van de Rector Magni�cus Dr S. K. Kuipers

in het openbaar te verdedigen op donderdag

24 juni 1993 des namiddags te 1.15 uur precies

door

G�sbert Bos

geboren op 10 november 1963 te 's-Gravenhage.

A B
C D
E F
G H

1e Promotor: prof. dr F. Zwarts
2e Promotor: prof. dr J. van den Bos

1 For ease of read-

ing, only \he" has

been used in this text.

\He" should be taken

to mean \he or she"

where appropriate.

Preface

As more and more people are using computers routinely, not
out of love for the machine, but because they need to, it be-
comes increasingly important to have easy-to-use, \intuitive"
software. Consider, for example, the catalogue of a public
library. Most people can �nd a book if the catalogue is on
index cards, but having all titles on-line in a computer has
some advantages. For those who need it, it allows looking
up books in ways not possible before { and if it is possible,
sooner or later someone will need it. However, it forces every
visitor of the library to use the computer instead of the card-
tray.
It's not only card-trays that are being replaced by comput-

ers, humans are ousted by them, too. Expert systems are
deliberate attempts at making use of the knowledge of a hu-
man expert without the need of having him (her1) around in
person.
Extracting the knowledge from a human expert and putting

it in a form suitable for processing by a computer is only part
of the problem, however. A computer program only makes
sense if the people who would bene�t from it are able to
use it. Asking someone a question is something we are all
very experienced in, but asking a computer a question is a
completely di�erent thing.
This doesn't imply that the task of the designer of a \user

interface" is to make the computer mimic a human, far from
that! Occasionally talking to a computer is indeed the best
way of interacting, but more often other ways are much more
e�cient. The computer can display pictures, charts and other
things and the designer of the interface would do well to make
use of these capabilities.
That the task of creating a good interface is at least as hard

as that of making the computer solve a particular problem is

v

Preface

2 Another reason for

rewriting software

could be that the ex-

isting software has

grown so ine�cient

from many patches

that a complete over-

haul saves more than

it costs.

An example is the

Oberon System, an

operating system,

window system and

programming lan-

guage that together

provide not much

more than other sys-

tems, but in a much

smaller, more con-

sistent and faster

package.

Of course, no such

argument can apply to

user interface devel-

opment systems.

proven by the fact that on average about half of the time of
writing a program is spent on the interface part (assuming it
uses graphics of some kind). Since the interfaces of di�erent
programs often have a lot in common, this is an area where
specialised tools can make life a lot easier. A number of such
tools have been introduced already, most of them meant to be
used in conjunction with a particular \window system", such
as Microsoft Windows on the PC, or X Windows on unix
machines. Tools can be targeted at several types of develop-
ers. Most often they are meant to be used by professional
programmers; these tools usually give access to everything
the window system has to o�er. Some tools are made for
people who only occasionally want to program. These tools
o�er only limited access to the window system, but they are
much easier to use.
One of the most important lessons that every programmer

has to learn, is \not to reinvent the wheel". This means that
using pieces of software that are available is often better than
writing them oneself. This lesson can be extended to the use
of tools. Use available tools, preferrably the simplest, since
it saves you so much time. Only when you are sure you need
more than a particular tool can provide should you switch to
another or to doing it yourself.2

In spite of the sound advice in the last paragraph, part of
this book describes my e�ort to do just that: reinvent the
wheel. Of course, there is a reason and there is a result. The
reason is, that to fully understand user interface technology it
is best to treat it as children do an alarm clock: take it apart
and put it back together again. The result is a perfectly usable
tool, with its own advantages and disadvantages.
Although this book talks about human factors and the de-

sign of interfaces, it is not about designing interfaces per
se, only about implementing them. Designing involves choos-
ing metaphors, creating pictures, choosing colours, selecting
keystrokes and making a lay-out for the screen. It is very
di�cult to do it right and there is no guarantee that you will be
able to create nice looking and usable interfaces after reading
this book. On the other hand, the tools described in this
book are designed to make the task of creating and improving
interfaces easy, so you won't lose much time if you have to
try a few times before it comes out right.

Acknowledgments

During the time that I did the research for this thesis and
while I was writing it I learned a lot more than I was able to put

vi

Acknowledgments

into the text. I want to thank my colleagues and ex-colleagues
of the section Alfa-informatica, Jan de Vuyst, Harry Gaylord,
George Welling, Peter Blok, Yvonne Vogelenzang, Erik Tjon,
Erik Kleyn and Gosse Bouma, for many inspiring talks. I
want to thank Gosse especially, for his critical reading of a
draft version and for the shower of useful articles and books.
Erik Tjon was the �rst user of Gist, his enthusiastic e�orts
inspired many small improvements and he also made the �rst
non-trivial interface.
I learned a lot from Kees de Vey Mestdagh, especially about

writing articles, going to conferences and the like. I am in-
debted to the members of Phonk for keeping my curiosity alert
and o�ering many other interesting topics.

Groningen, 23 November 1993

vii

Groningen Dissertations in Linguistics (Grodil)

1. Henri �ette de Swart (1991). Adverbs of quanti�cation: a
generalized quanti�er approach.

2. Eric Hoekstra (1991). Licensing conditions on phrase
structure.

3. Dicky Gilbers (1992). Phonological networks: a theory
of segment representation.

4. Helen de Hoop (1992). Case con�guration and noun
interpretation.

5. Gosse Bouma (1993). Nonmonotonicity and categorial
uni�cation grammar.

6. Peter I. Blok (1993). The interpretation of focus: an
epistemic approach to pragmatics.

7. Roelien Bastiaanse (1993). Studies in aphasia.

8. Bert Bos (1993). Rapid user interface development with
the script language Gist.

To appear in 1993:

9. Wim Kosme�er. Barriers and licensing.

10. Jan-Wouter Zwart. Dutch syntax: a minimalist
approach.

11. Sietze Looyenga. Syntax and semantics of
nominalizations.

12. Ale de Boer. VP-anaphora in contemporary English.

13. Petra Hendriks. Comparatives in categorial grammar.

14. Mark Kas. The semantics of verbs.

colofon

Opgemaakt met TEX3.14t en Postscript 2.0,
Illustraties met X�g 2.1.3
Lay-out: Bert Bos
Lettertypes: Gladiator & Helvetica
Printer: VariTyper 600
O�set-druk: Universiteitsdrukker�, Groningen
Oplage: 250
23 november 1993

Contents

Preface v

Contents viii

1 Introduction 1
1.1 Sociology 2
1.2 Psychology 2
1.3 Ergonomics 3
1.4 Audience 3
1.5 Preliminaries 3
1.6 De�nitions 4
1.6.1 Workstations 4
1.6.2 Interaction 7
1.6.3 UIMS and UIDE 7
1.6.4 Conversation analysis 8
1.6.5 Resources 9
1.6.6 E�ciency 9
1.6.7 Client-server model 10
1.6.8 Hypertext/hypermedia 10
1.7 Overview 12

2 Human factors & gui's 15
2.1 The user's perspective 16
2.1.1 Crammed displays 16
2.1.2 The use of colour 17
2.1.3 Interesting failures 18
2.2 Classi�cation of interfaces 19
2.3 Goals of user interfaces 20
2.4 Direct Manipulation 24
2.4.1 Virtual Reality 27
2.5 Windows 28

viii

Contents

2.6 GUI's 29
2.7 Interface elements 31
2.7.1 Windows 31
2.7.2 Boxes & menus 31
2.7.3 Icons 33
2.7.4 Buttons 34
2.7.5 Images 35
2.7.6 Sliders 37
2.7.7 Prompts (text �elds) & editors 37
2.7.8 Lists 38
2.7.9 File selectors 39
2.7.10 Accelerators 41
2.8 Resources 41
2.9 Con�gurability, adaptability & intelligent interfaces

43
2.9.1 Con�gurability 43
2.9.2 Adaptability 43
2.9.3 Conversation and role playing 44
2.9.4 Small scale intelligence 44
2.10 The process of designing UI's 45
2.11 Style guides and guidelines 47

3 User interface development systems 49
3.1 Software development techniques 50
3.1.1 Speci�cation vs. iterative design 50
3.1.2 Prototyping 51
3.1.3 Object-oriented programming 51
3.1.4 Lazy & eager evaluation 52
3.1.5 Non-deterministic design 52
3.2 Some history 52
3.3 Current systems 56
3.4 Advantages & disadvantages 59
3.4.1 Toolkits 60
3.4.2 Interactive systems 61
3.4.3 Interactive script-based systems 61
3.4.4 Non-interactive script-based systems 63

4 Gist 69
4.1 Separation of interface and application 71
4.2 Building an interface 72
4.3 The script language 73
4.3.1 User input 74
4.3.2 Messages among objects 75
4.3.3 Physical and synthetic events 77
4.3.4 Actions 78

ix

Contents

4.3.5 Expressions 80
4.3.6 Calling external programs 84
4.3.7 An example that uses cloning 84
4.4 Modelling the application 87
4.5 Setting global defaults 88
4.6 Con�guring & extending Gist 89
4.7 Portability 89
4.8 Advantages, disadvantages, possible enhancements

90
4.8.1 Coupling of application and interface 90
4.8.2 Script language 91
4.8.3 On-line help & error handling 92
4.8.4 Interactive design 93
4.8.5 Possible enhancements 93

5 The implementation of Gist 95
5.1 Flow of control 95
5.2 Datastructures 97
5.3 The \main" module 100
5.4 The \parse�le" module 101
5.5 The \scan" module 102
5.6 The \parse" module 102
5.7 The \parseaux" module 103
5.8 The \actions" module 104
5.9 The \classes" and \classes.def" modules 105
5.10 Con�guration 106

A Gist syntax 111
A.1 Terminal symbols 112
A.2 Rules 113

B Gist example 119
B.1 Application model 120
B.2 Dialog boxes 121
B.3 Main window 122
B.4 Flagging impossible moves 123
B.5 Using higher level objects 123

Bibliography 125

Samenvatting 131

Index 135

x

Chapter 1

Introduction

All user interfaces have to be designed. This seemingly empty
statement still holds a lesson, because all too often program-
mers just implement the �rst idea they have, without asking
themselves if there are alternatives. Programmers are not
typical users, and even if they try to place themselves in the
user's position, what seems a good choice at �rst may turn
out to be less than optimal in the long run.
User interface design can be approached from di�erent per-

spectives. There is the view from sociology: how do com-
puters in
uence the behaviour of their users? Do computers
make tasks more enjoyable, easier, and less stressful? Psy-
chology can look at the way people's skills, learning ability
and character are cooperating with or working against certain
styles of interaction. Ergonomics studies the relation between
various measures of people's abilities to perform a task and
measurable properties of their tools, both hardware and soft-
ware. Last, but not least, there is computer science, which
concentrates on the hardware and software that makes vari-
ous styles of interaction possible. Computer science studies
e�ciency both with respect to the machine and with respect
to the user; it creates new methods and develops the coordi-
nation between software, documentation and training.
A book on Human Computer Interaction (hci) could fo-

cus on many aspects of the interface between computers and
people. This book only treats interfaces (software only) that
are created for traditional and widely available hardware, viz.,
keyboard, screen and mouse. It brings ideas from the above
mentioned four disciplines together, but it focusses on the
computer science side. Insights borrowed from all of them
result in a list of desired features, but it is not possible to give
exact rules about what is good in interface design and what
isn't: science just has not progressed that far. But we can

1

1 Introduction

1 An interesting ef-

fect of E-mail was

described by Sproull

and Kiesler [1991].

They studied the

di�erences between

people working in a

team that met face to

face and a team that

only communicated

by E-mail. It turned

out that the latter

group showed more

cohesion, more people

took the initiative and

there was less fear

of showing ignorance

and asking for help.

Of course, E-mail can

also be misused; Si-

mon Been describes

some of the dangers

to organizations that

are unprepared (Been

[1993]).
2 see Woo�tt [1990]
3 see Browne, Nor-

man and Riches

[1990]

create the means to experiment, to create di�erent interfaces
easily, so we can empirically �nd out what is best in concrete
situations.
The purpose of the book, then, is to provide means to de-

sign good, user-friendly interfaces. An additional goal is to
provide these means to programmers and non-programmers
alike, in other words: the tools themselves should be easy
to use. The book describes various systems that have been
created with this or a similar goal in mind and compares them
to the system that the author himself developed.

1.1 Sociology

Computers have changed the way people work and continue
to change it. They have given rise to new hierarchies among
people and new ways to exert power: the designer has power
over the user; a local computer expert has power over his
colleagues, because of his knowledge. Tasks have been trans-
ferred to the computer and di�erent tasks have been given to
humans.
Computers provided better communications for some and

insulated others. Many of the e�ects had never been planned
and are now being studied as phenomena that have already
happened. The results may be used to predict the impact of
new machines and new programs. This may lead to recom-
mendations about the role a particular program should as-
sume. Since the role of a program is largely determined by
the way it looks on the outside, i.e., the user interface, this
research will likely be a source of principles for user interface
design.1

Conversation Analysis is also a part of sociology. It studies
the rules underlying a conversation, both between people and
between people and computers. It has obvious implications
for natural language interfaces, but many of the principles
apply to other types of dialogue as well.2

1.2 Psychology

People di�er in their ability for learning, for pattern recog-
nition, their tendency to make early judgements, etcetera.
Some people like guidance, others like to explore by them-
selves. These di�erences and others call for user interfaces
that can be tailored for (and by) particular users, although
some people may even be scared of the power that is thereby
invested in them.3

Designers of user interfaces, especially if they come from
computer science, are usually not aware of the di�erences

2

1.5 Preliminaries

4 see Hammond, Gar-

diner et al. [1987]
5 see De Weert

[1988]
6 Some time ago, the

four letters \gist"

were an abbreviation

for something; they

are no longer.

among people. For lack of better information, they usually
take themselves as examples of typical users. This is �ne
if they are designing for themselves or fellow-designers, but
their view of a system is likely to be very di�erent from the
view the user will have.4 To simplify in a gross way: if those
users had the same character as the designer, they would
have become designers themselves.

1.3 Ergonomics

Ergonomics or human factors is an experimental science, if
only because so few theories about the interaction between
humans and their tools exist. Experiments are based on cer-
tain hypotheses and certain metrics and try to give an objec-
tive view of how well, in this case, a program is adapted to its
users.
It is very di�cult to perform \clean" experiments, because

so many factors can in
uence the perceived performance. For
example, the subjects of the experiment may not be moti-
vated, so that no change to the program will have any e�ect.
Ergonomics is usually associated with hardware: what are

the ideal dimensions of o�ce furniture, how large should key-
boards be, what is the best viewing angle for a computer
monitor (hard ergonomics). But it applies to software as well.
The choice of colours and colour combinations is an example.5

Only soft{ or cognitive { ergonomics is exploited in this text.
Even though it is di�cult to come up with hard facts, the

experimental methods may be of use.

1.4 Audience

This book is intended for researchers and designers of user
interfaces, in particular graphic user interfaces (gui's). But
the developed system, Gist,6 is aimed at a wider audience:
everyone who wants to create a graphic interface for a new
or existing program. To use Gist you neither have to be a
programmer nor a designer.

1.5 Preliminaries

The ideas and results presented in subsequent chapters are
based on a number of observations. The most important are
listed below.

� The bene�ts of user interfaces. A well-designed user in-
terface can bring several bene�ts to the user. The in-
terface may enable him to do things he never could do
before, or couldn't do well. The former is called enabling,
the latter augmentation.

3

1 Introduction

7 see Johnson [1975]
8 see Lesk [1975]
9 see Goldfarb [1991]
10 see Apple Com-

puter Inc. [1988],

Lasky [1989], Mole-

naar [1988]
11 see Van den Bos

[1988]

� Software engineering. The methods used to create a user
interface are di�erent from those used to create other
types of systems. The formal speci�cation methods usu-
ally advocated for software projects are not well suited to
user interface design, where experimentation and itera-
tive design is in order.
Designers and implementors of computer programs

typically use a large variety of tools, such as version
control software, prototypers, various editors, and doc-
ument formatters. New tools are most e�ective if they
can be integrated into, or used together with existing
ones. Typical software development tools areMake, rcs,
WEB, Emacs and integrated case tools such as Hewlett
Packard's SoftBench.

� Language in
uences thinking. Developing an interface is
much easier if there is a good language to do it in. Yacc7

is a good language for writing parsers, Lex8 is good for
lexical scanners, sgml9 is good for structuring text. But
for (graphic) user interfaces there is not yet such a lan-
guage. Several (partial) solutions have been put forward,
such as HyperTalk,10 Abstract Interaction Tools,11 and
my own proposal, Gist.

� Programmers are not designers. Programmers are
demonstrably not the best people to design user inter-
faces { unless it is for their colleagues { and trained
designers are seldom programmers: a clear case where an
intermediary is needed, so why not utilize the computer
itself?

1.6 De�nitions

The user interfaces that are described in this book can be or
are implemented on fairly standard hardware. The following
is a list of the most important concepts that describe that
hardware and the ways in which it is used.

1.6.1 Workstations

The collection of devices that a user has in front of him is
known as a workstation. For the purposes of this book we
require a workstation to consist of at least a keyboard, a dis-
play capable of displaying graphics and a mouse or a mouse
replacement.
Graphic displays are usually raster displays. A raster dis-

play has a rectangular matrix of pixels, each individually ad-
dressable. A pixel can show 2 or more colours, one at a

4

1.6 De�nitions

Display types { quality

Displays can be classi�ed along many di-
mensions. Price is one, ergonomic quality
is another. To assess the quality, measure-
ments are done and panels of users are
asked for their subjective opinions. Quan-
tities that can be measured are { apart
from outside things like housing and con-
trols { :

Line width of thinnest lines
The thinner the thinnest displayed
line the better.

Relative width of horizontal and ver-
tical lines
They should be the same.

Relative brightness of horizontal and
vertical lines
They should be the same.

Relation of width to luminance
When brightness is increased, the
lines should not blur.

Jitter, swim and drift
Jitter is the tendency of lines on the
screen to quickly move back and forth
(within a second); swim refers to un-
steadiness at the larger time scale of
about 10 seconds; drift is the amount
by which lines move over a period of
about 1 minute.

Color alignment (convergence)
The three colours that make up a
white line (red, green and blue)
should be placed accurately at the
same spot on the screen.

Steadiness
The luminosity of a stationary image
should not vary from one minute to
the next.

Consistent positioning
The position of a line should not
change if the image around it
changes.

Colour alignment at the edges
The alignment (convergence) of red,
green and blue should not be di�erent
at the corners and at the center of the
screen.

Line width at the edges
The width of a line should be the same
when displayed in a corner as when
displayed in the center.

Luminosity at the edges
The luminosity of an image should be
the same when moved to a corner as
when put in the center.

Figure 1.1

time. All images, including text characters, are made from
collections of pixels. Even vector graphics (images described
by mathematical formulae) have to be converted (rasterized)
to pixels before being displayed.
In earlier days, there used to be so-called vector displays,

that could display vector data without rasterization, but they
are very rare nowadays. Vector data consists of lines, circles
and other simple shapes with very precise positions and sizes,
much more precise than any display can show. A raster dis-
play must round every part of the �gure to the nearest pixel.
Of course, the more pixels there are, the more faithful the
rendition becomes. Figure 1.3 shows the e�ect of rasteriza-
tion.

5

1 Introduction

Display types { capabilities

Displays can also be characterized by fea-
tures such as size and number of colours.
In contrast to the ergonomic qualities of
text box 1.1 (page 5), these aspects are
normally available to the software and it is
possible to have a program act di�erently
based on the type of monitor it displays on.
A program can usually get the following
information:

Resolution
Which in this context simply means
the number of pixels in horizontal and
vertical directions. Typical values are
640�480, 1024�768 and 1280�1024.

Physical size of the display
Expressed in millimeters. Not always
available.

Aspect ratio
The ratio between horizontal and ver-
tical pixels per inch. If pixels are as
wide as they are tall, the aspect ratio
is 1.

Total number of colours
The total number of di�erent colours
the display is capable of showing, al-
beit not necessarily at the same time.
This varies between 2 and 17 million
(= 224).

Number of simultaneous colours
Also called the palette size. The num-
ber of colours that can be shown at
the same time is often smaller than
the total number of available colours.
Typical values are 16 and 256.

Figure 1.2

Figure 1.3 The
e�ect of ras-

terization: the
letters \da" in
font Courier as
they appear on
a raster display
(enlarged 6�).

Instead of a mouse, other pointing devices can be used,
including light-pens, graphic tablets, touch-screens and joy-
sticks. Pointing devices are means for analogue or continuous
input, a method that is increasingly recognised as essential
for many tasks. The keyboard serves for discrete or symbolic
input. Symbolic input appeals to people's language skills, it
has immense expressive power, but requires learning (see
also 2.2 on page 19).
Outside computer science, analogue input is often consid-

ered old-fashioned. Compare modern radio receivers with
digital frequency displays and numeric keys for entering fre-
quencies directly, with older radios with a dial that had to be
turned for tuning. The older method is continuous, the new
one discrete.

6

1.6 De�nitions

7 Much, but not all

of the interrupt-driven

(or event-driven) na-

ture can be hidden

in special libraries

and drivers. Usually,

programmers rely on

these libraries and

on external programs

to queue the events

and transform them

into a single stream of

commands. Still, the

timing of commands

can not always be

discarded.
8 Note that the ques-

tion whether a pro-

gram has a gui or

not is not determined

by the \screen mode"

of the computer or

the fact that the

program is run in a

window under a win-

dowing system. The

program itself has to

make use of graphics.

1.6.2 Interaction

Systems that rely only on keyboard input are usually
synchronised, i.e., they employ a fairly rigid form of dialogue,
where the user and the system take turns, under the system's
control.
Systems that use a mouse are of necessity asynchronous,

because the user can move the mouse and click a mouse
button at any moment, without waiting for a question from
the system.7 To cope with this, the programs have a cen-
tral dispatch routine, called an \event loop". Every action by
the user { key press, mouse movement and sometimes even
other external in
uences, like a clock tick { is an event. All
events are queued. They are examined one by one and the
program jumps to the appropriate code to handle a particular
type of event.
The user interface as seen from the programmer's view-

point is the part of a system that contains the logic to deal with
events and the routines that present the output. Exactly where
the user interface ends and the rest of the program starts is
often di�cult to tell. It is comparable to the distinction be-
tween syntax and semantics in linguistics. The user interface
encompasses the morphology and syntax, the semantics are
a matter for the application program behind the interface.
To the user, the user interface includes the semantics of the

program. To him, the user interface is much more abstract;
it is the view that the system presents to him, the way it
allows him to do his job. The user interface is an information
channel, it could be replaced with an other one. But to the
user there is little di�erence between the messenger and the
source of the message.
A Graphic User Interface (gui) is any interface that uses

images to convey information. In some contexts, letters can
also be regarded as images, so that even if an interface
presents only text, it can sometimes still be called a gui.
For example, in many program editors the shape of the letters
on screen is purely accidental. If these programs do not use
imagery elsewhere they are not graphic; on the other hand,
most desktop publishing programs try to display the letters
exactly as they will appear on paper. Here the letters can
be regarded as images, therefore the program has a graphic
interface.8

1.6.3 UIMS and UIDE

A User Interface Management System (uims) is a system

7

1 Introduction

9 \Bootstrapping"

is computer science

jargon. It is a solution

to the chicken-and-

egg problem applied

to computers: how

to create a program

when the program

itself is needed to

create it. The solu-

tion usually involves

creating a partial pro-

gram and using that

to create an improved

version, then the pro-

cess is repeated.

that helps both in designing and in implementing the morphol-
ogy and syntax of user interfaces. Sometimes a distinction is
made between software that is targeted more at designing
and software that is still used when the results are ready.
The former would be called a User Interface Development
Environment (uide). Both can take various forms. Gist,
which is developed later in this book, is a language. Some
other uide's are themselves interactive systems to edit and
produce parts of programs (program generators).
A uims implements a certain model of interaction, though

at a high level. It provides in fact a paradigm of interaction.
Interfaces that �t the paradigm can be constructed muchmore
easily with the help of that particular uims. The paradigm
not only extends to the way a user is supposed to interact
with a system, but also strongly to the way a designer or
implementer should go about creating the interface.
Most interfaces (and uide's) are made by programmers for

programmers. The realization that non-programmers could
design interfaces and that these people have very di�erent
skills from programmers is still very young. There is a de�-
nite need for tools for non-programmers { designed by non-
programmers { like ergonomists, graphic designers and psy-
chologists: clearly a bootstrapping problem.9

For a uims to be able to control not only the input but
also the output of an application, a way has to be found to
interpret and translate the output to graphics. One way is to
de�ne output relations, for example, between certain values
and geometric forms.
Another approach, which was developed for the Gist sys-

tem, is to treat the output just like the user input, i.e., as
events to be handled by the interface. Gist limits the output of
applications to text. Every line of text is viewed as a message
to the interface. Although this requires the application to
represent all output as text, as if it were printing to a dumb
terminal, it is not, in fact, a big limitation: text output is much
easier to program than graphic output and it is
exible enough
to allow Gist to create most kinds of graphics in response.

1.6.4 Conversation analysis

The interaction between user and computer is a form of di-
alogue, or conversation. With purely symbolic (read: text
based) input, it is usually convenient to describe it with a
grammar. Graphic input and output is much more di�cult to
describe. Still, people expect the interaction to conform to
rules, just like a conversation between two people.

8

1.6 De�nitions

Conversation is often based on turn taking. There is a ques-
tion and an answer, a statement and a reaction. The times at
which a turn ends are intuitively felt by the partners. It feels
strange when someone misses a cue or interrupts at random
times.
In a conversation earlier topics can be referred to by abbre-

viations, often just a single pronoun. But the rules underlying
this are still being discovered. In a user interface the designer
has to be careful to ensure that the user and the system have
the same idea about what is the current topic.
Feedback is important at di�erent levels in a conversation.

The user wants to be sure that the system has noticed his
action and understands it, �nally he wants a reaction.

1.6.5 Resources

The term resource is used in a limited, technical way. It de-
notes graphical objects like windows and buttons as well as
aspects of them, like pieces of text, colours and dimensions.
Resources are what gui's are made of.
A resource editor, therefore, is a program that can change

some low level aspects of an interface: change the wording of
menus, switch colours, sometimes even split a long menu in
two shorter ones.
Usually, resource editors are used between invocations of a

program. The changes do not take e�ect until the next time
that the program whose resources are changed is started.
\ResEdit" on the Macintosh works in this way. Sometimes
resources can also be changed interactively. The X Window
System includes such an editor, called \editres". The pro-
gram is pointed at a running program and changes take e�ect
immediately.

1.6.6 Efficiency

There are two types of e�ciency at play in a user interface.
The �rst is the ease with which it allows a user to perform
a task, as perceived by the user. Time plays only a minor
role. This type of e�ciency can be enhanced by providing
sensible defaults, choices adapted to the user's expectations
and shortcuts.
E�ciency in a more technical sense is the time required to

perform a certain action: how fast can a menu be drawn, how
fast can a typed sentence be parsed.
Clearly, e�ciency is something to strive for. But there is the

strange e�ect that computers can sometimes be too fast. At
least that is sometimes claimed with the following example:

9

1 Introduction

10 This is a di�erent

kind of protocol from

the one explained

in 4.8.5.2. That pro-

tocol is a precise

typescript or log of

everything that hap-

pened during a ses-

sion between a com-

puter program and a

user. It can later be

examined to see, e.g.,

what mistakes were

made.
11 see Horton [1983]

slow compilers force programmers to think more about their
code, resulting in fewer edit-compile cycles than programmers
who rely on the compiler to �nd errors, eventually leading
to faster development. There is some evidence for this, see
chapter 7 of Shneiderman [1987].

1.6.7 Client-server model

Many programs can bene�t from the \client-server model".
The client and the server are two separate programs that com-
municate by sending messages, possibly over a network. The
server manages some data and does most of the work. It has
no user interface. The client usually communicates with the
user. The messages between client and server conform to a
strict formal syntax, called a \protocol".10 Usually, there is a
choice of clients, so that every user can select the best. The
server doesn't care { nor know { which client is used, as
long as the protocol is adhered to.
A few examples of client-server combinations are: some

distributed relational databases; the X Window System (all
X programs are clients of the X server); Usenet news readers
based on the nntp protocol,11 such as rn and xrn.
The example of the xrn news reader client shows that pro-

grams can be clients of more than one server. Xrn uses the
nntp protocol to communicate with an nntp server and it
uses the X protocol to communicate with an X server.

1.6.8 Hypertext/hypermedia

Text is traditionally something to be processed linearly: you
start reading at the top and read on until you come to the
end. If a book has an index, you can also try to read only
those parts that actually interest you. Encyclopedias often
indicate in the text of an entry which other entries have related
information. If that scheme is combined with a computer, the
related entries can be linked by pointers and the \see-also"'s
can become commands that look up an entry for you when you
point to one of them. The command is then called an (active)
link.
This is the basis of hypertext. The basic idea can be ex-

panded in several ways, e.g., you can have a system that not
only allows you to search for information in this associative
way, but also lets you add new links, such as notes to yourself
about something you found, or explanations for other people.
The next step is to add pictures, graphs, schemas and other

graphical material. The pictures can be merely illustrations,

10

1.6 De�nitions

Figure 1.4 Hypertext in action. This text and the ones in �gures 1.6 and
1.5 were retrieved with the World Wide Web hypermedia system, a system
that links computers all over the world. WWW information providers install
a server; users contact the server with their favourite client program. This
screen is from the X Mosaic client. The underlined words are hyperlinks.
Double underlines mark links that the user has not yet seen. The \Ted
Nelson" link calls up the screen of �gure 1.5, the \history" link gives �gure 1.6

but they can also contain links themselves. If the system
is expanded even futher to also contain music, speech and
animations, it is no longer called hypertext but hypermedia.
The newest hypertext systems have made the links so pow-

erful, that a document can refer to another document that is
not even on the same computer. The user doesn't even have to
be aware of the fact that activating a certain link causes some

11

1 Introduction

Figure 1.5 The target of the \Ted Nelson" link of �gure 1.4

program to fetch the requested information from somewhere
else in the world. (See �gures 1.4, 1.5 and 1.6.)
Hypertext is thus a poweful concept for structuring infor-

mation that has complex relations and associations with other
pieces of information.

1.7 Overview

Computer hardware has become very powerful and continues
to grow in speed and capabilities. There is a de�nite lack of
interfaces that will allow more than just the experts to make
use of that power. It is the task of the interface designer
to create e�ective interfaces for di�erent kinds of users. He
has few hard and fast rules to go by, but there are some

12

1.7 Overview

Figure 1.6 The target of the \history" link of �gure 1.4

rules of thumb. One of the most important technologies is
direct manipulation, graphics is another, and the combination
promises to be even more powerful.
Chapter 3 investigates various tools that have been cre-

ated speci�cally to make designing or implementing graphic
interfaces easier. Most of them are meant to be used by pro-
fessional programmers, alongside such tools as parser gen-
erators and case systems. A few are advertised as being
�t for non-programmers, among them the author's proposed
system, Gist. Such tools are important, because they allow
people that are trained as user interface experts, but who are
not programmers themselves, to play an active role in the
creation of at least a prototype interface.

13

1 Introduction

Chapter 4 describes Gist and discusses its merits.
Chapter 5 is strictly for programmers. It contains a tech-

nical expos�e about the way the Gist system is implemented.
It is meant for people wanting to improve the system or bor-
row parts of it. It tries to make clear what have been the
considerations behind particular choices of algorithms and
data structures and how these choices impose limits on the
system's capabilities. There is no claim as to whether this
particular implementation is the best possible { it probably
is not.
The chapter also describes how a particular installation can

be �lled (or: con�gured) with interface elements, since these
are not part of the program per se.
For reference, in particular when trying to understand the

examples, there is an appendix with the syntax of the script
language used by Gist to describe interfaces.

14

Chapter 2

Human factors & GUI’s

More and more people want to { or have to { work with
computers and these people naturally want to use all the pos-
sibilities the machines o�er. In general, they will not be able to
follow a course for every program and, moreover, they usually
use most features too infrequently to really get experienced.
An example are the advisory systems, a new development
derived from expert systems. Expert systems are meant to
be a tool for a limited set of users with knowledge about the
�eld; advisory systems are meant for a much larger group of
people, seeking information or advice about something they
know nothing about. Examples of advisory systems are the
city information systems in Maastricht and Tilburg (Nether-
lands), \Will-writer" (an American system for advice to peo-
ple wanting to make a will) and programs for computer-aided
education.
The developments in telematics also give an increasing

number of people access to programs that are located phys-
ically far away. Via telephone and television (cable) more
and more services are available. Help in the form of human
advisors is not o�ered, however. The information has to be
accessible to a very large and heterogeneous group of users.
The interface is almost more important than the service that
is o�ered, for people are content with meagre answers, but
reject a system in which they get stuck. The program can
make no assumptions about the user, except that he possibly
never used a computer before and is maybe not even aware
that he is using one now. A mail-order company that lets its
customers page through the on-line catalogue via cable-tv, can
send instructions, but is clearly unable to send an instructor
to each living room where a user gets into trouble.
The traditional ways of making a computer do what the user

wants are through a command language and a menu system.

15

2 Human factors & gui's

1 Thimbleby [1990]

calls this e�ect the

\magic" model.

The drawback of command languages like database query
languages (e.g., sql) and operating system shells (e.g., the
Unix shell) is, that they are not appropriate for laymen. Every
language has to be learned �rst and that takes time and, often,
guidance. Moreover, one quickly forgets a language when it
is not used for some time. Menus solve that problem (the
user has to learn and remember little or nothing), but they
are useless for complex input, because one quickly gets lost
in the multitude of choices.

2.1 The user's perspective

When a program exhibits complex behaviour, the users of the
program are likely to build a model that is anthropomorphic.
They project into the system motives and desires they them-
selves would have if they were in the system's place. Alter-
natively, they transfer their model of some other well-known
person or system to the new system. These are powerful, but
often unconscious phenomena.
People have a tendency to see causes and e�ects in events

that occur together or soon after one another, even when
the co-occurrence is purely accidental. This may lead to false
beliefs that may even extend to things outside the computer,
like a belief that a certain program is sensitive to the force
with which you press the keys on the keyboard, or even that
the program only works if you lift your elbows o� the table
when it is running. Usually, this points to a lack of trust in
the program or an inadequate grasp of its limitations.1

The user may fail to see a pattern at all and fall back on
describing a system's behaviour as random. Most systems
other than games aren't random. The apparent randomness
is caused by gaps in the provided information, by things not
discernible to humans (like nanoseconds) or by limitations
in human memory: the information that explains a certain
behaviour may have been given too long ago, there may have
been too much intervening info, or it may have been shown
in a position or manner that seemed unrelated to the present
situation.

2.1.1 Crammed displays

People's short-term memory can hold very little information,
only about six di�erent things at a time. Unless information
can be lumped together into chunks, over
ow is very likely.
Interfaces that require the user to remember too many dif-

ferent things will be almost unusable. Sometimes the user
needs to remember things like in what mode the program is,

16

2.1 The user's perspective

how far into the a document he is or in what mode he was
before.
One way to improve this situation is to use the computer

display as an extension of short term memory. Display edi-
tors show how far this can go. An editor like WordPerfect
shows just one status line at the bottom of the screen, while
e.g., MacWrite shows much more with icons, scrollbars and
di�erent fonts.
If the display is to be e�ective as an aid to the user's mem-

ory, the information has to be organized in a way that can
be learned and ideally also con�gured by the user. Not every-
one wants the same amount of information. And searching
information on the screen shouldn't take too long. Too much
information is often called \clutter".

2.1.2 The use of colour

Many people now have colour screens and they expect pro-
grams to make use of them, even though many programs do
not need colour.
Colour can be used in various ways: to create an aestheticly

pleasing display, to create a realistic rendering of an object,
to distinguish or identify, or to convey information.
Not all people are the same and they react to colour in di�er-

ent ways. Young people like bright colours; colourblind people
have di�culty distinguishing some colours. A few guidelines
exist, however. For example, that the human eye is most sen-
sitive to yellowish green, but can only di�erentiate between
a few shades of blue. (See text box 2.1.) A well-designed
interface lets users select their own combinations { even
though this might result in people painting themselves in a
corner, by choosing colours that make essential information
unreadable.
A good uide should help designers of interfaces by sug-

gesting colour palettes, perhaps by o�ering sensible defaults.
If the display shows objects and scenes that could exist in

real life, it is advantageous to use colours that match those
in reality. In publishing or graphic arts it is even essential.
Even scenes that clearly cannot exist, can bene�t from use
of \realistic" colour, for example by shading objects behind
other objects. Natural colours induce associations that can
help to de�ne the relations between depicted objects.
If the colour doesn't in itself have a clear meaning, it can

still be used to distinguish objects or visibly group them
together. Repeated objects in a long list or in a series of

17

2 Human factors & gui's

Colour and the human eye

Graphics monitors usually treat all colours
the same. If they are 24 bit displays, they
reserve 8 bits for red, 8 for green and 8 for
blue, even though the eye can distinguish
greens much better than blues. A few mo-
nitiors exist that capitalize on people's low
sensitivity for blue to o�er fewer levels of
blue than of green and red.
The characteristics of the eye lead to a

few guidelines for choosing colours: (Mac-
donald [1991], De Weert [1988])

� Because of the relative insensitivity of
the eye for red and blue, one should
avoid using these for �ne detail.

� Although the eye can see light-dark
contrast at a higher resolution, the
reliable discrimination of colour is
limited to an angle of about 1

3
degree

(about 3mm at arm's length).

� A luminance ratio of 10 to 1 is op-
timal for reading. Light characters
on a dark background appear thicker
than dark characters on a light back-
ground.

� Simultaneously focussing on colours
of di�erent wavelength is impossible
because of imperfections in the lens
of the eye. If blue and red (opposite
ends of the spectrum) are used to-
gether, the red will appear to be in
front of the blue. Blue on a red back-
ground should therefore be avoided.

� It is hard to focus on edges be-
tween colours of the same brightness;
seperate such colours with a black
line or use colours of di�erent bright-
ness.

� Large patches of saturated colours
cause fatigue; it is better to use
less saturated colours for large ar-
eas. Also, don't put areas of satu-
rated colours next to each other, be-
cause they will appear unstable.

� The eye is most sensitive to
icker at
the edges of the visual �eld. To min-
imize the e�ect one should use dark
colours there, and grays are best.

Figure 2.1

displays are tied together. A single contrasting colour in an
environment of subdued tints indicates an important event or
object. For this to work, contrasts and bright colours should
be applied sparingly.
Red is commonly taken to mean danger. The tra�c light

analogy is clear. An interface that uses green to indicate
errors and red for normal conditions will take some getting
used to.

2.1.3 Interesting failures

It is often said that people learn more frommistakes than from
successes. Yet in most programs mistakes are not encour-
aged, because they result in irreversible damage or unhelpful
messages.

18

2.2 Classi�cation of interfaces

2 see Thimbleby

[1990]

Still, if a system has a way of showing near-misses (and
correcting them), these failures may actually help the user to
get a better understanding.

2.2 Classi�cation of interfaces

Two types of interfaces are very promising: natural language
interfaces (nli) and graphic user interfaces (gui). The idea
behind natural language interfaces is that the user can al-
ready communicate e�ectively and without help in his own
language; the computer would have to adapt, instead of the
user. Graphic interfaces try with the help of images, texts
and menus to approximate the (mental) picture the user has
of a certain problem. The best known example is probably the
desk top metaphor, where the screen shows a typical o�ce
desk, with �les in folders, a note pad, a waste paper basket,
etcetera. Often the actions of the user can be reduced to
typing a few words and pointing to images and menus with
the help of a mouse or simply a �nger.
Both types of interface could in principle be even further

improved by making use of adaptive user interfaces. Adapt-
ability may take the form of extensions that allow a user to
choose his own style of interaction, or it could be automatic:
a \smart interface" that tries to form a model of the user and
adapt itself (see also 15).
One way to classify interfaces (or parts of interfaces) is as

atomic, symbolic or continuous.2 Symbolic interfaces allow
building compound commands from simpler ones, according
to some abstract syntax. Command languages are an exam-
ple. Atomic interfaces allow a limited number of commands
and nothing more. Menus fall in this category. Continuous
interfaces rely on some continuous input device, such as a
mouse. Of course, these styles can be combined or emulated
in one another.
Symbolic interfaces rely on people's language skills. They

therefore require more conscious e�ort, but are also very ver-
satile. For example, with a system such as the Unix Korn
Shell an experienced user can write quite complex commands.
The key phrase here is \experienced", since the syntax and
semantics of these kinds of interfaces have to be learned and
practiced over time. Unless they are natural language inter-
faces, of course.
Continuous interfaces are much less
exible. There is usu-

ally little, if any, provision for building composite actions out
of simpler ones. They are nevertheless very appealing, since
the actions are quickly learned and can be executed with al-

19

2 Human factors & gui's

3 see Willemse and

Lind�er [1988], p. 48

most no conscious e�ort { at least in a well-designed inter-
face. The number of basic commands is limited, but a great
number of variations that depend on the context can exist.
Consider, for example, a drawing program that is operated
with a pen (stylus) on a drawing pad. Moving the pen to the
left will move something on the screen to the left as well, but
depending on the context, the object that is moved may be
the end point of a line, a group of images or some control,
such as a brightness indicator.

2.3 Goals of user interfaces

Many developers only describe the goal of their work as cre-
ating a \user friendly" system and follow a subconscious idea
of what that means for their project. However, the main ob-
jective of a system is not friendliness, but helping the user to
perform a task.3 But still, the majority of user interfaces is
designed to meet one or more of the following goals, even if
often the goals are not made explicit.

� Easy to use without prior training. In the most extreme
case, someone who knows nothing about the system, but
knows enough about the subject domain, could come up
to the terminal and start using it.

� Easy to use after training. After the user has been taught
the principles behind the program (or rather: interface)
and has had some practice, he should feel con�dent with
it and have the feeling that it helps, rather than hinders
him in doing his work.

� Easy to learn. The ease of learning can be measured in
various ways. One measure could be the time required
to master a certain task, another could be the degree to
which users feel they understand the system after some
period of time.

� Easy to re-learn after a period of absence. It is said you
never forget how to ride a bicycle. But many other skills
and types of knowledge are easily forgotten. If a system
is used intermittently, it should be easy to get the hang
of it again quickly.

� Easy to document. Documentation is always important,
but some systems rely on it more than others. If programs
are to be installed by untrained people, or if people have
to learn the system from books, good documentation is
especially important. The design of the system could take
this into account and avoid letting things happen on the
screen that are easier done than described in words.

20

2.3 Goals of user interfaces

4 Unless the user's

motivation can be

increased enough,

of course. It seems

that adding a lottery

of some kind that oc-

casionally pays out a

monetary reward can

do a lot to make even

di�cult systems seem

attractive { at least

to some people.

� Easy to maintain. Many programs are created for ex-
tended use, which nearly always means that they have
to be updated a few times. If the users themselves or
another non-programmer has to do this, the interface has
to provide some form of support.

� Easy to support. If there is support for a program in the
form of a help-desk or a telephone number, the system
must be such that it is easy to describe.

� Fast/minimal e�ort. By which is usually meant the num-
ber of keystrokes (mouse clicks, mouse travel distance)
required for performing some task. Note that this is not
the same as the \response time". The response time is
a measure of how fast the system can respond to user
events and as such it is part of the feedback (see further
on). Note also that too few keystrokes can sometimes
be disconcerting to the user. In critical situations some
redundancy can help prevent errors.

� Error-preventing. The earlier errors are reported, the
easier it is for the user. The earliest possible error check
is as soon as the user strikes a key. Of course, for this to
work, the user should also be guided towards the correct
input, by providing suitable prompts.

� Flexible. Some systems are meant to be used by a wide
variety of users in many di�erent situations.

Many of these goals are actually contradictory. It is not
possible to create a single interface that is usable without
training and that also pleases the user who has to enter a few
thousand records into a database with it.4

Interfaces have other goals, too. The list above presents
the view from the user's perspective, but seen from the de-
veloper's side, the interface has other tasks as well:

� Security. By limiting user-input and validating it, the in-
terface can help in maintaining the system's integrity.

� O�-loading tasks. This is most obvious if the interface
runs on a di�erent computer from the application. Tasks
that the interface can take over are, for example, tok-
enizing and syntax checking, displaying static information
(which can be cached by the interface) and providing help
and elaborate error messages.

� Portability and \internationalization". Since the applica-
tion and the interface often use very di�erent computer
resources, porting a system to another computer may
very well require changes to the one and not the other.

21

2 Human factors & gui's

Modeless { or \low on modes"?

Modelessness, as described in sec-
tion 2.3, may not be quite the right word to
describe interfaces. All interfaces have, of
course, at least one mode, but that is not
the real problem. It can be argued that the
period between pressing a mouse button
and releasing it is a new mode, because
everything works di�erently as long as the
button is pressed. But even this can be
argued away by noting that this is not a
new mode, but rather a suspended state,
since nothing in the interface works in this
situation.
There is, however, a situation where the

strive for modelessness contradicts the
desireU to make interfaces intuitive. It
only applies to naive (i.e., inexperienced)
users and it occurs when input is via move-
ment of the mouse over some distance,

in particular when moving or resizing ob-
jects, selecting from a drop-down menu or
performing \drag and drop" operations. In
this case the naive user usually prefers to
click once to start the action, then move
the mouse and �nally click the mouse but-
ton again to end the action. In the period
between the two clicks, the system is def-
initely in a new mode. Many operations
may still be possible and the user can eas-
ily be distracted and forget that he is in the
middle of an operation.
Experienced users are often more com-

fortable with the shorter sequence press-
move-release. They no longer perceive the
operation as a sequence of steps, but as a
single action, which is matched by a single
motion of the mouse.

Figure 2.2

\Internationalization" means translating commands and
messages to other languages, changing some icons, sort-
ing order, time and date display, fonts, etcetera. Most if
not all of these changes can in many cases be accommo-
dated by changes in the interface.

The designer of an interface has many means at his disposal
in trying to achieve the goals:

�Metaphors. The system tries to mimic something that
the user supposedly knows well.

�On-line help.

�Menus help the user because they list the available op-
tions. This is easier, like reading a foreign language is
easier than speaking it. Most menus display only text,
but the text may be enhanced with graphics or even re-
placed completely, for example in a menu for selecting
colours from a palette.

�Modeless interfaces. Which means that a command al-
ways means the same thing. There are no (or as few
as possible) di�erent contexts, in which the same user
actions have di�erent e�ects. In a windowing environ-
ment, this can often be achieved by keeping the di�erent

22

2.3 Goals of user interfaces

5 see Welling [1992]

contexts in di�erent windows which are both on screen
at the same time. (Context that changes with location is
not considered as harmful as context that changes with
time.)

� (Apparent) robustness. The interface may be able to re-
assure the user by appearing fool-proof and incapable of
doing harm.

� Consistency.

� Conspicuous clues and memory aids. Colours and icons
can help the user to associate particular actions and goals
with each other.

� Simple screen layout. Desirable if the system must be
easy to describe.

� Resource �les can give people a way to change aspects of
the interface without programming and re-compilation.

� Fixed screens. This is not the same as simple screens,
although it may serve the same purpose. A �xed screen
is a screen in which everything has a �xed location.

� Context-independent keystrokes. This is a less stringent
requirement than modelessness. If there are keystrokes
that mean the same from every context, the user can
always get back on track if lost. A (trivial) example is
the \quit" command, which could be made to abort the
program from every context, thus returning the user to a
known state.

� One-letter commands are useful for speeding up the in-
teraction.

� Composite commands such as macros, can help the ex-
perienced user accomplish more with a single command.

� Clever defaults, defaults that depend on history, possibly
combined with incremental search and auto-completion.5

� Error checking during input instead of at the end.

� Feedback. Examples of feedback are: progress meters,
echoing the user's input, error messages and beeps. The
type of feedback should be related to the amount of time
that has elapsed since the user's action. One of the most
important factors for the quality of an interface is the
\response time", which is the time between the user end-
ing his action and the �rst reaction of the system. The
shorter the response time the better, even if the system's
�rst response means no more than \yes, I heard you, I'm
now working on it."

23

2 Human factors & gui's

5 see Hutchins,

Hollan and Norman

[1986]

� Con�gurable interfaces. Many things can be made cus-
tomizable: colours, screen layout, fonts, mouse speed,
etcetera.

The �rst decision for the designer of any user interface will
be to establish a model of the future user. (Of course, it is
easiest if he can take himself as a model.) Will that user
be someone with experience in similar programs, will he be
trained prior to using the program, will he understand the
inner workings of it, etc. A trained user is more interested
in speed. To him, a single keystroke is enough to launch a
complex operation and a single word of response from the
computer can be su�cient. The program does not have to
explain what it is doing when it takes some time to complete
a calculation. Inexperienced users on the other hand need
constant and reassuring feedback.
The next decision is to �nd a consistent way to map the

problem into the world of text and two-dimensional graphics of
the computer screen. \Consistent" in this respect means that
di�erent parts of the problem that are conceived as similar
by the human user, should also look similar on the screen.
E.g, if removing a digit is termed \delete" in some menu,
then removing a letter somewhere else should not be called
\remove".

2.4 Direct Manipulation

Direct Manipulation (DM) interfaces are graphic interfaces
with particular goals. Not only is the task presented graphi-
cally, but also all commands from the user are given graphi-
cally, usually by means of a mouse. The main characteristic
of DM interfaces is the fact that they give the user the im-
pression that he can directly manipulate application objects.
He is not so much giving commands to the computer, which
executes them for him, as he is moving and shaping objects
with his own hands. A DM interface should meet other re-
quirements as well. In particular, the goals are the following:5

� Learning to use the program should be as easy as possi-
ble. Ideally, a demonstration should su�ce.

� At the same time, the interface should allow experienced
users to proceed very rapidly, maybe by giving them a
method for adding their own (composite) functions in the
form of macros.

� There should be no need for error messages, either be-
cause users can see for themselves what is wrong, or
because illegal actions simply cannot be performed.

24

2.4 Direct Manipulation

6 see Norman and

Draper [1986] and

Norman [1988]

� Everything the user does should have an immediate e�ect
that is enough to inform him whether the action produces
the desired result.

� Actions should be reversible, in order to further reduce
the user's anxiety. A nice way would be if an action can be
done in reverse: e.g., moving an icon to an object induces
an action that can be undone by moving the icon back to
its previous position.

Although these goals are best approximated by an all-graphics
system, it is important to note that, e.g., the well-known
spreadsheet also incorporates many of these ideas. On the
other hand, not every gui is a DM interface.

The reasoning behind DM is, that it is easier to use a tool that
shows its e�ect immediately, than to program some action to
take place at a later time. On the other hand, if an action
takes a lot of tuning, it might be helpful if you can write it
down for later reference. A pair of scissors is a handy tool for
cropping a photograph to a desired size. But if you have to
cut a number of photographs all to the same dimensions, a
cutting machine with some knobs to adjust (i.e., \program")
is more appropriate.
In a model developed by Donald Norman6 user activity is

modeled as a seven stage process (see �gure 2.4):

Figure 2.3 A \di-
rect manipulation"
�le manager shows
�les as icons that
can be moved,
copied, etc. with
the mouse.

25

2 Human factors & gui's

1. forming the goal

2. forming the intention

3. specifying an action

4. executing the action

5. perceiving the state of the world

6. interpreting the state of the world

7. evaluating the outcome

Figure 2.4 The
seven stages
of user activ-
ity, according

to the model of
Donald Norman

Interpreting
the perception

Intention to act

Goals

Evaluation of

interpretations

the action sequence

The World

Execution of

gulf of execution

Perceiving the state

gulf of evaluation

of the world

Sequence of actions

The step from intention to action speci�cation is called the
\gulf of execution". It represents the distance between the
user's ideas and the commands provided by a system (we
assume a computer system, but the theory is more general).
The intention must be \mapped" or \matched" to the avali-
able actions.
The step from interpretation to evaluation is called the \gulf

of evaluation". It represents the translation of the system's
messages back to the user's mental model.
In an abstract sense, the goal of DM is to minimize the

mental distance between what a user wants to accomplish

26

2.4 Direct Manipulation

7 see Jacobson

[1992], Foley [1987],

Ho
and [1992]

and how he actually does it. In other words: the goal is to
minimize the e�ort required to bridge the two gulfs.
One way of bringing the user and the system closer to-

gether is to represent (model) the system not as a tool that
manipulates an object, but as the object itself. This idea is
closely related to object-oriented programming. It removes
one indirection step. The user should feel that he himself is
handling an object, instead of asking the computer to handle
it for him. Hutchins, Hollan and Norman [1986] call this
(direct) engagement.

2.4.1 Virtual Reality

A descendant of DM is Virtual Reality. It is currently still too
expensive and too complex to be used routinely in interface
design.
Virtual Reality (VR) is the name given to a mode of human-

computer interaction with as main characteristic that it tries
to immerse people in a situation, using imagery that seems
to surround them, that makes sound and that changes when
they move. The oldest and best known instance of VR is the

ight simulator. A
ight simulator is a faithful rebuilding of
a typical airplane cockpit. It has all the controls and displays
found in a real plane, but instead of windows it has large
computer screens and the very realistic movement of the sim-
ulator is produced by hydraulic lifts mounted underneath the
whole system.7

A
ight simulator is of course a very costly device, though
much less costly than real planes. Thanks to the continuing
miniaturization of computer hardware and increased process-
ing speed, VR is becoming available for other purposes as
well. For example, NASA plans to use it to train astronauts.
A related application is to re-create a situation that is actu-
ally seen by a robot in a remote or dangerous location. The
operator can wear a head-mounted viewing device, consisting
of two miniature tv-screens, together with electronic sensors
that transmit every movement of the operator to the remote
robot.
Other virtual realities are even more \virtual". The com-

puter can simulate situations that can never be real, like
moving through space at super-luminal speeds, or looking
inside individual molecules. If researchers can manipulate
those situations directly, they may gain new insights.
Of course it isn't always useful to put oneself inside a virtual

reality so completely; often one wants to alternate between a

27

2 Human factors & gui's

8 see Marshall,

Christie and Gardiner

[1987]

simulation and an outside view, e.g., to control and record
parameters.
It will be some time, however, before an application devel-

oper or a user can choose freely between VR and non-VR.
Special hardware is required that is currently only partially
available and powerful computers are needed that can deal
with the complex input from voice, gestures and eye move-
ments and that can animate high-resolution displays in real
time.
Still, there are signs that the mouse may get some com-

petition as an input device. Joysticks have found their way
into airplane cockpits and trackballs replace mice where desk
space is tight. A newspaper article (NRC Handelsblad August
1st, 1991) shows a glimpse of the direction trackballs may be
heading: Philips and the Technical University Eindhoven have
developed a trackball with force-feedback. When you try to
move the cursor in a direction that isn't useful, you feel an
increased resistance. The response time of users (on average
175ms with a normal mouse) decreases by about 30%.

2.5 Windows

Windowing is the dividing up of the screen space in smaller,
independent areas, that can display di�erent kinds of infor-
mation simultaneously, without interfering. Sometimes the
windows are put next to each other (tiling), but usually win-
dows overlap, causing parts of other windows to be obscured.
Windows can both help the user and slow him down (if

there are too many windows that demand his attention). But
usually windows are considered an advantage. There are
seven major reasons for this:8

�More information can be displayed, possibly from multi-
ple sources.

� Information can be combined in various ways.

� Since windows are nowadays usually managed by a sep-
arate window manager, the programmer doesn't have to
worry about information in other windows, making for
simpler programs.

�Windows can function as information storage, where the
user can put away things, while working on something
else. When the time comes, he will be reminded of what
he put on hold there.

� Temporary windows (pop-up menus, dialog boxes) alert
the user to certain conditions or remind him of his op-
tions, without disrupting the integrity of the display.

28

2.6 GUI's

� Di�erent windows may provide di�erent views of the same
task.

� A window provides a context for interaction, meaning that
commands can di�er in their meaning in di�erent win-
dows, without being confusing. Di�erent colours, cursor
shapes, etcetera, can help di�erentiate the contexts.

2.6 GUI's

The \graphic" in \graphic user interface" (gui) refers to the
fact that these interfaces make use of pictures, symbols and
graphics on the screen that could not be used if the interface
were restricted to text. Possibilities include various kinds
of lines, graphs, di�erent typefaces and styles (bold, italic),
animation, small and large images, etcetera.
gui's thus o�er a richer environment for visually present-

ing information on screen. In principle, every pixel on the
screen could be given its own color and there are often a
million or more pixels on one screen. The abundance needs
to be controlled, however, and therefore a set of concepts
must be developed that describe screen images at a higher
level of abstraction. Windows (see the previous section) form
the highest level. They group together everything belonging
to a single application or a clear subtask of an application.
Windows are interface elements. Other interface elements
are buttons, icons, menus, etcetera. (See the next section.)
Within an interface logically related elements are grouped

together. Windows are used for this, but also within a window
there can be several visually distinct groups of objects. There
are usually special graphic elements available to visually de-
lineate them, such as drop down menus and various frames.
Not just grouping, but the complete layout within a window

is important. Some things are best put next to each other,
others are better stacked. Some elements should always have
the same size and some elements should always be aligned
with each other. For example, the elements of a scrollbar
(slider, two arrows) should always be in the right order; con-
fusion would arise if the two arrows were interchanged.
The textual elements of an interface are divided into static

elements and messages. Static elements are things like la-
bels and titles on other elements. Messages can be further
subdivided into status messages, error messages and on-line
help.
Status messages provide feedback to the user about what

the program is doing and how far it has proceeded. They
do not have to draw attention and most users ignore them

29

2 Human factors & gui's

anyway, since they tell exactly what the user already expected.
They are provided for occasions when the user gets distracted
and needs a clue to get back to where he was. For that reason
status messages are best put in a �xed location, but clearly
removed from the other elements of the interface. A common
place is along the bottom of a window.
Error messages require immediate attention and are there-

fore often overlaid over the other elements, hiding them, ap-
proximately at the spot where the users attention is focussed.
Often there are levels of severity: warnings indicate possible
problems but the user can ignore them if he is sure of himself;
normal errors require corrective action; fatal errors signal a
unrecoverable problem from which no escape is possible other
than aborting and restarting the whole system.
On-line help is usually much more bulky and requires a

window of its own, although there may also be a facility for
abbreviated or summary information. The balloon help on the
Macintosh is an example: when the user knows in principle
how to do something but needs to be reminded of some details
he can request a summary that will appear in a small balloon
that is visually attached to the element about which it speaks.

All elements have a standard or typical form, that can be
modi�ed with regards to \details" { also called properties
or attributes. Details include colours, type of frame, typog-
raphy, shape, animation e�ects, blinking frequency, etcetera.
These details can also include part of the elements behaviour,
especially with regard to immediate feedback. For example,
when a button is clicked, the button can change its colour or
frame. Immediate feedback does not require a round-trip to
the application. Of course, the real action of the button is not
under the control of the button itself, and may require quite
di�erent types of feedback.
Animation e�ects { sometimes called visual e�ects { can

be as simple as the exchange of two colours in a frame to
give an e�ect as if the object moves in or out of the screen.
They can be more elaborate, such as objects that \zoom open"
when they �rst appear or slowly dissolve when they are re-
moved again. An icon can cycle through a small sequence of
slightly di�erent pictures to show what action is being per-
formed. For example, the printer icon in Hewlett Packard's
vue interface shows a piece of paper moving through the
printer when a document is printed and the trash can on the
Macintosh brie
y bulges when a document is deleted.

30

2.7 Interface elements

2.7 Interface elements

Although most window systems and gui's use the same kind
of interface elements, they often name the elements di�er-
ently. This section tries to list the most important elements.
Many other elements exist, but usually they provide the same
functionality as elements from the following list, and they only
look di�erently. Which is not to say that di�erent looks may
not be important!

2.7.1 Windows

A window is a rectangle on the screen that encloses (usually)
a collection of text and images. A window presents a cer-
tain view of some related data, e.g., it can contain an image
of a car together with technical data such as price and fuel
consumption. When a window is drawn on the screen, it
obscures whatever was in that area before. This de�nition of
a window is shared by most popular windowing systems, such
as Microsoft Windows, gem and the Macintosh. Only the X
Window System uses a di�erent, much more comprehensive
concept of window: every button, icon, menu, on the screen
is a window.

2.7.2 Boxes & menus

If windows have a more temporary character they are called
boxes. Boxes usually have less decoration along the borders
than windows. A program displays a box if it needs informa-
tion from the user without which it can't continue. When a
box is on the screen, windows and other object are usually
de-activated. This is commonly known as a modal dialog,
meaning that the user must complete this dialog before doing
anything else, as opposed to the modeless dialogs of most
windows, in which the user may choose which (part of) a
dialog he wants to answer.
Boxes are referred to by various other names, such as alert

box, alert and dialog box.

Figure 2.5 Exam-
ple of a dialog box,
this one is in Motif
style

31

2 Human factors & gui's

9 Rumour has it

that gem, Digital

Research's window

system for the Atari

and the PC, which ex-

hibits this behaviour,

was designed this way

not from any idea

about good user in-

terfaces, but simply

to ward o� copyright

claims from Apple,

the makers of the

Macintosh window

system, who chose a

click-and-drag type of

menu.

An example where boxes might be used is the following:
consider a program that lets a user store results in a �le.
When the user chooses to save something, the program pops
up a box, prompting him to enter a �le name or cancel the
operation.
A menu contains a short list of menu items, usually com-

mands. Menu items can be in three di�erent states: normal,
highlighted and unavailable. There is at most one highlighted
item, indicating the command that would be executed if the
user exited from the menu at that moment. Unavailable items
are shown dimmed (also called grayed). They are there only
to remind the user of commands that are available in other
contexts. Most gui guidelines recommend leaving temporar-
ily unavailable items in the menu, rather than changing the
menus depending on context.
Menus behave somewhat like boxes. Indeed thay are often

implemented as boxes containing buttons (see below). They
pop up on request and thereby de-activate everything else.
Since menus are so common, they are often considered sep-
arate objects.
There are many di�erent types of menus. Some are perma-

nently visible, others only appear on request. When a menu
appears as a direct result of some action by the user, the menu
is said to be posted by the program. When choices from a
menu are made with the keyboard, there are three common
methods:

1. the items are numbered and the user types the number;

2. the items have a mnemomic letter, often the �rst letter
of the item, and the user types that letter; or

3. the user moves a highlight or arrow from item to item
with the cursor keys and selects with the Enter key.

Methods 2 and 3 are often combined.
When the mouse can be used for menu selection, other

types of menus are possible, especially in menus that are not
permanently visible.

� drop-down menus appear in a �xed place when the mouse
is clicked in a special area immediately above that place;
hence the name of \drop-down" menu. Sometimes the
menu appears as soon as the mouse pointer enters the
area { without the need to press a mouse button { but
this is generally dismissed as bad design.9 When sev-
eral menus are available the sensitive areas are usually

32

2.7 Interface elements

A
exit

B
entrance

C
D

Some icons from
everyday life and
from the computer
screen.

9 see Microsoft Cor-

poration [1991]

collected into a \menu bar", which is in fact a menu of
menus.

� pop-up menus appear wherever the mouse happens to be
when a mouse button is pressed. The advantage of pop-
up over drop-down menus is that the user does not have
to move the mouse to access the menu, which can save
time especially on large screens where the mouse may
have to travel quite a distance to reach the menu bar.
The disadvantage is that there is no visual clue that a
menu is available at all.

� Drop-down menus can sometimes be made permanent,
when the user so chooses. Such menus are called tear-o�
menus. The user can detach them from the menu bar and
put them elsewhere on the screen.

The mouse not only allows for di�erent ways of posting
menus, the selection from the menu can also be made in dif-
ferent ways. There are two possibilities (see also text box 2.2
on page 22): the user releases the mouse button after the
menu is posted, moves the pointer to the item he wants and
then clicks the mouse again; or he presses the mouse button
until the menu appears, than drags the mouse to the correct
item while holding down the mouse button and �nally releases
the button when the mouse is on the wanted item (click-and-
drag).
Sometimes the term \pull-down menu" is used for drop-

down menu that only supports the latter click-and-drag
method.

2.7.3 Icons

Small pictures called icons can be used to remind the user
of certain actions or objects. The examples in the margins
of this and following pages show a few familiar icons from
outside the realm of computers. Usually, there is an action
associated with each icon, which is executed when the user
clicks the mouse.
Microsoft9 reserves the name icon for pictures that repre-

sent objects and uses the name symbol for pictures represent-
ing actions, although in practice the di�erence isn't always
that clear.
Designing icons is a form of art. It should show something

characteristic about the thing or actions, with as little ambi-
guity as possible and yet be simple enough to be recognized
at a glance. The margin on page 34 shows the familiar heart
icon. There is nothing about it that connects it to the concept

33

2 Human factors & gui's

F

10 Many designers

disregard the possi-

bility of making inter-

faces more language-

independent with

icons, by creating pic-

tures that are actually

rebuses or puns. For

example, one inter-

face I found has the

action \launching an

application" repre-

sented by a rocket

about to be launched.

In fact, this type of

icon also defeats rea-

son 2: giving a clue

about the action's

purpose.

of love, yet that is what it is commonly taken to mean. On the
computer screen the image often has to be formed from as
little as 32�32 or 64�64 pixels. To enhance the intelligibility
one or two words are sometimes added below the icon itself.
There is argument as to whether the addition of text defeats

the whole purpose of icons. I do not believe it does. The
purpose of icons is threefold: (1) visually mark a spot in such a
way that it is easier to �nd than when it is only marked by text;
(2) give some clue as to the purpose of the represented action
or object; and (3) make the interface language-independent.10

Only (3) is diminished by adding one or two words below
the picture. In fact, people that use applications with many
unlabeled icons often report that they do not understand the
icons and cannot learn them because there are too many. I
believe that the much touted \tool bar" that is currently en
vogue in MSWindows programs is more a result of the strive
for putting as many features as possible on the screen. There
is barely room for the tiny icons, let alone for text below them.
Some icons are common enough that they can be standard-

ized. Standardized icons are common to all applications on
a given computer system. They are part of the { in this
case: pictorial { language that a `computer-literate' user is
presumed to know. They do not need text to explain them,
instead, they can be used to explain other things. For ex-
ample, icons for directories, documents and programs have
long been standard on the Macintosh. Text that is put next to
them is explained by the icon as being the name of a directory,
document or program. Motif and OpenLook are also trying to
standardize some icons, among them icons that indicate the
severity of errors and warnings.

2.7.4 Buttons

Buttons are perhaps the most
exible elements of a gui.
Buttons come in many varieties, but a prototypical button is a
rectangle containing one or two words of text, called the label.
It usually has three modes: inactive, normal and highlighted.
An inactive button is often shown in gray to indicate that it
doesn't do anything at the moment. When an active (normal)
button is activated with the mouse, the button is highlighted
to provide some feedback.

34

2.7 Interface elements

11 Not culture inde-

pendent, unfortu-

nately. The heart-

shaped object

E
is a well-known sym-

bol for \love", but is

it universal? I don't

know.

Figure 2.6 Two
buttons, the left
one is Motif style,
the right one Open
Look.

A button can model a switch or toggle. As such, it toggles
its appearance or label at each mouse click. It can also be
a pushbutton (command button), causing an action to take
place when it is clicked on. Sometimes an action occurs as
soon as a mouse button is pressed with the cursor over the
button, sometimes the action doesn't start until the mouse
button is released again. The latter option is the most con-
venient, because it allows the user to change his mind after
pressing a button and move the mouse out of the button be-
fore releasing it. Not so often used is a button that causes
something to happen for the duration of the press. A sim-
ulated piano keyboard would exhibit this behaviour. A third
kind of button is the option button, that cycles through two or
more settings with each click. The change of setting normally
doesn't immediately cause a command to be executed, but it
in
uences the e�ect of some other command.
Several variations on this scheme are possible. You can

omit the border, putting the button in the midst of other words
for an e�ect much like that of hypertext. You can omit the text
and overlay a transparent button over an image, presumably
indicating that the button will cause something to happen
relating to that part of the picture. You can make several
buttons act together in such a way that always exactly one of
them is selected (toggled), in reminiscence of radio buttons;
an array of buttons acting in this way is therefore sometimes
referred to as an array of radio buttons, a term introduced by
the designers of the Macintosh interface.

2.7.5 Images

\A picture is worth a thousand words. . . " { moreover, it
is language independent.11 There are several reasons why
pictures might be used in user interfaces, even apart from
the possibility that displaying pictures may be the purpose of
some program.
A few nice pictures may help overcome a user's fear when

confronted with a new program. The pictures can be used as
a lure or as a reward. In the former case they would be visible
before the user performed some action, in the latter case they
would be shown afterwards. This use of pictures is normally

35

2 Human factors & gui'sG
H
K
LI
J

associated with (the interface of) educational software, but it
might �nd application elsewhere, too.
Pictures can also be used as explanations. They can con-

tain larger and more detailed versions of icons, or they can
give schematics about the functionality of a program. Other
examples are: a picture of a keyboard, showing the functions
of various keys (this is a standard part of the Macintosh in-
terface); a picture of the mouse, showing the functions of the
buttons; pictures of other devices, with accompanying text.
A third type of picture application is the one where the

image serves as background for various buttons and other
interface elements. The positions of the buttons on the pic-
ture indicate their purpose. Examples are: computer simula-
tions, which often show (a schematic representation of) the
simulated machine or process, with various other elements
superimposed on it, such as counters, clocks, thermometers,
et cetera; the educational game in which children are to pair
a word and a picture or vice versa; a hypertext-like system in
which it is possible to \zoom in" on details of a scene.
There is no sharp dividing line between icons and images,

but in general icons are small and highly stylized, while im-
ages are larger and more realistic. Icons represents a single
object or action, images usually indicate a context or are even
purely decorative.
The two type of images, raster images and vector graphics,

would both be useful. Raster images could show photographs,
cartoons and other free-hand drawings. Vector graphics are
normally produced by CAD (Computer Aided Design) pro-
grams and used for schematics, maps, etc. Vector graphics
have the bene�t that they can be easily scaled or otherwise
transformed. They can't be used for realistic looking pictures,
unless sophisticated imaging tools and considerable computer
power are available.
But it is not an easy decision which image format to use.

There is a multitude of formats available, some are very easy
to manipulate, others are very compact, some can only deal
with black and white, others have unlimited colour capabil-
ities. A format like gif compresses images quite well, but
it is limited to a maximum of 256 colours per image, even
though the number of available colours is much larger. It is
also widely used and well documented. tiff is another well-
known format, less often used thus far, but it doesn't have the
limitations of gif. Formats without compression are much
easier to handle, at least if you have enough disk space. pbm
and xpm fall in this category.

36

2.7 Interface elements

2.7.6 Sliders

Sliders in the context of gui's are pictures of slides or valves
that can be slid along a scale between two extremes. They
provide a way for analogue input. The best known examples
of such sliders are scroll bars, which are used to slide a text
through a window.

Figure 2.7 An ex-
ample of a slider
(Motif style).

Scroll bars actually show two things in one picture. They
show which part of a large document is visible in a window:
the slider is at the top (or left) of its scale if the top (or left
end) of the document is visible. However, the size of the slide
itself also indicates how much of the document is visible: if
the slide is as long as the scale (so that it won't move) it
means that all of the document is visible.

Figure 2.8 An ex-
ample of a scrollbar
(Motif).

A simple slider (not a scroll bar) usually has a single pa-
rameter: the relative position of the slide, given as a number
in the interval [0,1] or as a percentage. Somewhere else
in the program some variable is coupled to this parameter.
The variable may represent a temperature in a simulation,
the brightness of a colour, the volume of sound, et cetera.
There are many instances where the exact digits aren't very
helpful and analogue input is much more suitable.
Sliders are also used for output. They can be progress in-

dicators for some process or they can indicate such things as
volume, brightness and speed.

2.7.7 Prompts (text fields) & editors

A prompt or text �eld is a short question or other indication
that input is requested, with room next to it where a single line
of input can be entered. Often the input consists of a number
or a word, but it may be more than that. A program might
use a prompt to ask for the name of a �le or for a password.
The prompt may provide a default answer that the user may

37

2 Human factors & gui's

accept or edit. Sometimes it also incorporates a template, for
example for a zip code or social security number, so that only
certain letters or digits can be entered at certain positions.
A prompt is a very small example of an editor. An editor is

used to enter or edit an arbitrary number of lines of text, often
a complete �le. Editors are used, for example, to enter notes
to oneself, messages to other people and computer programs.

2.7.8 Lists

A list is a vertical list of items (words), usually with a scroll-
bar next to it, from which the user can select one or more
items. There are �ve modes of operation (the terminology is
borrowed from Open Software Foundation [1991]):

Single selection
Clicking with the mouse on an element selects that el-
ement (indicated by highlighting) and deselects the pre-
viously selected element. This type of list has much in
common with a menu, but usually lists are longer than
menus (see �gure 2.9) and they contain objects or values,
whereas menus contain mostly commands.

Browse selection
Browse selection works like single selection, but in ad-
dition, dragging the mouse (i.e., with a mouse button
pressed) over the items selects each item as it is tra-
versed.

Multiple selection
Clicking on an element selects it, without deselecting the
previous element. Clicking on an already selected item
deselects it.

Range selection
Clicking on an element selects that element and deselects
the previously selected one. Dragging the mouse selects
all elements that the mouse traverses, while deselecting
any previous selection. Often it is also possible to click
on the �rst element of a range and then click another
button, or a combination of a key and a button, on the last
element of the range to select all intervening elements.

Discontinuous selection
Discontinuous selection is a combination of multiple se-
lection and range selection. Clicking on an item adds
it the set of selected items, clicking on an already se-
lected element deselects it. Dragging the mouse selects
all traversed elements. Dragging the mouse over already
selected items deselects them.

38

2.7 Interface elements

Figure 2.9 An
example of a list
(Motif).

2.7.9 File selectors

A �le selector is a special kind of list, that displays �lenames
from a certain directory instead of a �xed set of items. File
selectors are often combined with a prompt and some buttons
to create a �le selector box.
File selectors are very common in applications, but they

are used in di�erent ways. We must di�erentiate between a
number of cases, that may lead to di�erent dialogues. The
�rst case occurs when a program needs the name of a single,
existing �le; the �le will probably be used for input. In the
second case, a single �le is asked for, which may or may
not already exist. Usually, the �le is going to be opened for
writing and if the �le will thereby be overwritten, the program
warns about that. Thirdly, the program may ask for a num-
ber of �les in one action. Nearly always, this means existing
�les. Finally, the program may ask for a particular set of �les,
either all �les in a certain directory or all �le of the same type.

The baseline method

The most straightforward way of selecting a �le is simply by
typing its name. The program would display a prompt with
a blank �eld, where the user can type the name. This isn't
even a particularly bad method: in many cases, the user may
already know the name and { especially if the name is fairly
short { typing it may be faster and require less e�ort than
any of the methods outlined below.

Improvement 1: defaults

Like in many other situations where a value has to be entered,
the �le name prompt may o�er a default value. The default
may be the �le that the user has chosen in a similar situation
earlier in the program, or the �le that is by convention used

39

2 Human factors & gui's

Figure 2.10 The Motif �le selector box. It has two lists, one contains di-
rectories, the other �les within the selected directory. The prompt at the
top can be used to restrict the list to �les that match a certain pattern or
to jump to a directory that is not in the list. The other prompt shows the
currently selected �le and can also be used to enter a �lename directly. The
three buttons at the bottom con�rm the selection (removing the box from the
screen), apply the �lter pattern to the displayed list, and exit the box without

making a selection.

in this situation. For a discussion of intelligent defaults, see
Welling [1992]

Improvement 2: auto-completion

The gnu Emacs editor made popular a way of entering �le
names where pressing the space bar would expand a partially
entered name. Typing a unique pre�x is thus enough to select
a �le. Other programs have copied this style of �le selection,

40

2.8 Resources

12 see Microsoft Cor-

poration [1991]
13 see Open Software

Foundation [1991]

such as Hewlett Packard's Softbench (a case tool). It is also
available in the form of a specialized widget, the FileComp
widget by Robert Forsman for the Free Widget Foundation
(which is not a foundation at all). The Korn shell (ksh) also
provides this functionality, although for obvious reasons it
isn't bound to the space bar, but to the escape key.

Improvement 3: selecting from a list

The �le selector object in gui's is a scrolling list of �le names,
from which the user can select the name he wants. The list
can show all �les from a directory, all �les of a certain type,
or a set of �les that have been selected earlier. Sorting the
list in various ways can help the user to quickly �nd the �le
he needs.

Improvement 4: selecting icons

If the list of �les is not only used for occasionally selecting
�les, but becomes the central object of a program, then the
�les are often laid out two-dimensionally in rows and columns.
Every �le is furthermore represented by an icon, with di�erent
icons indicating di�erent types of �les. The most common
kind of application that uses this method of presenting �les is
the (direct manipulation) �le manager, a program that allows
users to copy, rename, move or delete �les (see �gure 2.11).

2.7.10 Accelerators

Even in an interface that can be fully controlled with a mouse,
it is often convenient to be able to use the keyboard for com-
mands as well. Keyboard equivalents for mouse actions are
called accelerators (Microsoft: access keys12). The Motif 1.1
style guide13 only allows accelerators for menu items. Other
mouse actions can still be replaced by key presses, but in a
more cumbersome, though not illogical, way, using a mecha-
nism called \keyboard traversal".

2.8 Resources

The Macintosh, gem and X Windows all have the concept
of a resource. Although the purpose is the same, the form
is vastly di�erent. Resources on the Macintosh are encoded
descriptions of various objects used in a program's interface.
The resources are stored in the same �le as the program itself,
and they can be edited with a special program, ResEdit. The
main purpose of resources is to make a program adaptable to
di�erent languages. ResEdit allows you, among other things,

41

2 Human factors & gui's

Figure 2.11 An example of a �le manager, showing how di�erent icons repre-
sent di�erent kinds of �les. This view is from Hewlett Packard's vue, based

on Motif 1.1

to substitute texts in menus, buttons, etc. gem has similar
resources, but stores them in a separate �le. Again, you need
a special program to change anything. Resources under X
Windows are stored in various places, but most often in a �le
called \.Xdefaults". This �le is a collection of resource names
and values. The resource �les are databases, with records
and �eld names. There are records for di�erent programs or
classes of programs and each record has �elds, which may
have sub�elds, etc. Each of the �elds has a single value,
either a string or a number. E.g., the width of the border of
the \Cancel" button of the program \prog" would be speci�ed
as: prog*Cancel*borderWidth: 4

42

2.9 Con�gurability, adaptability & intelligent interfaces

14 see Browne, Nor-

man and Riches

[1990]
15 see Sullivan and

Tyler [1991]

2.9 Con�gurability, adaptability & intelligent interfaces

2.9.1 Configurability

If people will be using an interface for any length of time,
they may want to con�gure it according to their personal style
and preferences. It is usually not a good idea to o�er this
option to �rst time users, but there are good reasons to add
con�gurability to some interfaces.
People di�er. If a single program is able to put on various

faces it may appeal to more people. Situations di�er also and
they may even evolve. A program may last longer if it can be
adapted to many contexts. Let's look at some of the variations
among people.14

� People may have become used to particular types of inter-
faces, speci�c key assignments, speci�c types of menus,
etcetera.

� They may or may not be familiar with the tasks a program
is carrying out; some may even know how the program
works internally.

� People di�er in their adroitness with the keyboard and
the mouse. Some may have trouble moving the mouse to
exact positions, although it seems this can be trained.

� Not everyone is able to think in terms of procedures and
algorithms. Many tasks need planning and formulation of
subgoals, but real programming is not everybody's forte.

� Some people are scared of making mistakes or damaging
the computer. They will be reluctant to try out options
that are not explained su�ciently.

� The internal logic or structure of an interface may not
be apparent to people with less pattern recognition skills
than the program's designer.

� Even if human help is available, people may be unwilling
or unable to use it to its potential.

� People may not be motivated to explore an interface.

� Expectations about a program can be both too high and
too low.

� Some people have special skills that could be exploited.

2.9.2 Adaptability

Beyond con�gurable systems we can envisage smart sys-
tems, also called intelligent user interfaces,15 that adapt
themselves. Maybe by borrowing techniques from Arti�cial

43

2 Human factors & gui's

16 see Lu�, Gilbert

and Frohlich [1990]

Intelligence such interfaces could try to match the abilities
and character of a user automatically. To distinguish this
capability from the one described in the previous section I
suggest we call user-initiated changes \con�gurability", while
we call automatic adaptation \adaptability".
Adaptability is only feasible in complex systems that inter-

act with a user in many di�erent ways over an extended period
of time. The program and the user must be able to \get to
know" each other.
Psychology and Sociology will have to provide ways to mea-

sure skills and knowledge. An attempt at de�ning such met-
rics is described in Browne, Totterdell and Norman [1990].

2.9.3 Conversation and role playing

The interface between human and computer should follow
the rules of normal conversation. Getting the computer to
perform a certain task involves entering into a dialogue. But
the two partners { user and computer { need not be peers.
The role played by the user and the program can be chosen
by the interface designer.
The choice is along a scale from, at the one end, all initiative

with the user and, at the other end, all initiative with the
computer. The former corresponds to a model of the program
as a tool or instrument. The latter might be used e.g., in
computer aided education, where the computer acts the part
of the teacher.
Very complex programs may be better handled with pro-

grams that converse with the user on a peer to peer basis,
each with its/his own expertise.
Conversation Analysis (CA) is currently a topic of much

research.16 Since the mid sixties, sociologists have stud-
ied the everyday conversations between people. Nowadays
people often �nd themselves also talking to computers and
other machines. Therefore, many of the results of CA can and
should be applied to user interface design, in order to make
the dialogue smoother. Indeed, it works the other way round,
too: the computer can be used to study conversation itself in a
controlled manner { but that is outside the scope of this text.

2.9.4 Small scale intelligence

As said above, really intelligent systems are di�cult to create
and will require close cooperation between interface and ap-
plication { something that is usually to be avoided for reasons
of maintainability and ease of design. However, there are
some exceptions to this general rule. Some knowledge can

44

2.10 The process of designing UI's

17 see Welling

[1991], Welling

[1992]
18 See also Welling

[1992], though the

description here is

of a more recently

implemented system,

not yet published.

be handled on a small scale by individual intelligent objects.
For example, in a task where the user repeatedly has to enter
words from a limited set, the text �eld itself could try to �nd a
pattern in the sequence of previously entered words and o�er
an intelligent default value. Auto-completion and thesaurus-
based data-entry are also possible.17

As an illustration of the possibilities, consider the following
data-entry interface:18 The task is to enter large amounts of
data into a database from hand-written historical archives.
The people that enter the data are trained in reading the old
handwriting, but that is not enough to fully disambiguate the
input. Inconsistent spelling, unreadable writing or simple
mistakes by the writers pose problems. Many consistency
checks and heuristic rules are used to help the typist.
One technique has the double purpose of saving keystrokes

and helping the typist to interpret the writing. A text en-
try �eld uses incremental search to search through a list of
items for a match. Usually after just two or three letters the
intended text is found and the typist can stop typing. The
suggested expansion is shown in a lower-intensity color, to
di�erentiate between what the user typed and what the pro-
gram o�ers.
If the suggested text is not what the user intended, he can

ask for a pop-up list of entries to browse. The list can either
be a list that is prepared beforehand, or a list that is built-up
during a session from all the entered texts.

2.10 The process of designing UI's

How are interfaces normally designed? An idealized overview
is shown in �gure 2.12. When the design is undertaken con-
scientiously, quite a number of steps have to be taken and
discussed. Of course in many cases an interface is not really
designed, but simply copied from a popular application.
Many methods and tools are applied in the di�erent stages

of the design, but many of the tools are used for lack of better
ones.
When a new project is started, the goals are formulated

and prospective users are asked about their wishes. Among
the resulting information should be data about how users cur-
rently perform their tasks and how they would like to change
that. There are no specialized tools that help in this phase. It
is merely a question of talking, reading and documenting.
When the designer or the design team starts with the de-

velopment, the �rst ideas are usually drawn \on the back of

45

2 Human factors & gui's

- sequence visualisations

- add behaviour and

functionality

- evaluate with

users

- obtain information

- determine

interaction styles

and devices

- determine basic structure

of UI

- create drawings of

interface elements

about users

- add missing behaviour

- obtain information

- fill out with

general

error/help messages

- fill out with final

interface artwork

and functionality

- evaluate with

users

about task domain

- recreate

drawings on computer

- simulate interactivity

collect information

generate interface ideas

create prototypes

create final UI

specific

Figure 2.12 A schematic overview of the tasks of an interface designer. The
four high-level tasks (boxes) are done more or less in order, although there
is a lot of trial and error. The circles give more details. These sub-tasks are

not performed in any preset order. (Based on Van der Velden [1992])

an envelope". Only a few of those ideas are written down. The
interfaces are represented by { often numerous { sketches.
Interfaces cannot be designed \just right" the �rst time,

so prototypes have to be created, tested and changed several
times. Prototypes can sometimes be created with the same

46

2.11 Style guides and guidelines

19 see Van der Velden

[1992]
20 Apple Computer

Inc. [1987]
21 Open Software

Foundation [1991]
22 see Apple Com-

puter Inc. [1987]
23 see IBM [1989]
24 see Microsoft Cor-

poration [1991]
25 see Open Software

Foundation [1991]
26 see Sun Microsys-

tems [1990]
27 see Webster

[1989]

uide that will be used for the �nal interface, but when the
designer is not a programmer the uide may be too complex
for him to use. According to a study by Van der Velden19 many
designers resort to draw/paint programs to draw the various
states of the interface. HyperCard (see section 3.3) is also
frequently used, at least on the Macintosh.
To help in preventing errors, designers can check with pub-

lished interface guidelines: books like Brown [1988] that list
common do's and don't's. Often there is also a style guide to
adhere to, such as Apple's Human interface guidelines20 or
the osf/Motif style guide.21

When a prototype exists that more or less works as desired,
the design can be �eld-tested. People can be observed while
they work with the prototype, they can be interviewed after-
wards, and they can be asked to \think aloud". If a suitable
laboratory is available observation can be done with the help
of a one-way mirror or video camera.
If the prototype has been created with the same uide that

is to be used for the �nal interface { provided a uide is used
at all { then the prototype can often simply be enhanced and
further �lled in. In the other cases a programmer is called in
to create the �nal design in some programming language.

2.11 Style guides and guidelines

One of the goals of hci research is to come up with a set of
guidelines for creating \good" interfaces. So far, published
guidelines have been either very vague and general or too
speci�c to a certain context. It is expected that better guide-
lines eventually will be too subtle or too complex to be easily
understandable by designers of interfaces when they are writ-
ten down. A better method may be to incorporate them into
software { either an expert system or a uims/uids.
The lack of guidelines has prompted a number of hardware

and software vendors to create style guides instead. They
represent a particular choice of interaction style, that seems
to work well in practice. The best known such style guide is
probably the one by Apple Computers, called the \Human In-
terface Guidelines".22 Other style guides are \Commom User
Access" for PresentationManager by IBM,23 the \gui guide"
for MS Windows,24 the OSF/Motif \Style Guide",25 the
Open Look technical reference26 and the NeXTStep book.27

There is a lot of overlap between the styles for MS Win-
dows, Motif and Presentation Manager, testimony of the fact
that they were created in close cooperation and based on a
common set of principles (Common User Access, see above).

47

2 Human factors & gui's

48

1 see Goldberg

[1983]
2 see D�kstra [1987]

Chapter 3

User interface
development systems

Programs that sport a graphic interface are typically very large
and complex, because handling of the bitmapped screen and
reacting to all di�erent types of input involves a lot of work. To
facilitate the work, sets of algorithms and whole libraries of
(graphics & windows) subroutines are being developed (e.g.,
X Windows) that are often also commercially available (e.g.,
Microsoft Windows). In all these systems, however, it re-
mains the case that the programmer has to work in a pro-
gramming language that is primarily geared to working with
simple objects like numbers and letters.
Languages that use object-oriented techniques are much

better suited to handling the complex structures needed for
graphic systems. In languages like Smalltalk1 data and pro-
cedures are not considered separate. Instead one starts from
objects that are de�ned by the data they can contain as well
as the operations performed on them (section 3.1.3).
A di�erent approach is to use a special-purpose language.

Such a language is often part of a larger system, a uims or
uide. Some uide's even forego the use of a language and
let the designer assemble an interface by direct manipulation.
Of course, as soon as interfaces with windows, icons and

a mouse become easy to make, the road is clear for new
ideas that are waiting already, such as voice-I/O and devices
that track the movement of your head or eyes. But even if
interface-building tools serve no purpose other than speeding
up the development of new ideas, that is enough reason to go
ahead with it. Or as Edsger W. D�kstra said it in his 1972
Turing Award Lecture: \[...] once we have freed ourselves
from the circumstantial cumbersomeness, we will �nd our-
selves free to tackle the problems that are now well beyond
our programming capacity."2

49

3 User interface development systems

3.1 Software development techniques

Most modern software engineering methods stress the im-
portance of good, precise speci�cation, before actual coding
starts. But in the design of user interfaces this technique is
not advocated. The method called iterative design { meaning
design that is regularly adjusted after �eld tests { is much
better here, the main reason being that people are complex
and seldom certain about what they want.

3.1.1 Specification vs. iterative design

This presents a dilemma for software developers. How do you
reconcile formal speci�cation of one part of a system with the
need for experimentation in another part?
The �rst step towards solving the problem is to be aware of

it. Firstly, to take it into account when planning the develop-
ment e�ort. Secondly, to be able to trace a problem back to
the appropriate part of the design.
This seems to call for a separation of the software in two

parts (a modular approach, or even a client-server model,
see 1.6.7) and a de�nition of the interface between them. This
solves most of the problems for many programs, in particular
those that aim to solve a clear-cut problem. When the task
can't be formalised so easily, the problem may require other
techniques, because the development of the user interface
may still call for changes in what the program does.
Two examples clarify the distinction. First look at a

database engine that needs a user interface. The database
has been speci�ed precisely, complete with its own algebra.
In principle, it can do anything a database needs to do. All
that remains for the user interface is to present a particular
view. You can choose a radically di�erent interface without it
having any consequence for the database.
As an example of a system that can't be speci�ed com-

pletely beforehand, consider an electronic messaging system
between people in a work group. Experimenting may reveal
that users do not just send messages, but that they try to
quote and refer to earlier messages, sometimes even several
earlier messages. A system that was designed to have two
modes of operation { reading mode and writing mode { may
need redesign to allow reading and copying of messages even
while composing a new one.
A number of techniques are available for assessing the qual-

ity of an interface. Depending on available time and resources,

50

3.1 Software development techniques

the researchermight use questionaires, interviews, protocols,
observation with video, performance testing, etcetera.

3.1.2 Prototyping

The ability to use graphics and a mouse (or any other pointer
device) opens up a range of possibilities for interfaces. Should
you associate a certain action with an icon, a menu or a but-
ton? Should the mouse be \clicked" once or twice? Does
moving the mouse have any signi�cance? Do you attach a
meaning to the position of the mouse? Do you use colours?
Large letters? Animations?
Little can be said in advance about how e�ective an inter-

face will be. Much depends on the user's experience, the
similarity to other programs and, of course, taste. The best
way is often just to try and see: make a prototype and test
it out, collect protocols of the way people interact with your
program, evaluate their reactions and make a new prototype;
and so on until you are satis�ed.
However, it is not often that you have the time and facilities

to actually test a prototype and discard it for something else.
And after spending months implementing, who would be will-
ing to do it all over again? The problem, again, is that general
purpose programming languages are not very well suited and
that even with precompiled libraries of useful routines, the
programmer has to do a lot of things over and over again.

3.1.3 Object-oriented programming

In object-oriented programming a program is made up of ob-
jects that communicate. Each object represents some data,
together with the operations that are de�ned for that data.
The implementation of the operations is hidden inside the ob-
ject (encapsulation). Each object is of a certain type, called
the object's class. There may be general and more speci�c
classes. A more speci�c class is usually a sub-class of another
class, which means that the subclass inherits all operations
from the super-class and adds some more. It can also add
more dimensions to the data that is kept in the object. An
operation in an object is activated by sending a message to
the object.
The same message can mean di�erent things to di�erent

classes of objects. This is called polymorphism. In contrast, a
procedure in a procedural programming language has a unique
function. It can only be varied by substituting di�erent values
for the parameters of the procedure. E.g., in a graphics pro-
gram an icon can be an object: it contains information about

51

3 User interface development systems

3 The exception is

usually the evaluation

of Boolean conditions.

In the expression

if A ^ B then...

B need not be evalu-

ated when A fails. A

and B can be quite

complex, even involv-

ing user interaction.

Lazy evaluation in

this case saves the

program { and pos-

sibly the user { from

unnecessarily pro-

cessing B. Ideally, if

A and B both involve

actions on the user's

part, the user should

have the option of

answering B before

A.

the appearance of the picture and information about possible
changes (di�erent colours, di�erent position on the screen, et
cetera).
This method of software design better matches the picture

that the user (and the designer!) has of the �nal interface:
a collection of objects on the screen, each of which he can
manipulate independently. Smalltalk and the X Toolkit library
are examples of object-oriented systems.

3.1.4 Lazy & eager evaluation

There is a di�erence in the way processing proceeds in the
application and interface parts of a program. Most programs
are written in imperative languages, that support only eager
evaluation. In this type of program every part of an expression
and every argument to a procedure is evaluated, even if later
it proves to be unnecessary.3

On the other hand, the event-driven processing required
by graphic interfaces is more like the lazy evaluation type of
processing, where computation is postponed until absolutely
necessary. This also means that inputs are not processed in
the order dictated by the program, but only as soon as and in
the order as chosen by the user. The system must be able to
work with and display partial results.

3.1.5 Non-deterministic design

An interesting reversal of the role of user interface design
is mentioned by Thimbleby [1990] (in box 8.4 on page 166
of his book). Non-deterministic design is design for which
�tting users will be found afterwards. It isn't that uncommon
and it isn't necessarily bad.
It is like an economic market with many producers and

many consumers. Many will �nd a satisfactory partner, be-
cause of all the variations.

3.2 Some history

Even in the �fties there were some graphics terminals avail-
able, mostly for the display of graphs and other plots. They
often had a limited form of graphical input with two thumb
wheels that moved a hairline cross on the screen. A more
ambitious use of graphics was Ivan Sutherland's Sketchpad
program of 1962. It allowed geometric forms to be drawn
on the screen, and the corresponding datastructures to be
maintained internally.
The use of graphic interfaces got a boost at the end of the

seventies with the development of three computers; Xerox

52

3.2 Some history

4 see Degano and

Sandewall [1983] for

a description of the

Alto.
5 see Rose [1989]

Alto, Lilith and Xerox Star. These computers used a screen
that could display high resolution graphics and they received
input from an input device that was called a mouse, that was
invented at Doug Engelbart's Augmentation Research Cen-
ter at Stanford, some years earlier. Overlapping windows
were also introduced on these machines as was the desk-
top metaphor. At Xerox Palo Alto Research Center (PARC)
the Xerox Alto computer was developed in 1974 for internal
use. It was the sort of machine the developers wanted for
themselves. It had 64Kb memory { for that time a large and
expensive amount { and a black and white graphics screen
with about half a million pixels (comparable to modern super-
vga).
The Lilith computer was created in 1977 by a team headed

by Niklaus Wirth in Z �urich, after Wirth spent a year in the
laboratory of Rank Xerox in Palo Alto, where he helped de-
velop the ideas that led to the Xerox Star computer and the
�rst version of the programming language Smalltalk (1976).
The Star was the only machine that was sold commercially
(in 1981), but it was very expensive and few people could see
the bene�t of the new system.4

The young computer company Apple also tried to turn the
Xerox ideas into a commercial product, but their attempt, the
Lisa computer, was no success. The value of the ideas was
recognized, however, by Alan Kay, one of the major forces
behind the Alto, who left Xerox in 1980 and some years later
joined Apple to help design the Macintosh computer (1984),
the machine that introduced millions of people to gui's and
made them popular. (The hectic years when the Macintosh
was born are described in \West of Eden".5) In 1985 already
other manufacturers followed Apple's example and created
machines or software or both for graphic interfaces (Com-
modore Amiga, Atari ST, Digital Research's GEM for Atari
and MS-DOS, Microsoft Windows).
The next notable step in this chronology was again made

by Apple. In 1987 the Macintosh was enriched with a piece
of software called HyperCard. This is a system that allows
users to design simple programs that make use of the capa-
bilities of the Macintosh. It is in a sense a replacement for the
programming language basic, that was often bundled with
earlier computers for exactly the same reason.
HyperCard introduced a new metaphor, that of stacks of

cards. Each card contains some information and some active
elements, such as links to other cards or programs to execute.
The user can go forward and backward through the cards or

53

3 User interface development systems

go to another stack. Prede�ned elements can be combined
with texts and images to create, for example, a database stack
or a game stack. When the prede�ned elements are inad-
equate, there is a programming language, HyperTalk, with
which small programs can be written that are attached to
buttons, stacks, icons, etcetera.
HyperCard and HyperTalk are especially important, be-

cause they are explicitly meant to be used by end-users, not
programmers. The HyperTalk language is kept simple and
readable.
The Trillium user interface design environment created at

Xerox parc in 1983 was one of the �rst systems speci�cally
for use by the designers of interfaces. In this case the goal
was to simulate the interfaces of various machines, such as
copiers and printers. Fast prototyping was the main require-
ment. It is an interpreter { the \Trillium machine" { that
manages an interface built up from various types of objects
or \frames", that react to changes in their environment, such
as the press of a mouse button. The actions in Trillium are
coupled to so-called sensors. Henderson [1986] describes the
Trillium system in more detail.
The XWindow System is a combination of a window system

and a network system. It uses a client-server model. The
server manages a display and displays whatever the clients
request. There may be any number of clients, running on any
number of machines. The clients own one or more windows.
To ease programming, X provides a library of routines for
common operations, such as opening and closing windows,
drawing lines, writing text, etcetera. Even with this \Xlib"
library, programming is very complex, and additional, higher
level libraries are provided on top of Xlib, such as the X
Toolkit.
X Windows was �nally distributed in 1987. It had been

growing from 1984 through 10 versions at the MIT (version
10 was released in 1986). The introduction of the X Window
System meant that now nearly all unix workstations could
use the same window system, which made them much more
popular.
In 1988 the NeXT computer was introduced: a unix work-

station with built-in support for sound and digital image pro-
cessing and also an object-oriented tool for designing inter-
faces. The tool, NeXT Interface Builder, makes it easier for
programmers to create gui's on this computer.
In 1989 a new portable computer was introduced, the GRiD-

Pad, a so-called pen-computer. It is a computer without a

54

3.2 Some history

6 see Clarkson

[1991]

keyboard, but with a stylus with which you can write directly
on the screen. The computer can recognize the handwriting.
Since then a number of similar computers have appeared, but
the technology, especially the handwriting recognition soft-
ware, is not yet mature enough for widespread use.
HyperCard had a lot of followers, both on the Macintosh

and on the IBM PC under Microsoft Windows. A di�erent
approach is taken by the program Matrix Layout, which pro-
vides its own graphic routines on the PC and uses them to let
users create programs by drawing
owcharts on the screen.
The latest contribution from Xerox is the Information

Visualizer, a way of representing information on screen that
uses perspective drawing and animation to pack more data in
a small space. The metaphor is no longer the
at desktop
with documents and tools scattered all over it, but a collec-
tion of rooms with walls, doors, and a
oor, containing one
or more objects. Perspective drawing allows the interface to
show more parts of an object (a directory tree, for instance)
by making them smaller. To have a closer look at another
part of the structure, you rotate it smoothly until the required
part comes into view. Zooming in or out is likewise animated.
The perspective and the animation give you additional ways of
seeing the relations between parts of an object and these clues
are presumably processed unconsciously { and therefore very
fast { by parts of your visual system.
It is interesting that the Information Visualizer uses a nor-

mal keyboard and mouse and no additional hardware. But the
fact that the current { experimental { implementation only
runs on a Silicon Graphic Iris graphics computer suggests
that the system isn't yet ready for the average workstation (or
the other way round: that workstations still need to become
more powerful).6

Meanwhile, the X Window System has spawned many new
developments. The X Toolkit de�nes widgets, which are com-
plete, self-contained implementations of interface elements,
contained in libraries that can be linked to a program. The
widgets allow programming in a more or less object-oriented
way. Various vendors have provided sets of widgets to ease
and illustrate programming in their preferred style. Examples
are the Motif widget set and the Open Look widget set. There
are also many public domain widgets and widget sets, such
as that of the Free Widget Foundation.
There are also programs marketed by hardware manufac-

turers to make programming for X on their machines eas-
ier (Hewlett Packard's Interface Architect, e.g.). And there

55

3 User interface development systems

7 see Linton, Vlis-

sides and Calder

[1989]
8 see Shmucker

[1986]
9 see Rochkind

[1989]
10 see Hesketh

[1992]
11 see Singh, Kok

and Ngan [1990]

are public domain programs like David E. Smyth's Wcl and
Richard Hesketh's Dirt, that try to make widget programming
more
exible.

3.3 Current systems

A number of uims's and uide's is currently available, either
commercially, free, or for research purposes. An up-to-date
list can be found in Heeman [1992]. uide's use di�erent
approaches, which can be broadly classi�ed as toolkits, in-
teractive gui builders and script-based systems. (See also
�gure 3.1.)
A toolkit is nothing more than a library of routines, that

can be called from a program. Toolkits may provide draw-
ing routines, windowing routines, and input routines. Exam-
ples are the standard X Toolkit, InterViews, CommonView,
MacApp and XVT. InterViews has been created at Stanford
University.7 It consists of a set of C++ classes. The most
notable feature is the way in which screen layout is speci�ed:
it uses the boxes-and-glue paradigm of TEX. CommonView is
commercial product by Glockenspiel. There are versions for
Presentation Manager, MS Windows and X, which means
that (almost) the same C++ programs can be compiled under
all three window systems. MacApp by Apple8 is a library for
Object Pascal and C++ on the Macintosh. XVT9 is a library
for use with C. Like CommonView, it o�ers versions on a
number of platforms, viz. X11 with Motif, X11 with Open
Look, Macintosh, MS Windows, Presentation Manager and
text-mode under DOS and Unix.

Interactive gui builders are programs that let a programmer
create an interface by direct manipulation, i.e., by dragging
and dropping interface objects, until the screen looks like
the desired layout. Unfortunately, this method can only be
used for specifying the appearance of the interface, the dy-
namics must still be programmed, unless the defaults are
good enough. Some examples are Dirt, Druid, NeXT Interface
Builder and Visual Basic.
Dirt10 is in the public domain. Dirt runs under X and out-

puts a resource �le that must be read withWcl. The behaviour
of the interface cannot be speci�ed graphically, but must be
programmed in the form of callback routines. Druid11 gen-
erates C and Motif uil (User Interface Language). Part of
the dynamics can be speci�ed interactively as well. TheNeXT
Interface Builder \IB" outputs Objective C code. Some stan-
dardized dynamics can be entered graphically. Visual Basic

56

3.3 Current systems

Research Commercial

Toolkits ET++ *CommonView
*Interviews gui Master
pce *MacApp

*suit OI (Object Interface)
winterp *xvt

*X Toolkit

Interactive *Dirt Builder Xsessory
systems *Druid DataViews

Fabrik dec vuit

*Formsvbt Devguide
Garnet ezX
Ibuild Interface Architect
MoDE laf Toolkit
Peridot *NeXT Interface Builder
Programming by Rehearsal TeleUSE
Serpent uimx

tae Plus ViewEdit
uide *Visual Basic

*digis XBuild
*Matrix Layout
*X-Designer
XFaceMaker2

Script- HyperNeWS *HyperCard/HyperTalk
based *Tooltool NewWave

*wcl Prograph
*Motif uil Serius89
*Tcl/Tk ibm dialog manager
*Gist

Figure 3.1 A table of user interface development systems. The table is an
extended version of table 2 from Heeman [1992]. The products that are
marked with an asterisk (*) are mentioned in the text of this chapter. Gist
is the author's own system, described further on in this book. The \script"
section contains both non-interactive script-based systems and interactive
script-based systems. Additional (commercial) systems can be found in Ped-

die [1992].

12 see Bergmans

[1993]

runs under MSWindows. It uses the programming language
Basic for programming the dynamics. X-Designer12 also pro-
vides a direct manipulation editor for laying out an interface.
It generates C, C++ or Motif uil. The C or C++ functions
that it creates are empty stubs, that must be �lled out with
additional C code. For that reason, X-Designer can be com-
bined with a case tool, called CodeCenter. It is targeted at
programmers only. It is di�cult to change an interface, since

57

3 User interface development systems

13 see Smyth [1991]
14 see Apple Com-

puter Inc. [1988]
15 see Avrahami,

Brooks and Brown

[1989]
16 see Brown and

Meehan [1992]

regenerating the C stubs causes any code that was put into
them to be lost. Changing the layout or the default resources
is no problem, however.

Script-based systems read a description of the interface and
either generate a program or directly interpret the script. A
\script language" is a special purpose programming language,
in this case for de�ning interfaces. Like all programming lan-
guages, it can be either declarative or procedural. Procedu-
ral languages make use of algorithms, declarative languages
de�ne relations and constraints. Procedural languages are
not very well suited for non-programmers, but they may give
programmers better control. Most script must be typed in
�rst and are then executed, but some systems allow the script
to be changed on the
y.
The Motif uil is an example of an interpreted language,

as are Wcl13 and HyperCard.14 Matrix Layout is a sort of
halfway system between a script and a direct manipulation
system. It builds a program by assembling a
owchart in-
teractively. The
owchart is then translated into either an
executable program or source code for Pascal, Basic or C. The
program can also be executed and previewed directly from the
editor. It runs under DOS and MS Windows.
A previous version of Formsvbt15 allowed the designer

to switch between a graphic direct manipulation editor and
a text editor, where a textual representation of the interface
could be edited. In the newest version (July 1992)16 the direct
manipulation editor was dropped and only the editor for the
Lisp-like language was kept. It is still possible to get a preview
of how the interface will look, by pressing a button in the
editor. Formsvbt can only be used with Modula-3 (formerly
Modula-2+) programs, which must be speci�cally written for
use with one of the vbt libraries. Figure 3.2 shows a sample
interface description in Formsvbt.
Tooltool is a uims that runs as a separate process in par-

allel with the application. The application runs as though it
reads input from the terminal and writes output to the screen,
but Tooltool intercepts the I/O and passes it through a win-
dow. It uses a script only for transforming user input, output
is simply displayed in a text window. Tooltool has extensive
support for expressions, almost as expressive as C. The script
syntax is reminiscent of C in other respects, too. The types
of interfaces that can be created with it are limited, however,

58

3.4 Advantages & disadvantages

Figure 3.3 The �le
viewer correspond-
ing to �gure 3.2 in
use. (This image
and the text of �g-
ure 3.2 are taken
from Brown and
Meehan [1992],
page 24)

since the number of interface elements is quite small and
non-extensible, and since there can be no hierarchy among
elements. Tooltool can create a main window and any number
of dialog boxes, but all elements in a window or box must are
placed directly on the window, they cannot be nested. Tooltool
only runs on Suns under Sunview.

3.4 Advantages & disadvantages

Each of the systems mentioned has its own strong and weak
points, but they cannot simply be compared. They target dif-

(Rim (Pen 10) (ShadowSize -1)

(BgColor "White") (LightShadow "Black")

(DarkShadow "Black")

(VBox

(HBox

(Frame Lowered (Typein %fileNameString))

(Glue 10)

(Button %exit "QUIT"))

(Glue 10)

(HBox

(Shape (Width 100)

(Frame Lowered (FileBrowser %fileName)))

(Glue 10)

(Shape (Height 200 + inf) (Width 300 + inf)

(Frame Lowered (TextEdit ReadOnly %editor))))))

Figure 3.2 An in-
terface description
in Formsvbt. Note
the use of the Lisp-
like S-expressions
and the boxes-
and-glue metaphor
from TEX. The S-
expression de�nes
the interface to a
simple �le viewer.
Each object in the
interface must be
bound to a pro-
cedure with the
help of a library
routine in the
Modula-3 appli-
cation program.

59

3 User interface development systems

ferent types of users and claim di�erent parts of the user inter-
face design process. To make a broad categorization, we can
distinguish between systems for programmers, for designers
and for end-users.
(Professional) programmers can, of course, work with any

of these systems. What di�erentiates them from the other
two groups is that they are familiar with the concept of pro-
gramming, that they understand about e�ciency and that they
are the designated people when it comes to forcing the last
bit of performance from a system. They view an interface
as just another program, de�ned by its datastructures and
algorithms, of which only a projection is visible on screen.
By designers are meant those people whose primary ex-

pertise lies in the �eld of human-computer interaction. They
may or may not be programmers, but for the purpose of this
argument we assume they are not. Section 2.10 describes
how they work. They approach user interfaces from the \out-
side": the interface consists of the things that can be distin-
guished on the screen. The relations among them are usually
not described in terms of hidden objects or mechanisms, as
programmers would do.
When end-users are mentioned as creators of interfaces,

the interfaces involved are usually small, single-purpose, and
often temporary { the modern day equivalent of batch �les or
shell scripts.
End-users can also modify existing interfaces. Support for

such con�guration of an interface by the user can be built into
the interface, or it can be provided by the same uims that
the original designer used.

3.4.1 Toolkits

Toolkits are clearly targeted at programmers. Usually they
are tied to a speci�c programming language, such as C, C++,
Lisp or Prolog. They should be evaluated with respect to their
�tness for use in programming. For this reason, and because
the use of toolkits presupposes that the application and the
interface are developed together, toolkits will not be dealt with
in this text.
In fact, toolkits are often used in the creation of other sys-

tems. For example, many of the non-toolkit systems have
been implemented with the help of the X Toolkit, including
my own system, Gist.

60

3.4 Advantages & disadvantages

17 see Van den Bos

and La�ra [1990]

and De Bruin, Bouw-

man and Van den Bos

[1993]

3.4.2 Interactive systems

Interfaces have both visual and dynamic { or behavioural {
aspects. Visual aspects include size, location, colour, dec-
orations, etcetera. Dynamic aspects include constraints on
what actions are available at what time and what action corre-
sponds to which function of the application. Since interfaces
are often designed by trial and error, it is seems logical to
allow the interface to be created interactively. Many uide's
employ some form of interactive design, often just for the
visual aspects, but sometimes also to specify part of the be-
haviour.
Interactive systems usually employ direct manipulation to

create at least the visual lay-out of the interface. Interface
elements are dragged and dropped to their position on the
screen, and they can be resized and static texts can be added
to them. The relations among interface elements are much
harder to specify with direct manipulation. Geometric rela-
tions can sometimes be added with the help of metaphors
such as blobs of glue (Fromsvbt) or springs (digis).17

Various systems have also tried to provide some means of
adding dynamic behaviour by direct manipulation. E.g. digis
allows a diagram to be drawn to specify in what order the
various elements of an interface are activated. Interface el-
ements can be collected into panes and then the same kind
of diagrams can be created for the relations among panes,
thus allowing hierarchical relations. Another system that tries
to replace traditional programming with visual programming,
although not strictly direct manipulation, is Matrix Layout.
It uses
owcharts to specify procedures. The elements of the

owcharts can be selected from menus and inserted at the
right place.
Dirt allows functions (\callbacks") to be attached to inter-

face objects. The functions have to be created beforehand
and must be explicitly exported by the application. In digis,
the application must �rst be described with an object-oriented
\Domain ApplicationModel". The objects in the interface can
then be linked to objects in the application model by means
of various kinds of links or \signals".

3.4.3 Interactive script-based systems

Script languages have a number of advantages over both
general-purpose programming languages and DM systems.
Script languages are usually much simpler than general-
purpose languages. They are easier to learn and they use

61

3 User interface development systems

high-level concepts that are close to the concepts in the task
domain. And although the use of such languages seems a step
backwards from programming by direct manipulation, this is
not necessarily the case. Compared to DM systems, they have
the advantages of being printable and easily copied in whole
or in part. Also, a well designed language can often better ex-
press the actions of an object or the interface as a whole than
the geometric relations of which direct manipulation must of
necessity employ itself. At the very least programming with
such languages is much faster than laboriously moving ob-
jects, on all but the smallest interfaces.
When the script can be edited interactively { i.e., with

changes taking e�ect immediately, instead of after restarting
the system { or when visual aspects of the interface can be
modi�ed interactively, the systems are still called \interac-
tive". HyperTalk and Gist fall in this catagory. The combina-
tion of HyperCard with the HyperTalk script language seems
especially popular.
With script languages the challenge is always to �nd a good

compromise between the
exibility of a full-blown program-
ming language and the learnability of much simpler systems.
The designers of the HyperTalk language have tried to make
a language that reads almost like plain English. There are no
type declarations, but otherwise they have not tried to hide the
control structures. Figure 3.4 shows an example. Chapter 4
describes how the dilemma has been handled in Gist.

Figure 3.4 An ex-
ample of a Hyper-

Card event handler.
This script is at-

tached to a card and
asks a password
when the card is
opened. Note the

use of the word \it"
to refer to the most
recently mentioned

variable, in this
case the result of
\ask password".

on openCard

repeat 3 -- the user gets 3 tries

ask password "give password"

if it is 11801 -- whatever is

-- the coded password

then

pass openCard

exit openCard

end if

end repeat

beep 6

answer "Entry denied"

domenu "Stop HyperCard"

end openCard

62

3.4 Advantages & disadvantages

18 see Ousterhout

[1993]

3.4.4 Non-interactive script-based systems

Some interface builders rely solely on scripts and do not allow
interactive editing at all. Examples are Wcl and Motif uil.
Wcl extends the concept of resource as it is already present
in the X Window System to include the possibility to specify
a widget hierarchy and attach functions (callbacks) to other
widget. The application must be specially written for use with
Wcl, but the interface can then be modi�ed considerably with-
out changing the application.
Motif uil has a syntax that is reminiscent of C, but the de-

scription is purely static. This is strange, since the similarity
suggests that Motif uil can be used for writing algorithms,
but this is not the case. No dynamics can be speci�ed, except
for the attachment of callback functions that are de�ned in the
application. The description is compiled and linked with the
application, which means that a change in interface requires
a recompilation of the entire application.
Tcl/Tk18 uses the traditional unix shell as its model. In-

terface elements are created with commands that have argu-
ments and options. In contrast to normal commands, the
commands that create interface elements do not complete
before the next command is started. Instead they leave an
object on the screen. Figure 3.5 shows a Tcl script, the result
is shown in �gure 3.7. For comparison, the same interface is
also speci�ed in Gist, see �gure 3.8. Clearly, Tcl is targeted
at people familiar with imperative programming.

63

3 User interface development systems

mkPuzzle w

#

Create a top-level window containing a 15-puzzle game.

#

Arguments:

w - Name to use for new top-level window.

proc mkPuzzle {{w .p1}} {

catch {destroy $w}

toplevel $w

dpos $w

wm title $w "15-Puzzle Demonstration"

wm iconname $w "15-Puzzle"

message $w.msg -font -Adobe-times-medium-r-normal--*-180* -aspect 300 \

-text "A 15-puzzle appears below as a collection of buttons.

Click on any of the pieces next to the space, and that piece will slide

over the space. Continue this until the pieces are arranged in numerical

order from upper-left to lower-right. Click the \"OK\" button when you've

finished playing."

set order {3 1 6 2 5 7 15 13 4 11 8 9 14 10 12}

global xpos ypos

frame $w.frame -geometry 120x120 -borderwidth 2 -relief sunken \

-bg Bisque3

for {set i 0} {$i < 15} {set i [expr $i+1]} {

set num [lindex $order $i]

set xpos($num) [expr ($i%4)*.25]

set ypos($num) [expr ($i/4)*.25]

button $w.frame.$num -relief raised -text $num \

-command "puzzle.switch $w $num"

place $w.frame.$num -relx $xpos($num) -rely $ypos($num) \

-relwidth .25 -relheight .25

}

set xpos(space) .75

set ypos(space) .75

button $w.ok -text OK -command "destroy $w"

pack append $w $w.msg {top fill} $w.frame {top expand padx 10 pady 10} \

$w.ok {bottom fill}

}

(continued)

Figure 3.5 A Tcl/Tk script for the 15-puzzle (see �gure 3.7). Compare this
script to the one in �gure 3.8. (The text after \message" is in reality all on
one line.) The Tcl script is clearly procedural, whereas Gist is declarative.

Objects get their attributes via slot & �ller (or keyword-value) pairs.

64

3.4 Advantages & disadvantages

(Continued from 3.5)

Procedure invoked by buttons in the puzzle to resize the puzzle entries:

proc puzzle.switch {w num} {

global xpos ypos

if {(($ypos($num) >= ($ypos(space) - .01))

&& ($ypos($num) <= ($ypos(space) + .01))

&& ($xpos($num) >= ($xpos(space) - .26))

&& ($xpos($num) <= ($xpos(space) + .26)))

|| (($xpos($num) >= ($xpos(space) - .01))

&& ($xpos($num) <= ($xpos(space) + .01))

&& ($ypos($num) >= ($ypos(space) - .26))

&& ($ypos($num) <= ($ypos(space) + .26)))} {

set tmp $xpos(space)

set xpos(space) $xpos($num)

set xpos($num) $tmp

set tmp $ypos(space)

set ypos(space) $ypos($num)

set ypos($num) $tmp

place $w.frame.$num -relx $xpos($num) -rely $ypos($num)

}

}

Figure 3.6

Figure 3.7 The 15-puzzle as it appears on screen when the scripts of �g-
ures 3.5 or 3.8 are excuted.

65

3 User interface development systems

#!gist

highlight-thickness 0 # global default

/set (.*) (.*)/: # input from application:

1location $2. # set location of $1 to $2

/create (.*) (.*)/: # input from application:

CLONE btn AS $1 # create button $1

1location $2 # set location to $2

1label $2 # set label to $1

OPEN $1. # open $1

OBJECT window "15-Puzzle Demonstration"

width 405

height 280

OBJECT label message

font "-Adobe-times-medium-r-normal--*-180*"

alignment left

margin 7

shrink-to-fit yes

label "A 15-puzzle appears below as a collection of\n\

buttons. Click on any of the pieces next to the space,\n\

and that piece will slide over the space. Continue\n\

this until the pieces are arranged in numerical order\n\

from upper-left to lower-right. Click the \"OK\"\n\

button when you've finished playing." # label doesn't do wrapping...

OBJECT board frame # this holds the 15 buttons

location "0.5-60 1.0-150 120 120"

background Bisque3

frame-type sunken

frame-width 2

OBJECT button btn (frame) CLOSED # prototype for button

MOUSE-CLICK: PRINT SELF$label+" "+SELF$location+"\n".

OBJECT button OK # button along the bottom edge

location "0 1.0-25 1.0 25"

label OK

MOUSE-CLICK: HALT.

Figure 3.8 This Gist script produces exactly the same interface as the Tcl
script in �gure 3.5, except that it doesn't contain the puzzle logic. A sim-
ple program like the one in Awk in �gure 3.9 better describes the puzzle
than it could be done in Gist. The puzzle is started with the command:
puzzle.g puzzle.awk.
Normally, the location of objects is a matter for the interface. But in this
particular program the locations of the 15 buttons are under the control of
the application program. The interface in this case only provides a prototype

button.

66

3.4 Advantages & disadvantages

#!/usr/bin/awk -f

receives messages of the form "label x y w h"

BEGIN {

order = "3 1 6 2 5 7 15 13 4 11 8 9 14 10 12"

split(order, ord)

for (i = 0; i < 15; i++) # create buttons

print "create", ord[i+1], (i%4)*.25, int(i/4)*.25, .25, .25

freeX = 0.75 # position of free square

freeY = 0.75

}

{

if ($3 == freeY && $2 + 0.25 == freeX) { # move right

freeX = $2

print "set", $1, $2 + 0.25, $3, $4, $5

} else if ($3 == freeY && $2 - 0.25 == freeX) { # move left

freeX = $2

print "set", $1, $2 - 0.25, $3, $4, $5

} else if ($2 == freeX && $3 + 0.25 == freeY) { # move down

freeY = $3

print "set", $1, $2, $3 + 0.25, $4, $5

} else if ($2 == freeX && $3 - 0.25 == freeY) { # move up

freeY = $3

print "set", $1, $2, $3 - 0.25, $4, $5

} # else, can't move

}

Figure 3.9 The Gist script in �gure 3.8 doesn't contain the puzzle logic. A
simple program like this one in Awk better describes the puzzle. The program
starts by generating the locations for the 15 buttons and sending 15 create...

messages to the interface.

67

1 Gist is in fact part

of a larger project,

covering both the de-

sign of the interface

elements (widgets)

and their assembly

into gui's. Besides

Gist, the project in-

cludes a widget gen-

erator called \wbuild"

and an interactive

widget development

environment called

\Tovenaar". Wbuild

is already in opera-

tion, Tovenaar is not.
2 see Ousterhout

[1993]

Chapter 4

Gist

Gist1 is a uide/uims developed by the author. It is script-
based and partially interactive. Unlike most systems, but like
Wcl and Dirt, it doesn't have a built-in set of interface objects.
Instead, it provides a general mechanism for describing and
linking interface elements. Any concrete installation must,
of course, be combined with a particular set of objects, but
the set is fully con�gurable and any widget can be turned into
one or more interface objects. Many aspects of interfaces
are delegated to the widgets. For example, Gist cannot di-
rect keypresses to speci�c windows, thus a speci�c choice
of keyboard focus policy must be enforced by using the right
kind of widgets.
The purposes of Gist are the following: provide an easy to

use interface development system, easy enough to be used
by non-programmers; it is not necessary that all gui's can be
created, only the most common; make developing applications
easier, by not requiring the graphic user interface to be part of
the application; make the system practical enough for building
one-time interfaces, just as people make shell scripts or batch
�les for one-time jobs; keep it simple, both simple to learn and
simple to port.
The competition for Gist therefore not only consists of

uide's and uims's, but also of script languages such as the
unix shell itself, rexx, Perl, and Tcl.2

A distinction must be made between three di�erent concepts
that are all called Gist:

1. Gist as a research project { an abstract concept which in-
cludes the goals mentioned above plus a number of ideas
about how to reach those goals. But which also contains
some unresolved issues.

69

4 Gist

application
X server

Operating System (UNIX)

Gist script

Gist UIMS

Widgets

X Toolkit

Xlib

Figure 4.1 The di�erent layers of software that work together in executing
an interface that is speci�ed in Gist. Widgets, X Toolkit and Xlib are libraries
of the X Window System. When Gist is implemented on other systems, the

middle layers in the picture will likely be di�erent.

2. The kernel of the implemented system. This is the system
that is described in the next sessions, unless explicitly
stated otherwise. The kernel contains the logic to tie
interface objects together and to connect an interface to
an application, but it does not contain any actual objects.
The unresolved issues of (1) are resolved here in an ad-
hoc way.

3. A particular installation of Gist on a particular computer.
Such a system will consist of the kernel plus many inter-
face elements. It is only with a system like this that you
can actually create interfaces.

Gist tries to reach its goals by providing a language for
describing interfaces that is based on a mixture of object-
oriented principles and Prolog-like recursive procedures. The
language is object-oriented in the sense that interface ele-
ments are viewed as active objects that do their own process-
ing and that send messages to each other. The way the objects
are programmed is reminiscent of Prolog, because pattern
matching and recursion take the place of control structures

70

4.1 Separation of interface and application

3 see Musciano

[1988]

such as if-then and while-do. A language like this is sur-
veyable and easy to learn, yet concise.
The language is supported by a uims that takes care of

communicating with the application and that provides debug-
ging, interactive modi�cation, and possibly other aids to the
designer. Gist implements a client--server model: the appli-
cation is the server and is responsible for managing data,
performing calculations and the like; Gist is the client, it gives
the user a convenient interface to the application.
Some of the unresolved issues have to do with the syntax

of Gist scripts: what is the most convenient and least error-
sensitive syntax, what is the best notation for the pattern
matching expressions. Other issues deal with including or
omitting features, such as exception handling, built-in numer-
ical and other operations. Gist also includes an interactive
object editor, exactly how that editor should look is also not
�xed yet.

4.1 Separation of interface and application

When Gist is used to manage an interface, the interface and
the application are two separate programs, run as separate
processes. Therefore the implementation language of the ap-
plication is of no importance, and indeed the application does
not even have to be aware of the fact that is connected to
a uims instead of to a terminal. The approach is similar
to that of ToolTool3: the standard input, standard output and
standard error output of the application are redirected to Gist.
What this means is that the application acts as though it

writes text to the terminal and gets input from the keyboard,
but unbeknownst to the application, the I/O is intercepted by
the uims and transformed. It presupposes a multi-tasking
operating system, such as unix. The phrase \unbeknownst
to the application" can be taken literally, but of course it will
be much easier to create an interface if the application is de-
signed for the possibility that I/O is to another program. In
particular, it helps a lot if the application's output is stateless,
in other words: if the meaning of an outputted line of text is
not dependent on previous output. The more context informa-
tion can be extracted from such a line, the less memory the
interface itself needs to have.
Even existing applications that are purely text-based and

reasonably well-behaved, can thus be �tted with a gui after-
wards. Of course, when the interface and the application are
developed together, an e�cient protocol can be de�ned be-
forehand. All communication between interface and applica-

71

4 Gist

4 see Pausch, Young

II and Deline [1991]

tion must be performed by writing strings to the { redirected
{ standard output and reading strings from the standard in-
put.
Since the protocol is based on text, an interface can also be

tested easily, by running it without an application and instead
typing the application's text by hand. The interface and the
application can each be tested independently of each other.

4.2 Building an interface

Gist does not use direct manipulation. Like Formsvbt, Gist
only allows the interface to be changed by editing a script, but
unlike Formsvbt the interface can be changed even while it
is running. When an interface is displayed on screen, the
designer/user can press a special combination of keys { for
example, Shift + right mouse button { to pop up an editor
window with the script for the object that the mouse points
at. The script can be edited. The changes take e�ect as soon
as the editor windows is closed, or even before that, if the
\apply" button is pressed. Also, new objects can be created
and objects can be removed from the interface. When the
session ends, the edited script replaces the original text in
the script �le.
Interactive editing means that the designer can occasionally

paint himself into a corner. More important is the immediate
feedback: a modi�ed object changes its behaviour as soon
as the \apply" button is pressed. This behaviour is similar
to that of HyperCard, when editing HyperTalk scripts that
are attached to interface elements. suit4 also exhibits this
behaviour.
Currently, that is all that the editor provides, but it should

probably be extended with at least on-line help, access to hid-
den and closed objects and a \what-if" or \undo" capability.
The special key for accessing the editor is governed by a

command line switch of the Gist interpreter, because inter-
active editing need not be available at all times, for example
not during normal use of a �nished interface.
The script is a normal text �le, so it can be edited outside of

Gist with any editor. This is probably the preferred way to set
up the initial interface and it may also be easier when major
changes are to be made to several objects at once, since the
script is then loaded as a single text. During a session the
pieces of script for each object are edited in separate windows.

72

4.3 The script language

4.3 The script language

This section describes the script language of Gist, or rather
an approximation of it. The currently implemented language
{ the one described here { is neither complete nor correct. It
is good enough, however, to give an impression of the format
and to empirically test the Gist concept in general. The script
language should meet the following goals:

� easy to write

� easy to learn

� easy to read

� nice looking

� powerful enough

� easy to document/comment

To meet these goals, the language is designed as follows:

� object-oriented, one object per interface element

� attributes set as keyword-value pairs

� at most one level of indentation

� no control structures, except pattern matching

� objects are programmed with triggers and handlers

� automatic conversion between numbers and strings

� possibility to call external programs

A script is made up of object de�nitions. Each object has
two parts: a set of attributes { such as colour, size, border
width { and a set of \handlers". Most of the attributes have a
direct in
uence on what appears on the screen. But Gist does
not de�ne attributes or place any limitation on them. Every
object de�nes its own attributes. The precise meaning must
therefore be documented in the description of the objects.
A \handler" is a set of actions to be executed when the han-

dler is triggered. Handlers are often also called \methods".
Handlers can be triggered by user input or by messages that
are sent from other objects. Actions can display and hide
objects, send messages to objects, create new objects and
pass a string to the application. The language has no con-
trol structures (functions, conditional statements, repetition
statements), at least no explicit ones. It is still possible to
program with it, because it supports recursion. People who
know Prolog will recognize the style: recursion and matching.
The examples in this chapter are examples that work in

a particular installation of Gist. The examples show how a

73

4 Gist

5 We assume that

Gist has been in-

stalled with objects

of type window and

button, since, as

noted earlier, Gist

does not provide any

built-in objects. The

particular buttons in

this example could

be implemented with

the XfwfButton wid-

get from the freely

available FWF wid-

get collection, since

they it has a location

resource like the one

used here.

typical script looks, but they do not imply anything about
the availability of particular object types or the meaning of
attributes.

4.3.1 User input

Here is an example of a script that creates a window with two
buttons,5 one button is labeled \Cancel", the other is labeled
\OK". When activated, the �rst button sends the string \No"
to the application, the other sends the string \Yes".

OBJECT window main # no attribs, use defaults

OBJECT button cancel-button

location "10 10 50 20" # (x,y,w,h) in pixels

label Cancel

MOUSE-CLICK: PRINT No.

OBJECT button ok-button

location "70 10 50 20"

label OK

MOUSE-CLICK: PRINT Yes.

The window is named main. It has neither attributes nor
handlers. The �rst button is named cancel-button. It has
an attribute called location to set the position and size, a
label and a single handler, which is triggered by a mouse
click. When it is triggered, it prints \No". Note that there
are quotes around the value of the location attribute. They
must be used whenever the value includes whitespace, they
are optional when the value is a single number or word, like
\cancel-button" or \Cancel".
All attributes have default values. The objects in the above

example probably have many other attributes such as color
and font.
Usually, the script does not need to de�ne the exact user

input, but only the e�ect it has on other objects or on the
application. For example, the button object in the example
above also knows how to deal with other inputs such as mouse
movement and key presses. These events cause speci�c forms
of highlighting in the button. But only a mouse click has an
external e�ect and is therefore mentioned in the script.
The example also shows that comments can be added to

scripts, by pre�xing them with #. Such comments are ignored
by Gist.

74

4.3 The script language

4.3.2 Messages among objects

The following example shows how objects can change their
own and other objects' attributes. Assume there is no radio-
button object available, then one can be simulated with a few
buttons and code like the following:

OBJECT button b1

location "10 10 50 20"

label "choice 1"

shadow sunken

MOUSE-CLICK:

self$shadow sunken

b2$shadow raised

PRINT 1.

OBJECT button b2

location "10 40 50 20"

label "choice 2"

shadow raised

MOUSE-CLICK:

self$shadow sunken

b1$shadow raised

PRINT 2.

This example shows three actions to be executed on a mouse
click. The �rst action changes the value of the object's own
shadow attribute to sunken, the second action changes the
shadow attribute of the b2 button. The third acition, print
1, outputs the number 1. The list of actions is terminated
with a period.
What happens when these buttons are displayed? They

appear in their window at the given location and with the
given attributes. Assume they are both active. When the user
clicks the mouse on button b1, the handler in that button is
triggered and the three actions are executed in order. First
the button changes its own shadow attribute to sunken, then
it changes the shadow attribute of button b2 to raised, and
�nally it prints the digit 1 (i.e., sends it to the application.)
Actually, this script is an example of bad programming

style. The script of one object is allowed to change an at-
tribute of another object. A much cleaner way is to have one
object send a message to the other object, which then changes
its own attribute:

MOUSE-CLICK:

self$shadow sunken

b2 raise-yourself # send message to b2

75

4 Gist

PRINT 1.

...

"raise-yourself": # handle message

self$shadow raised.

Although I would recommend people to use this cleaner,
object-oriented style, Gist does allow the other style, since
it is often convenient to be able to make a quick, local, pre-
sumably temporary, change.
Messages from one object to another are the main glue that

holds the interface together. A handler can be triggered by
a literal string or by a pattern, for which handlers provide a
regular expression syntax.
Regular expressions have slashes instead of quotes around

the trigger. Thus the handler

/raise-yourself/: self$shadow raised.

would have the same e�ect as in the previous example, but
it would also be triggered by messages that contain the text
\raise-yourself". The pattern

/raise.*yourself/

would be triggered by any message that contained \raise" and
\yourself" with any number of characters in between.
Currently, Gist uses the posix extended syntax for regular

expressions. A complete description of that syntax can be
found in unix manuals under regexp(5). It may be that other
notations are easier to use. Compared to some alternatives,
such as the syntax used by the Emacs editor or the Lex scan-
ner generator, this seems a good choice, but no attempt has
been made sofar to actually devise or test other notations.
See section 4.8.2 (page 91) for a discussion of this issue.
The regular expression syntax allows messages with param-

eters. For example, below is an object that displays a circular
progress meter. The percentage attribute is a number be-
tween 0 and 10000 that determines how much of the circle's
area is �lled. The handler has a pattern that matches any
message that contains the word \set" followed by a space.
Everything that comes after the space is saved in a regis-
ter. Thus, the message \set 5000" triggers the handler and
puts \5000" in the �rst register. The action than sets the
percentage attribute to the value of that register.

OBJECT circperc my-example

/set (.*)/: self$percentage $1.

76

4.3 The script language

The number of parentheses () determines which register is
used: The �rst pair of parentheses saves to the �rst register
$1, the second pair of registers saves to the second register
$2, etcetera. Every handler has 9 registers, plus the register
$0, which holds the whole message.

Figure 4.2 The
circular progress
meter.

4.3.3 Physical and synthetic events

When the user presses a key or moves the mouse, that is a
physical event. It is received by the interface and dealt with
in some way. Most of these events are not handled by Gist,
but by the widgets that implement the various objects. The
events cause feedback such as highlighting or they change
attributes of objects. Only some events cause an e�ect out-
side the object. For example, a text �eld accepts key presses
and processes them locally. Only when the Return key is
pressed need Gist be invoked. The objects themselves deter-
mine when an event has an external e�ect, thus the events
that Gist receives are actually synthetic events. Usually this
is enough, but Gist provides a type of handler for physical
events, that can be used to override an object's own event
handling.
There are �ve synthetic events: �nalize, initialize,

mouse-click, mouse-down, and mouse-double. Initialization
and �nalization actions of objects are attached to handlers for
the �nalize and initialize events. They are executed whenever
the object is opened or closed, not just when the object is cre-
ated or destroyed, though for most objects that will amount
to the same thing.
The di�erence between the physical mouse events and

the three synthetic events mouse-down, mouse-click and
mouse-double, is that the physical events are delivered di-
rectly to the object, and any handler for such an event over-
rides any built-in reaction to that event. The synthetic events,
on the other hand, are generated after a physical event {
usually the event after which they are named { is processed
by the internal logic of the object. The handler then serves to
distribute the results to related objects.

77

4 Gist

Consider for example an arrow object, such as is found at
either side of scrollbars. Such an arrow not only reacts to
a mouse button press, but keeps on generating activity as
long as the mouse button remains pressed. When the ar-
row object would be given a handler for the physical event of
a button press, that handler would be excecuted only once.
But when the handler were instead triggered by the synthetic
event mouse-down, it would be triggered repeatedly at a cer-
tain rate, since this event is generated repeatedly by the object
itself.
An additional advantage of the use of synthetic events is

that a mouse-click event need not be caused by a real mouse
click, but can also be the result of an equivalent keyboard
event. Simulation of mouse actions with keyboard commands
can thus be a part of the objects themselves and need not be
dealt with in Gist.

In summary: an object can have handlers for messages, syn-
thetic events and physical events. Messages come from other
objects, physical events come directly from the user, and syn-
thetic events are generated by the object itself.

4.3.4 Actions

Three types of actions have already been shown:

� setting attributes,

� sending messages and

� printing. The action print sends a text to the application.

Other actions are

� clone to dynamically create an object. Such an object is
a copy of another object, but with a di�erent name. All
the object's children are also cloned, but they keep their
original names.

� open and close to display and hide objects. A closed ob-
ject is not visible and does not receive events, but oth-
erwise it receives and sends messages just as any other
object.

� activate and deactivate make objects sensitive or insen-
sitive to user events. Usually, objects show themselves
grayed when they are insensitive. Inactive objects still
receive and handle messages.

� The halt action stops the application and the inter-
face. The interface closes down gracefully and saves

78

4.3 The script language

any changed scripts, but the application is simply killed.
Therefore this action is not often used, except in proto-
types.

� beep rings the terminal bell.

\Cloning" is similar to \instantiation" as it is used in many
object-oriented languages. The di�erence is that the object
that is cloned is a normal object, whereas the class that is
instantiated is no more than a template.
An object is cloned together with the objects it contains.

These child objects keep their original names, so these names
are no longer unique. When an action in a script refers to an
object by name, that name is �rst searched among the chil-
dren, then among sister objects and �nally among the other
objects.
Only objects that are de�ned in the script can be cloned.

An object that is itself a clone cannot be cloned further. Also,
the clone is a copy of the object as it appears in the script,
regardless of how it has changed since the start of the session
(static copy).
Clones are useful in situations where it cannot be estab-

lished beforehand howmany objects of a certain type are going
to be needed, but the objects are all essentially the same. For
example, an editor may o�er the user the possibility to open
additional windows to view several �les at the same time.
It would be possible to restrict the number of concurrent
windows to some arbitrary maximum, but the cloning facility
allows essentially an unlimited number of windows.

Objects are cloned together with their children. This is conve-
nient, because complete windows can be copied in one action,
including all the buttons and menus they contain. However, it
also introduces a problem, since the names of the children are
no longer unique. The solution that is chosen in the current
implementation is to search for names among close relatives
�rst: daughters and other descendants, then sisters, nieces,
etc. Three other solutions are possible, successively more
restrictive than the current one:

1. Allow only references to descendants and ancestors.
These objects together form the \scope" of an object.
Other objects can only be reached with quali�ed names,
where a quali�ed name is a name that contains two { or
more { parts: the �rst part is the name of an object that
is within the scope, the second part is a name within the
scope of the �rst part.

79

4 Gist

2. De�ne the same scope as in (1), but without the possi-
bility of breaking out of the scope with quali�ed names.
To reach an object outside the scope, a message must be
sent to an ancestor, asking it to send the message on to
the destination object.

3. De�ne the scope to consist of just the parent and the di-
rect children. Every other object, including grandchildren
and ancestors can only be reached by sending messages
via a chain of other objects.

Some programmers may like (2) or even (3), but for most
people (2) is already too restrictive. The advantage of using
one of these three well-de�ned scopes instead of the fuzzy
scope of the current implementation is, that some errors and
ambiguous messages can be catched by the system. The dis-
advantage is that additional concepts and { in the case of
(1) { additional syntax have to be learned. The scripts also
become larger. It seems to be a question of �nding a balance
between targeting scripts that are small and easy to write,
and scripts that are large, but easier to maintain.

4.3.5 Expressions

Messages need not be constants. There is a simple expres-
sion syntax for numerical computations and for combining
strings. For example, in the following handler the object
decrements its own value attribute by one:

MOUSE-CLICK: self$value self$value - 1.

In this case, the value attribute must hold a number, other-
wise Gist will complain about an impossible operation. Mul-
tiplication (*), division (/) and addition (+) are also possible.
Expressions can become quite complex, including parenthe-
ses, such as 10 * (self$value/15 + 9).
The +-operation is special, because it also works for non-

numerical values. It tries �rst to evaluate both sides of the
expression as numbers, but if that fails it assumes the user
wants to concatenate strings instead. Thus 15 + 7 evaluates
to 22, but "box" + 7 gives "box7". If you want 15 + 7 to give
157 instead, just start with an empty string: "" + 15 + 7,
this will force Gist to interpret the expression as a string
concatenation.

80

4.3 The script language

Gist language summary

Actions

Every interface element (object) can react to
user actions and to messages from other ob-
jects. In response, it can perform \actions"
of the following types:
print expression The expression is eval-

uated and the result is given as input to
the application. Usually, the expression is
a command to the application.
open expression The expression must

evaluate to the name of an existing object.
The object thus named is opened (displayed
on screen). Nothing happens when the ob-
ject is already open.
close expression The opposite of open.

The named object is removed from the
screen. It is not destroyed, only hidden.
deactivate expression The expression

must give the name of an object. That ob-
ject will then be made insensitive to user
actions. A deactivated object still reacts to
messages from other objects, but it ignores
all mouse and keyboard events.
activate expression The opposite. Usu-

ally, the change from sensitive (active) to
insensitive (inactive) is accompanied by a
change in appearrance, but that depends on
the type of object.
beep Gives a short beep.
halt Stops the program.
clone expr as expr Make a new object

that is an exact copy of another object. See
the discussion in section 4.3.4.
expr$expr expr The �rst expression

must give the name of an object, the second
is the name of an attribute of that object.
The third expression gives the value that
is assigned to the named attribute. E.g.,
btn1$label "off" assigns the text \o�" to
the label of btn1.
expr expr The �rst expression must give

the name of an object. The value of the sec-
ond expression is sent as a message to this

object. The meaning of a message is deter-
mined by the receiving object; there are no
prede�ned messages.

Handlers

Actions are executed in response to a mes-
sage or an event. \Handlers" determine
which actions are executed. A handler con-
sists of a trigger, an optional condition, and
the list of actions to execute. Objects can
have several handlers, but each must have a
di�erent trigger or condition. Example:

"pop up" + CLOSED:

OPEN SELF

OPEN abc-box.

The example shows the literal text trigger.
It is a text between quotes (") and it says
that this handler must be executed when the
message \pop up" is received (and the con-
dition +closed is ful�lled, see below).

A trigger can also be a pattern (regular
expression) instead of a literal, so that it
can match with a whole range of messages.
Example: /ab|cd/ is a pattern that is trig-
gered by any message that contains either
the letters \ab" or \cd" (or both).
initialize and �nalize are triggered when

an object is opened or closed. Exam-
ple: INITIALIZE: CLOSE SELF. This handler
closes the object as soon as it is opened.
mouse-down, mouse-click and mouse-

double triggers are normally activated by
the corresponding mouse actions. However,
the type of object determines when (and if)
they are triggered. Some objects, such as
static labels, may ignore all user events all-

81

4 Gist

together. The documentation for each object
should describe exactly when these three
triggers are activated.
When other events are needed, such as

mouse clicks with button 2 or 3, a trigger
of the form feventg can be used. There is
no room here to explain the full syntax of
these events, but here are a few examples:
f<Key>Enterg (triggered by the Enter key),
fShift<Btn2Down>,<Btn2Up>g (triggered by
a click of mouse button 2 while Shift is
down).
By using these events, even objects that

normally ignore user events can be made to

react to them.

Handlers can be conditional. The exam-
ple above shows a condition +closed, which
means that the handler is only executed
when the object is closed. Other conditions
are -closed, +active and -active. Triggers of
the form f. . . g cannot have conditions.
The example above also shows the general

form of a handler: trigger, optional condi-
tion, colon (:), list of actions, terminated
with a full stop (.). For clarity, commas may
be inserted between actions.

Regular expressions

Gist uses the \extended regular expression
syntax" as de�ned by the posix standard.
The full de�nition can be found in most
unix maunals under regexp(5). Here is a
short summary.
Most characters stand for themselves.

E.g., /abc/ matches any messages contain-
ing \abc". The characters that have special
meaning are:

. matches any character, except newline.

| separates alternatives, thus /abc|yz/

matches any message containing either
\abc" or \yz" (or both).

() are used to group sub-expressions.
E.g., /(ab|yz)23/ matches any mes-
sage that contains \ab23" or \yz23".

* matches zero or more copies of the
preceding character or sub-expression.
E.g., /ab*(12)*/ matches messages
that contain an a, followed by zero or
more b's, followed by zero or more
copies of 12, for example \abbb1212".

+ like *, but matches one or more times.

[] matches one of the characters between
the brackets. E.g., [aeiou] matches a
or e or i or o or u. Ranges can be ab-
breviated: [0-9] matches any digit.

[^] matches any character except those be-
tween the brackets. E.g., [^A-Za-z]

matches any character that is not a let-
ter.

^ if placed at the beginning of a pattern,
anchors the pattern to the start of the
message. /^do/ matches any message
that starts with \do".

$ if placed at the end of a pattern, an-
chors the pattern to the end of the mes-
sage. /^ab.*yz$/ matches any mes-
sage that starts with \ab" and ends
with \yz".

The special characters loose their special
meaning inside []. The combination nt can
be used instead of the tab character, which
would otherwise be invisible.

Attributes

All objects have a set of attributes that de-
termines how the object looks and some-
times also how it behaves. Which attributes

are present depends on the type of object,
but typical attributes are background (for
the colour of the object's background), font

82

4.3 The script language

(for the name of a font), x and y (for the po-
sition relative to the object's parent). Here
is an example:

OBJECT button ax-27 # define "ax-27"

x 10 # x position 10

y 100 # y position 100

label "stop now"

background blue

The quotes around the value are needed
when the value includes whitespace, as in
"stop now". They are optional around num-
bers and single words, as in "blue".

Objects

Every object starts with the word object,
upper or lower case doesn't matter. Next
comes the type, the name, an optional par-
ent, optionally the word closed, then zero
or more attributes and �nally zero or more
handlers. Example:

OBJECT icon bell (window1) CLOSED

x 25

y 5

icon "bell.xpm"

MOUSE-CLICK:

BEEP. # Beep on mouse click

The parent can be omitted if the object is
to be a child of the window or box that pre-
cedes it in the script �le. The addition of
closed says that the object is initially closed
(hidden from view). Objects without this
ag
are opened at the start of a session.
The type must be one of the types that

was con�gured when Gist was created. Usu-
ally there will be types such as window, box,
button, icon, label, etc.
The name must be unique within the

script.

Global defaults

Global defaults look just like attributes, but
they are not attached to any object. Instead
they are remembered and attached to all ob-
jects that do not explicitly state a di�erent
value. Global defaults must be written at
the start of the script �le, before the input

model (see below) and before any objects are
de�ned.
Note that the standard resource mecha-

nism of the XWindow System may interfere
with the global defaults. See the explanation
in 4.5.

Miscellaneous

The input model is a set of handlers that is
inserted after the global defaults, but before
the �rst object. There must be a handler
for every (meaningful) line of output that the

application prints.
The syntax of expressions is explained

in 4.3.5.

83

4 Gist

4.3.6 Calling external programs

Gist provides a way to start external programs as a side e�ect
of actions, but with some limitations. When the program
is started, Gist waits for it to �nish before continuing. The
program's output is collected into a single message and it can
be sent to any object or to the application. Since the system
is e�ectively halted while the external program executes, this
facility should only be used for programs that perform some
computation and then exit again quickly.
Experience has shown that this capability is sometimes

needed for computations that Gist itself cannot perform.
Whether this limited support is enough is still a question
for future research. Letting an external program run asyn-
chronously poses some problems, but there are ways in which
parallel programs can be synchronized in better ways than is
currently the case (like in Awk, for example.)

4.3.7 An example that uses cloning

The following example shows a �rst approximation to an E-
mail interface. It has a main window with icons for all the
mail folders, including two pseudo-folders (waste basket, and
letter-box). There is a menubar at the top of the window.
Double clicking on a folder opens a new window, containing
icons for all the messages in that folder. Double clicking on
a message icon opens yet a third kind of window, that shows
the contents of the message. There are some buttons along
the bottom of this window.
Since the user may open as many folders and messages

as he likes, the corresponding windows must be created dy-
namically. The script therefore de�nes three windows: the
main window, of which only a single copy exists, a folder
window that will be cloned as often as the user double clicks
on a folder icon, and a message window, that will be cloned
everytime the user double clicks on a message icon.
We assume that the E-mail application has been specially

written to accept the commands that the interface de�nes and
to print output in a format that is easy to parse. Since this is
just an example, many parts of the interface and of the proto-
col between interface and application will be left unspeci�ed.
The input translation for messages from the application is not
shown, but it should be able to do things such as: translate
a list of folders to the format expected by the iconbox, and
translate a list of messages within a folder to a similar list.

84

4.3 The script language

6 The location at-

tribute that is used

in many examples in

this chapter is a con-

cise way of specifying

position and size in

a single attribute. It

has four parts: x co-

ordinate, y coordinate,

width, and height.

Each of these may

have an absolute and

a relative value. E.g.,

"0.25 10 0.5 1.0-20"

says that the object is

located at 0.25 of the

width of its parent, 10

pixels from the top, it

is half as width (0.5)

and 20 pixels less tall

than its parent (1.0-

20).

As in the previous examples, we assume the existence of
suitable objects, in this case a menu bar, a pulldown menu,
an icon box, a normal button, a row/column object and a
message viewer. The iconbox object has an attribute list that
contains a list of icons and labels. When this attribute is
set, the icon box creates labeled icons and manages them. A
double click on one of them is translated to a message of the
form \open. . . ", drag and drop operations are translated to
messages of the form \on n from icon-box drop. . . ". Icons
can be dragged from one iconbox to another. The \from" part
gives the name of the object from which icons are dragged.

The main window has two parts: a menu bar and an icon
box with icons for all mail folders. The menu bar contains
drop-down menus, of which only a few are shown.6

OBJECT window "Example E-mail interface"

OBJECT menubar main-menubar

location "0 0 1.0 30"

OBJECT menubutton folder-menu (main-menubar) # Drop-down menu

label "Folder"

menu "New,new;\

Open,open;\

Delete,delete;\

Exit,exit"

... plus some handlers

OBJECT menubutton help-menu (main-menubar) # Drop-down menu

label "Help"

menu "Help,help"

... plus handlers

OBJECT iconbox folders

location "0 30 1.0 1.0-30"

initialize: PRINT "list\n". # Ask appl. for list of folders

/list (.*)/: self$list $1. # Msg. from input: create icons

/open 1:.*/: . # Dbl. click icon 1 (=letter box)

/open (.*)/: # Dbl. click any other folder

DELETE $1 # Delete if it existed already

CLONE aFolder AS $1. # Create window for folder

/on - from (.*) drop (.*)/: . # Drop on background, ignore

/on 0 from folders drop (.*)/: # Folders on 0 (=waste basket)

PRINT "delfolder "+$1+"\n" # Delete a folder

PRINT "list\n". # Update list of folders

/on 0 from (.*) drop (.*): # Drop msgs on 0 (=waste basket)

PRINT "folder "+$1+"\n" # Go to folder

PRINT "del "+$2+"\n" # Delete messages

PRINT "list "+$1+"\n". # Update list of messages

/on .* from folders drop .*/: . # Drop folders, ignore

/on 1 from (.*) drop (.*)/: # Drop msgs on 1 (=letter box)

PRINT "folder"+$1+"\n" # Go to folder

85

4 Gist

PRINT "send "+$2+"\n". # Send selected messages

/on (.*) from (.*) drop (.*)/: # Drop messages on a folder

PRINT "folder "+$2+"\n" # Go to folder

PRINT "move "+$3+" "+$1+"\n" # Move msgs to other folder

PRINT "list "+$1+"\n" # Update list of folders

PRINT "list "+$2+"\n". # Update list of folders

Note that the order of handlers is important. Messages in-
volving the letter box (icon 0) and the waste basket (icon 1)
are de�ned before the general case of the normal folders.

The window that is cloned when the user double clicks on a
folder icon is de�ned next. It has an icon box similar to the
one above, but this time it contains icons for messages. There
is a row of buttons along the bottom of the window.

OBJECT window aFolder

OBJECT iconbox messages

location "0 0 1.0 1.0-40"

initialize: # Executed when opened

PRINT "list "+self$name+"\n". # Ask appl. for list of msgs

/list (.*)/: self$list $1. # Msg. from input, create icons

/open (.*)/: # Dbl. click on an icon

DELETE "["+parent$name+"]"+$1 # Delete if it exists already

CLONE aViewer AS "["+parent$name+"]"+$1. # Create new viewer

/on .* from folders drop .*/: . # Drop folders, ignore

/on - from (.*) drop (.*)/: # Drop on background

PRINT "folder "+$1+"\n" # Go to folder

PRINT "move "+$2+" "+parent$name+"\n" # Move msgs to here

PRINT "list "+parent$name+"\n" # Update list of messages

PRINT "list "+$2+"\n". # Update list of messages

OBJECT row-column button-bar

location "0 1.0-40 1.0 40"

"close-window": # Message from close button

DELETE parent.

"view-msg": # Message from view button

parent "open "+parent$selected.

"delete-msg": # Message from delete button

folders "on 0 from "+parent$name+" drop "+parent$selected.

OBJECT button view-btn (button-bar)

label "View"

MOUSE-CLICK: parent view-msg.

OBJECT button delete-btn (button-bar)

label "Delete"

MOUSE-CLICK: parent delete-msg.

OBJECT button close-btn (button-bar)

label "Close folder"

MOUSE-CLICK: parent close-window.

The next de�ned object should be the window aViewer, that
is cloned in the actions above. It is omitted here, since it

86

4.4 Modelling the application

7 But compare

Smalltalk's Model-

View-Controller

paradigm (MVC)

and the Semantics-

Appearance-Interac-

tion triplet of MoDE

(Shan [1991]) that is

derived from MVC.

The Controller, cq.

the Interaction part,

acts as the inter-

mediary. The three

parts are not sepa-

rate programs in the

traditional sense,

but objects in an

object-oriented op-

erating system, viz.

Smalltalk. There is

also not a single con-

troller, but as many

controllers as there

are interface elements

(views).

introduces nothing new. There should also be more buttons
and more menu entries.

The example has a few handlers that do nothing at all. For
example, when the user tries to open the letter box { icon
1 in the folders icon box { nothing happens. These handlers
are, in fact, error handlers, since they catch incorrect user
actions. Instead of doing nothing, they could also sound a
beep or pop up a dialog box.
When the protocol between application and interface is fully

de�ned, it will probably also include error messages. The
interface should then de�ne ways of dealing with these appli-
cation errors as well.

4.4 Modelling the application

When the interface is constructed outside the application
program, there needs to be a way of connecting the two. Ap-
plications that use a toolkit do not have this problem, since
the interface is part of the program; neither do systems like
HyperCard andMatrix Layout that build the whole application
themselves. In general there are three possibilities:

� Let the application do the translation. This means that
the interface is { perhaps implicitly { described inside
the application either as a tree of objects (e.g., ResEdit
under gem) or as a set of procedures (e.g., Dirt, Wcl,
Formsvbt).

� Create an intermediary. A separate program could trans-
late between the I/O of the application and the actions
in the interface. This approach is taken by none of the
systems.7

� Integrate the translator into the uims. This is done in
ToolTool and digis and it is also the approach taken by
Gist. It allows for a more
exible interface, which is,
after all, the part that is more likely to require structural
changes than the application, both during development
and afterwards.

The description of the application can take various forms.
In digis it is a complete formal de�nition of the semantics
of the application in a special, object-oriented language. Not
only the output of the application is described, but a model is
de�ned that describes the various states the application can
be in. Of course, only the states that are relevant to the gui
need to be described.

87

4 Gist

In ToolTool and in Gist only the application output is de-
scribed explicitly. Application input and application states {
insofar as needed { are implicit in the general working of the
interface.
Gist uses the same handlers as are used to determine the

behaviour of objects to de�ne a virtual, unnamed input ob-
ject. The handlers of this object de�ne the semantics of the
application's output by the list of actions they execute when
they are triggered. In this way, any text that is output by the
application results in attributes being set and messages being
sent to objects. The list of handlers must be inserted into the
script before the �rst real object.
Since the input object is not a real object, it has no real

attributes. Instead, anything that looks like an attribute will
dynamically be created as such. In other words, the input
object provides variables that do not need to be declared. Like
real attributes, these variables only contain strings, but they
will be converted back and forth to numbers when they appear
in arithmetic expressions.
The variables can be used to remember the state of the

application between outputs.

4.5 Setting global defaults

It is often useful to set global defaults for some attributes.
Attributes such as typeface and colour are often better ex-
pressed with defaults and local exceptions. Default values
for attributes are entered in the script even before the input
handlers.
Attributes can thus be set globally or for individual objects,

but there is no way to specify default values for attributes of a
particular type of object (all buttons, say) or for a limited set
of objects (e.g., all objects in window A). This is an aspect of
Gist that yet has to be solved.
There are two reasons why one would want to set attributes

for a group of objects as a whole:

� for convenience: for example, all labels in one window
should be blue, while all labels in another one should
be green. If there are many labels in each window, it is
convenient { and easier to change { if the colours can
be speci�ed in one place only. Note that there are other
ways to do this, such as symbolic constants or macros.
Neither of these is provided by Gist, but they should be
considered if Gist is extended.

88

4.7 Portability

7 Incidentally, the

resource manager

of X can also `solve'

the �rst problem.

With revision X11R5

there is even an utility

called \Editres" for

setting attributes

interactively. It

works under revision

X11R4 as well, but

only on conforming

applications.

� for consistency across applications: a user may want to
set fonts, colours, etc. for all similar elements in all ap-
plications on his system. An interface created with Gist
should then conform to these system-wide attributes as
much as possible.

Gist tries to be a well-behaved client of the X Window Sys-
tem, so it leaves the latter to the resource manager that is
part of X. Every implementation of X provides ways to set
resources globally for all programs that use the same display
(although not always in a convenient way).7

When Gist is implemented on platforms other than X, a
di�erent solution will have to be found, preferrably one that
interacts well with the environment. If the platform provides
a standard tool for setting attributes across applications, Gist
should of course not interfere. But if there is no such tool or
if the tool is not powerful enough, the Gist syntax may have
to be extended.
In any case, this means that the interface may look (or even

behave) di�erently depending on resource settings over which
Gist has no control. The only way to have absolute control
would be to specify all attributes of all objects and not to rely
on defaults at all. But would you want to do that? When a
user has con�gured his workstation in a certain way, should
any interface try to do things di�erently?

4.6 Con�guring & extending Gist

Since Gist provides just the glue that holds an interface to-
gether and not the actual interface elements, any installation
of Gist has to be con�gured for some external set of objects.
Likewise, when a new object is to be added, additional con�g-
uration has to be done. This con�guration can only be done
by a programmer.
The con�guration is done with a special language (see sec-

tion 5.10). The con�guration �le fully describes each type of
object. It lists all attributes and de�nes when the synthetic
mouse events are generated. It also de�nes how the object
maps to the widget that is used to implement it. After the
con�guration is changed, Gist must be recompiled.

4.7 Portability

The Gist project started in 1988 with a prototype on a PC
under ms-dos. Since ms-dos has no multitasking, the
system was set up as a library to be linked to an applica-
tion. When it moved to unix and X, the application and

89

4 Gist

the interface could be decoupled as they are now, relying on
interprocess communication instead of on function calls. The
syntax of the script remained essentially the same.
The current implementation relies heavily on the facilities

provided by X and the X Toolkit. It should be possible to
port Gist to any system that runs unix and X. It would be
a little harder to port it to a system that runs X on anything
else than unix, since a new solution has to be found for
the interprocess communication. Porting to a system without
X will be virtually impossible. Except for the script syntax
everything will have to be rewritten.
Does this mean that Gist is not portable to anything else

than unix workstations running X? Yes and no. The imple-
mentation is not portable, but the user interface (the script)
is. The situation is no di�erent from that of programming
languages: the compiler or interpreter is not portable, but
the language itself is.
For more { and more technical { information, I refer the

reader to next chapter and to the syntax and the example
interface in the appendices.

4.8 Advantages, disadvantages, possible enhancements

Clearly, Gist is not a complete solution to the problems of
interface designers. It supports prototyping and building of
the �nal interface, but it can play no role in the earlier stages
when information is gathered and ideas are discussed. Gist
also depends on the availability of a suitable collection of in-
terface elements. New elements can only be created by pro-
grammers. On the other hand, when new objects become
available, they can be added to the system permanently and
will be indistinguishable from older elements.
The reliance on external objects also has an e�ect on the

amount of control that can be excerted over an interface with
the facilities of Gist. Earlier it has already been noted that
Gist cannot control the keyboard focus. Other aspects that
it delegates to the objects themselves or to the environment
{ i.e., the X Window System and the window manager {
are for example: mouse acceleration and double click delay,
drag and drop capabilities, resizing and moving of windows or
other objects.

4.8.1 Coupling of application and interface

The way the interface and the application are coupled has the
advantage that the application can be written in any language

90

4.8 Advantages, disadvantages, possible enhancements

8 This approach is

used, for example, in

the Ghostview inter-

face to Ghostscript,

a PostScript inter-

preter. Ghostview

builds an interface

which includes an

empty canvas. It then

starts Ghostscript

and passes it a han-

dler (identi�cation

number) to the can-

vas. Ghostscript can

assume the canvas

has already been cre-

ated and starts draw-

ing right away.
9 The in
uence of

the C language is ap-

parent in this matter.

Motif uil is very sim-

ilar to C in appear-

ance, even though it

provides only a purely

static description of

an interface. In other

areas C also demands

its toll, an example

is the C Shell, which

is clearly inferior to

most other command

interpreters for unix,

but often preferred by

programmers because

of its super�cial simi-

larity to C.

and can be debugged independent of the interface. Well-
behaved existing applications can also be accomodated. The
interface can likewise be tested independently. Since only text
is exchanged between application and interface the protocol
can be checked and even simulated by hand.
On the other hand, there is a penalty in speed. When a

lot of very detailed information has to be passed from the
application to the interface, the overhead of conversions to
and from text and the management of the channel between
the two programs may be a problem.
A solution may be to give the application the possibility to

draw directly to the screen, bypassing the interface, but only
in a reserved area or \canvas" provided for this purpose by
Gist.8

4.8.2 Script language

To a certain extent, programming languages are a matter of
taste. Of course they should provide concepts at the right
level of abstraction and have a syntax that is easily learned
and not very susceptible to mistakes, but aspects such as
the opportunities for an esthetical lay-out or similarities to
familiar languages9 are also important.
To non-programmers ease of learning is important, but also

the underlying programming paradigm. Programmers are fa-
miliar with algorithmic solutions, but non-programmers often
prefer declarative techniques.
The scipt langauge of Gist tries to be as static as possible,

with as little syntactic overhead as possible. The attributes
are simple keyword value pairs. The dynamics are speci�ed
as handlers to be triggered by certain events. They do not
execute a program, but a simple linear list of actions and they
do not store data in characters, integers, arrays or pointers,
but only in strings.
Users will most likely develop their own set of \tricks" to

perform what programmers would recognize as conditional
execution, repetition or recursion. These tricks will depend
on manipulation of strings and regular expressions and will
therefore not be as e�cient as the same actions done with
a more structured programming language. This is not a real
problem, since the scripts for each object will be small.
The expression syntax of Gist is rather limited. Although an

interface typically does not do much computation, it is prob-
ably a good idea to extend the syntax with more operations,
including some built-in functions such as trunc or round.

91

4 Gist

The syntax of the regular expressions is perhaps not the
most user-friendly, but at least it is the same syntax as used
by other unix utilities. However, that may not be an argu-
ment for many users, who are not familiar with the programs
that use this syntax. One of the things that should therefore
be investigated is whether a restricted syntax would be easier,
without losing expressive power. A syntax based on wildcards
might be good compromise. A wildcard syntax like that used
by many command interpreters for matching �lenames is not
as powerful as a full regular language, but it may well be
powerful enough.
Also, currently patterns are not anchored. That means the

pattern can match a part of a message, it does not have to
match all of it. For example

/[0-9]*/

would match every message, since every message contains
zero or more digits. To anchor the pattern, it would have to
be written as

/^[0-9]*$/

The ^ matches the start of the message, the $ anchors the
pattern to the end of the message. Now only empty messages
or messages that consist entirely of digits will match.
Experience so far seems to suggest that anchored patterns

are more convenient, so it is likely that in the future anchored
patterns will become the default, obviating the need for ^

and $.

4.8.3 On-line help & error handling

Gist has no facilities for on-line help. Since on-line help is
very important, this is a major omission. Some objects may
have their own methods for providing help (for example, Motif
widgets have some support for this). The main reason that
there is no mechanism for on-line help in Gist is, that it is
not clear what it should be like: should it be built-in to the
widgets, as in Motif, or should it be a separate mechanism;
should the help text { which need not be just text { be in
the script �le or in a separate �le.
Error handling also is not handled specially by Gist. Errors

caused by incorrect user input can be recognized at di�erent
levels in the processing. An object can have its own internal
rules, such as that a postal code (zip code) has exactly 6
letters/digits. Incorrect input of this type is handled at the

92

4.8 Advantages, disadvantages, possible enhancements

object level. Semantic errors are handled by the application,
for example, typing an incorrect password is detected by the
application, not the interface. Between the two there may be
a third type of errors, presumably errors that have to do with
the relations among interface elements, that cannot be dealt
with by individual objects and yet are not of a semantic nature.
In a well designed interface such errors are impossible or at

least rare. The script language is powerful enough to detect
such errors and therefore there is no need for a separate ex-
ception handling mechanism. To be more precise, I have not
been able to think of su�cient examples of such situations to
warrant a special treatment.

4.8.4 Interactive design

Gist doesn't use direct manipulation to set up an interface,
although that could be a more convenient method, especially
in the early stages of the design, when objects are initially
placed on the screen. When positions, sizes and other at-
tributes must be speci�ed more precisely { including size
constraints between objects { direct manipulation soon be-
comes cumbersome.
An advantage of interactive design, whether by direct ma-

nipulation or not, is that is becomes possible to do easy \what-
if" experiments. Changes can be made temporarily and only
committed when they live up to expectations.
On the other hand, pure interactive design makes it hard to

document and store intermediate versions, since they are usu-
ally not kept in an accessible format. Script-based systems
and mixed systems like Gist have an advantage here. The
scripts can be printed, annotated and stored as documents.

4.8.5 Possible enhancements

There are many things that could be improved in Gist, yet do
not change the overall structure. A few are listed here:

Property sheets

When interactively editing an object, it might be convenient
to have a list of the available attributes on-screen, instead of in
a paper manual. The system already has access to this infor-
mation and it would be an easy matter of making it available
to the user.

Tracing, timing, logging

During the devolpment of an interface it is often useful to have
records of how users interact with it. So-called \protocols"

93

4 Gist

are exact logs of what happened between the user and the
interface at what moment in time. Gist could be extended
to { optionally { provide a typescript of a session. Post-
processing tools would be needed to massage the raw data
into something more managable.

Demo mode

Systems that employ a lot of graphics are often hard to de-
scribe. To teach somebody to use it, a demonstration is often
a better method. A demonstration session can be recorded
on video, but it would be much simpler if the interface could
demonstrate itself. A facility for playing back session could
be added, maybe by feeding back the typescript mentioned
above.

94

Chapter 5

The implementation
of Gist

Gist is not very large. It contains a parser for scripts, an editor
for interactively changing the interface, an interpreter that
can execute the actions in the script and a handful of routines
for enhancing widgets to work with Gist. The X Toolkit, with
which it is linked, provides the routines to deal with low-level
events.
Gist is independent of the actual interface elements (the

widgets) used, although any concrete implementation must of
course be compiled with a particular set of widgets. To ease
the incorporation of widgets as interface elements under the
control of Gist, a utility is provided that converts an editable
con�guration �le into a module that can be linked with the
rest of the program.
Figure 5.1 shows the di�erent modules from which the pro-

gram is built. The modules are explained in some detail in the
sections below.

5.1 Flow of control

The programworks under the XWindow System and is there-
fore a client of the X server. Any interaction with the screen,
the mouse and the keyboard is done by the X server, in reac-
tion to requests from Gist.
If the command line options have been removed, the �rst

argument on the command line is the the name of the �le that
contains the interface description. That �le is then parsed
and widget instances are created by the parser. If there were
any errors, the program stops at the end of the parse. If
not, and there was a second command line argument, that
second argument is interpreted as the application to execute.
The application is forked, with its standard input and output
redirected to a pty (pseudo-tty). The pty is placed under the

95

5 The implementation of Gist

classes

read config

parseaux

widgets

object admin

read script

parsefile actions

handle events

classes.def

local widget set

classes.inc

parse.ll1

LL(1) grammar

parse

gconfig

scan

local config

LL(1) parser

parser utilitieslexical scanner

main program

gist

ll1gen

Figure 5.1 Gist is built up from a number of modules. The \classes.def"
module is installation dependent, since it contains the code to connect speci�c
widgets to the system. It is automatically generated from a local con�guration

�le (not shown).

control of the X Toolkit, so that Gist is informed whenever
the application writes something.
The program then initializes the widgets, starts the main

event loop and waits for things to happen.
The program relies heavily on the functions provided by the

X Toolkit. In some places this has necessitated conversions
of data to and from the format expected by the X Toolkit,
in some cases it has even been necessary to use strings as
the lowest common denominator. Such conversions are per-
formed only once, however. On the other hand the use of the
toolkit helps much in making the program more reliable and
easier to maintain. It also makes the use of widgets possible.

96

5.2 Datastructures

1 Gist doesn't check

whether the appli-

cation died with a

non-zero return code.

This could be added

as an option, but cur-

rently Gist relies on

the application print-

ing an error message

just before it exits.

Overall the use of the toolkit seems to have more advantages
than disadvantages, as compared to working without it.
When the user causes an event, or when the application

produces output, Gist will become active, because the X
Toolkit calls a Gist function. Gist looks up the appropriate
handler for the event and executes it, maybe causing a whole
string of actions and other handlers to be executed as well.
But eventually the actions will stop and Gist will become dor-
mant again, until it is activated by the X Toolkit to handle the
next event. The routines that are involved in this are contained
in the \actions" module, see below.
The program stops either when it encounters the \halt"

action in one of the handlers or when the application dies.1

The interface objects are destroyed and if the interface has
been changed, a new script is written to make the changes
permanent.

5.2 Datastructures

The Gist program has to keep lists of classes and objects
and for each object also a list of handlers. Handlers in turn
contain a list of actions and actions contain expressions. The
data structures that hold this information are used throughout
the program and they are de�ned in a header �le \types.h",
which is included by every module.
All string constants are hashed, with the help of some

routines provided by Xlib. The hashed string is of type
XrmQuark, which is a type de�ned by the X libraries.
Expressions are either constant strings or binary opera-

tions, which may be nested. If the expressions are binary
operations, the operands are interpreted as numbers, i.e., the
strings at each side may only contain digits and whitespace.
Gist will display an error message otherwise. An exception is
the AddOp, which will fall back to string concatenation and
not give an error message.

typedef enum {AddOp, SubOp, MulOp, DivOp} Operation;

The Expression type is the union of a LeafNode and a binary
expression (Node). The boolean �eld leaf indicates which is
which. The LeafNode can be either a literal string, a shell
command, a reference to an attribute, or a reference to part
of the message that triggered the action. The combination of
�elds determines which.

typedef struct {

Boolean leaf; /* = always True */

97

5 The implementation of Gist

Boolean shell_cmd;

XrmQuark v, sub;

} LeafNode;

typedef struct {

Boolean leaf; /* = always False */

Operation op;

union _Expression *left, *right;

} Node;

typedef union _Expression {

Boolean leaf;

LeafNode leafnode;

Node node;

} *Expression;

There are nine types of actions (an action that destroys
a dynamically created object has not yet been implemented)
and there is a struct Action with enough �elds to hold the
information for each of them; depending on the type of action,
some �elds remain unused or have di�erent functions.

typedef enum {AClone, AOpen, AClose, APrint, ASend,

AHalt, ABeep, AActivate, ADeactivate} ActionType;

typedef struct _Action {

ActionType tp;

Expression receiver; /* receiver or name */

Expression sub; /* attribute or NULL */

Expression value; /* class, value or NULL */

Boolean closed; /* only if ANew */

struct _Action *next;

} *Action;

The �eld receiver is used when the action type is AClone,
AOpen, AClose, AActivate, ADeactivate or ASend. It holds
the name of the object to clone, open, close, activate or send a
message to. The �eld sub is only used with the ASend action,
if the action is not to send a message, but to set the value of
an attribute. It holds the name of the attribute The �eld value
is used with the ASend action to hold the message to send or
the value to set in an attribute and it is used with the AClone
action to hold the name of the object to create.
Handlers are di�erentiated by the type of their triggers:

typedef enum {HString, HRegexp, HEvent, HFinal,

HInit, HMouseDown, HMouseClick,

HMouseDouble} HandlerType;

98

5.2 Datastructures

A handler can be made conditional, which means that it is
only executed when the object is open, closed, sensitive or
insensitive. The �elds closed and sensitive record the condi-
tions.

typedef enum {IfTrue, IfFalse, IfAny} ThreeValue;

typedef struct {

HandlerType tp;

union {

XrmQuark string;

regex_t re;

XrmQuark event;

} trigger;

ThreeValue closed;

ThreeValue sensitive;

Action actions;

} Handler;

Handlers of type HString are excuted if the object receives
a message that is equal to trigger.string; HRegexp handlers
messages that match trigger.re; HEvent handlers execute if
the event trigger.event occurs (the event is coded in the X
Toolkit syntax). The other types of handlers react to events
that are implicit in their type: HFinal is executed on every
\unmap" event, HInit with every \map" event, HMouseDown,
HMouseClick and HMouseDouble are synthetic events, gen-
erated by the objects themselves, but usually in response to
a press, a click or a double click of mouse button 1.
The con�guration �le that lists the available classes of ob-

jects also indicates whether the object is to be used as a
window or dialog box instead of a normal element. This is im-
portant, since windows and boxes do not have parents within
the interface, but instead have a shell widget created for them.
(See also \classes" below.)

typedef enum {MainWindow, DialogBox,

NoShell} ShellType;

The parser builds a list of widgets. The top level widgets
(windows and boxes) are not opened by the parser, instead a

ag is set in the list. At the end of the initialization the main
program opens all widgets that have this
ag set. The script
�eld is a copy of the part of the script �le that de�nes this
widget.

typedef struct {

Widget widget;

99

5 The implementation of Gist

XrmQuark class;

Boolean open;

String script;

} WidgetDesc;

5.3 The \main" module

The module \main" contains the start-up code and it also con-
tains the routine that receives the output from the application.
The latter routine could have been put in a separate module,
but since it is quite short and self-contained it has been left
in the main module.
The main routine performs a number of initializations. If

one of them returns an error, the program will be aborted:

�Open a connection to the X display server. The X Toolkit
provides the routine XtVaAppInitialize for this task.

� Initialize the set of widget classes. This is done by a
routine in the \classes" module. The e�ect is that all
class and attribute names are hashed, for faster access
later.

� Create a pseudo-object inputwidget that will be used to
represent the application in communications among ob-
jects.

� Check that there is a command line argument. This argu-
ment is the name of the script �le. The �le will be parsed,
resulting in a collection of widgets. (See \parse�le" be-
low.)

� If there is a second command line argument, this is the
command to start the application. A \pty" (see below) is
created and the application is forked, with its input and
output redirected to the pty.

� The �nal initialization step consists of the \mapping"
of all top level windows, i.e., opening all windows that
should be open at the start of the program.

The main routine ends with a call to XtMainLoop. This X
Toolkit routine contains an in�nite loop that waits for events
and calls the appropriate routines in Gist.
When the interface is used with an application, the appli-

cation is started as a separate process (forked) and its input
and output are redirected to a pty. A pty (or pseudo-terminal)
is similar to a two-way pipe or a socket, but the advantage of
a pty is that it looks like a normal terminal to the application.
Many programs will detect whether they are outputting to a
terminal or not and use bu�ered I/O if it is not a terminal.

100

5.4 The \parse�le" module

2 Not all versions of

unix provide pty's,

but there exists a

fairly portable free-

ware implementation.

Bu�ered I/O disables interactive work, for to work interac-
tively with an application, Gist must see every line of output
as soon as it is generated and the application must also react
to every line of input immediately. Pty's seem to be the only
way to force this behaviour between two processes.2

Pty's are opened like any other device or �le, but there
is only a limited number of them available (often 26). The
standard way of obtaining a pty from the system is simply to
open them all in turn, until one is successfully opened or until
the list is exhausted. In theory it is therefore possible that
Gist will fail because all pty's are in use by other processes.
In practice this is seldom a problem.

5.4 The \parse�le" module

The module \parse�le" is only used during initialization. Its
task is to read the script �le, pass it to the parser and store
the objects (widgets) that the parser creates. The objects are
parsed one at a time, since this allows the same parser to be
used both for reading the script and for changing an object
after it has been edited interactively.
A utility routine read up to object is used to read the com-

plete description of an object into a string, which is then
handed to the lexical scanner. When the lexical scanner has
thus been initialized, the parser is started. This process is
repeated until all objects have been read. If any of the calls
to the parser caused an error message, the function returns
False, causing the main module to abort the program.
Here are the relevant lines:

while ((s = read_up_to_object(f, last))) {

init_scan(s, 0);

ll1parse(&widget, &classname, &closed, toplevel,

&default_parent);

store_widget(widget, classname, !closed, s);

end_scan(&dummy);

}

To the user this piecemeal parsing is hardly noticable. The
only e�ect is that the script is not completely free-form as it
would have been if it had been parsed in whole. The exception
is the keyword object, which must be the �rst word on its
line for the parse�le module to �nd it.
The parser returns the widget that it has created. The

widget is stored by the module \widgets" (see below). The
information that is stored consists of the object's name, class,
handlers and whether it is open or closed. All this information
is returned in the parser's parameters.

101

5 The implementation of Gist

The lines before the �rst object in the script contain default
attributes and describe a model of the application, in the form
of handlers for each of the possible (and meaningful) outputs
of the application. These �rst lines are parsed as if they were
the declaration of the pseudo-object inputwidget (see the main
module above).

5.5 The \scan" module

The lexical scanner is a simple, hand-made module, with as
most important function nextsym. The scanner is initialized
by calling init scan with a string as argument. The next token
is stored in a global variable sym and every call to nextsym
changes it to the next token. If the token is an identi�er,
string or something similar, the actual string is stored in
another global variable, called curtoken.
The module exports two other functions: end scan and

scan status. Both can be used to retrieve the position in the
string where the last recognized token started. scan status
also returns the string that was passed to init scan. The er-
ror routines in \parseaux" (see below) use this to show the
position of the error to the user.
The algorithm to recognize keywords and identi�ers relies

on the Xlib routines that hash strings into \quarks". The
�rst time init scan is called, it creates the quarks for all key-
words. All identi�ers that are encountered in the input are
then hashed and their quarks are compared to the quarks
for the keywords. Attributes, messages, names of objects,
etc. are stored as quarks, so it is convenient to use them for
keywords also, even if it provides no gain in speed.
The lexical scanner is also responsible for skipping com-

ments. Comments in Gist scripts start with a `#' and go on
for the rest of the line. This is the same convention that is
used in unix shell scripts, and therefore it allows the scripts
to be made executable. If the script starts with the comment

#!/usr/local/bin/gist

(or whatever the full path name is) the script can be executed,
just like a shell script.

5.6 The \parse" module

The actual parser is generated from a grammar with the help
of a parser generator, called \ll1gen". As the name implies,
ll1gen is a parser generator for LL(1) grammars, the gener-
ated parser is therefore a recursive descent parser.

102

5.7 The \parseaux" module

The obvious choice would have been to use \yacc", the
standard unix parser generator, but tests and experience
with other yacc-generated parsers have led to a decision to
generate a top-down parser instead. The error messages that
a bottom-up parser is able to produce for syntax errors are
usually not very informative and it was felt that the quality of
error messages was particularly important. With a top-down
parser good error messages are possible, provided the parser
has a reasonably sophisticated error-recovery strategy.
The complete syntax can be found in an appendix.

5.7 The \parseaux" module

The routines in the module \parseaux" performmiscellaneous
functions for the parser. They are:
error check or create parent
manage maybe eval const
new node new leaf
process handlers set default attribute
set attribute

The error function is used to display errors. It pops up a dialog
box to show both the context of the error and a description.

The routine check or create parent has three functions, de-
pending on the type of object it is called with. If the object is
classi�ed as aMainWindow or DialogBox, it should not have
a parent object. Instead a shell widget is created for it. The
object is also marked as the default parent for subsequent
objects.
If the object is not meant to be used as a window or box, it

must either have an explicit parent, or it will be assigned the
current default. It can happen that there is not yet a default
parent, which means that there is an error in the script. In
this case the error function will be called.

The function manage maybe \manages" (opens) an object,
unless its default state is closed or it is a window or box. In
the case of windows and boxes a
ag is passed back to note
that the object must be opened by the main module later.

The function eval const tries to evaluate an expression, which
only succeeds if the expression contains only constants, i.e.,
no references to attributes and no shell commands.

The function new node and new leaf allocate space for a node
in an expression tree and initialise it.

103

5 The implementation of Gist

The function process handlers is complicated by the fact that
the di�erent kinds of handlers that Gist uses must be con-
verted to actions and translations in the format expected by
the X Toolkit. The routine creates a translation table and
installs it in the widget. One of the translations is for the
mouse button that opens the editor for interactive editing of
the object.
The conversion to translations and actions involves a few

tricks. String messages are sent to widgets as ClientMes-
sages, with a (decimally coded) pointer to the actual message.
It is OK to pass pointers, since all widgets are within the same
application. The handler for ClientMessages has a pointer to
the list of handlers as �rst argument (as a decimal number)
and the number of handlers as the second (again a decimal
number).
Event handlers are implemented as actions for the event

itself. (The event syntax should be checked, to shield the user
from error messages coming from the X Toolkit, but currently
that check is skipped.)
Finalize and Initialize handlers are implemented as actions

for the \Unmap", respectively the \Map" event.
Mouse-down, click and double click handlers are just string

handlers, because the mouse-down, click and double click
events are synthetic events, generated by Gist itself (see the
module \actions")

Finally, set default attribute and set attribute store the values
of attributes in resources. The former stores the resource and
value in the resource database, where it will act as a default
value for all attributes of the same name. The latter uses
XtVaSetValues to store the resource directly in a widget.

5.8 The \actions" module

The module is called \actions" both because it contains action
functions in the terminology of the X Toolkit and because it
executes the actions in Gist scripts.
The actions are registered with the X Toolkit with the help

of a table, as follows:

XtActionsRec actions[] = {

{ "handle-string", handle_string },

{ "handle-event", handle_event },

{ "mouse-down", mouse_down },

{ "mouse-click", mouse_click },

{ "mouse-double", mouse_double },

{ "edit-script", edit_script },

104

5.9 The \classes" and \classes.def" modules

};

The three mouse actions are used in the con�guration �le (see
\con�guration" below) to tell Gist when to generate the spe-
cial mouse events. The edit script action invokes the editor
for interactively changing an object.
The handle string action is called when the widget receives

a message (a \ClientMessage"). All messages are handled
by the same handle string action. It searches through the
list of message handlers for one that matches the messages
and then calls a local function execute to execute the list of
actions. The list of message handlers is the �rst parameter
of the action function. It is put there by the process handlers
function in \parseaux" (see above).
The function handle event handles raw events. There can be

multiple handle event actions in a single object, each bound
to a di�erent event. The �rst parameter of the function is
a pointer to the handler to execute. Unlike handle string,
this action does not have to search through a list of handlers,
neither does it have to check the conditions. All it has to do
is call the execute function with the proper arguments.

5.9 The \classes" and \classes.def" modules

The \classes" module holds the information about the lo-
cally con�gured set of objects. It has routines to check for
the existence of a certain object or a certain attribute. The
\classes.def" �le is a con�guration �le that is converted to a
C �le by a small program, gcon�g. The result is a �le with
some arrays and functions that is included in the \classes.c"
�le.
Objects and attributes are not sorted and simple lineair

search is used to �nd objects and attributes. The search is
made a little faster because all names of objects and attributes
are hashed so that only \quarks" have to be compared.
The main structure for holding information about available

object classes is de�ned as follows:

typedef struct {

String name; /* The name of the class */

XrmQuark q; /* The name as a quark */

WidgetClass *class_ptr; /* The type */

ShellType tp; /* MainWindow/DialogBox/NoShell */

int nrattribs; /* Number of resources */

attrib_descr *attrib; /* List of resources */

String def_trans; /* Default translations */

} class_descr;

105

5 The implementation of Gist

The class name of an object is not necessarily the same as
the name of the widget used to implement it. Several objects
may actually be implemented with the same widget, but with
di�erent attributes, di�erent behaviour or di�erent default val-
ues.
The same freedom exists in choosing names for attributes.

Although the attributes of an object are actually the resources
of the widget, they do not necessarily have the same name.

typedef struct {

String attrib; /* The name of the attribute */

XrmQuark q; /* The name as a quark */

String resource; /* The name of the resource */

Boolean set; /* Can be set? */

Boolean get; /* Can be queried? */

} attrib_descr;

The booleans set and get indicate if an attribute can be as-
signed values (set) and if it can be used in an expression
(get). Most attributes can be set (with XtVaSetValues), but
only resources that have a converter from their own type to
string can be queried (with XtVaGetValues), unless they are
strings themselves, of course. It may be a good idea to add a
few converters to Gist for common types (int,
oat, Boolean),
since widget writers usually only provide converters in the
other direction.

5.10 Con�guration

As said elsewhere, every installation of Gist must de�ne a set
of objects, implemented with widgets. The con�guration �le
\classes.def" de�nes the objects (their name, what ettributes
they have, when they generate mouse events, etc.) and tells
with what widgets they are implemented.
The format for con�guration �les is de�ned by the converter

\gcon�g", which is itself implemented in Awk. An example
may serve to give the
avour of it, see �gures 5.2 and 5.3.
For every object, Gist needs

� its name (class),

� attributes (attrib),

� if there is a converter from string to the type of each
attribute,

� if there is a converter in the opposite direction, and

� if it is a window, box or a normal object (shell).

106

5.10 Con�guration

The window object is actually a Board widget with a transientShell

parent. It borrows all resources from board (which is not really a

superclass, but the effect is the same.)

#

CLASS window

SHELL MainWindow

ID xfwfBoardWidgetClass

FILE Xfwf/Board.h

SUPER board

A box is also just a Board, but this time within an overrideShell.

#

CLASS box

SHELL DialogBox

ID xfwfBoardWidgetClass

FILE Xfwf/Board.h

SUPER board

A board is a general container for other objects. It has the resources

of frame plus some that have to do with locations

#

CLASS board

ID xfwfBoardWidgetClass

FILE Xfwf/Board.h

SUPER frame

#

attribute resource set? get? default

#

ATTRIB abs-x XtNabs_x y y

ATTRIB rel-x XtNrel_x y y

ATTRIB abs-y XtNabs_y y y

ATTRIB rel-y XtNrel_y y y

ATTRIB abs-width XtNabs_width y y 20

ATTRIB rel-width XtNrel_width y y

ATTRIB abs-height XtNabs_height y y 20

ATTRIB rel-height XtNrel_height y y

ATTRIB hunit XtNhunit y y

ATTRIB vunit XtNvunit y y

ATTRIB location XtNlocation y y

Figure 5.2 A fragment of a con�guration �le for the installation of Gist.

The keywords id, file, trans and callback. . . end
provide the implementation of the object. They indicate the
widget that is to be used, the header �le to include, the trans-

107

5 The implementation of Gist

A button is a label with actions for mouse clicks. The actions draw

the button's shadow in reverse when the mouse is pressed.

#

CLASS button

ID xfwfButtonWidgetClass

FILE Xfwf/Button.h

SUPER label

TRANS <Btn1Down>: set_shadow(sunken) mouse-down()

TRANS <Btn1Down>,<Btn1Up>: mouse-click() set_shadow()

TRANS <Btn1Down>(2+): mouse-double()

Arrow

#

CLASS arrow

ID xfwfArrowWidgetClass

FILE Xfwf/Arrow.h

SUPER board

ATTRIB direction XtNdirection y n

ATTRIB foreground XtNforeground y n

ATTRIB shadow XtNarrowShadow y y

ATTRIB initial-delay XtNinitialDelay y y

ATTRIB repeat-delay XtNrepeatDelay y y

#

The callback is used to generate mouse-down events repeatedly

as long as the button is pressed.

#

CALLBACK XtNcallback

{

mouse_down(w, NULL, NULL, NULL);

}

END

Figure 5.3 Another fragment of a con�guration �le for the installation of Gist.

lations to install on the widget and any callbacks. The trans-
lations and callbacks should at least de�ne when the objects
generates mouse down, mouse click and mouse double click
events. The example shows that the button widget generates
mouse down on a \Btn1Down" event, whereas the arrow ob-
ject generates it each time a certain callback is called.
The keyword super is used to keep the descriptions short.

In principle, each object should be accompanied by an exhaus-
tive list of attributes. This list could become very long. The
super keyword says that all attributes of the named object

108

5.10 Con�guration

are inherited. Usually the object to inherit from is indeed the
widget's superclass, but that need not be the case. For exam-
ple, window \inherits" from board, since board has the same
attributes as window, not because the widget that implements
board is a superclass { it is, in fact, the same widget. {
From the list of attributes it is clear that not all attributes

can be queried. This is caused by the lack of converter func-
tions with string as the target type. location can be queried
because it is a string itself. Numerical attributes can be
queried, because Gist provides converters for some common
data types. When widgets de�ne new types and widget writ-
ers do not provide converters, it is impossible for Gist to
translate the values back to strings.

109

Appendix A

Gist syntax

The syntax of Gist scripts is fairly simple. A script is basically
a list of object de�nitions, each starting with the keyword
\object". Each de�nition has two parts: the attributes and
the handlers.
Before the �rst object, there may be a list of global at-

tributes. They will act as default values for all objects that
do not override them.
After the global attributes but still before the �rst object,

there should also be a list of handlers that model the applica-
tion for which this is an interface. The handlers can only be
string handlers or regular expression handlers. They deter-
mine what actions must be executed when a certain string is
outputted by the application. The actions usually distribute
relevant portions of the output to the interface elements that
can display that kind of information.
Below is the annotated syntax. All semantic actions have

been left out, except for the parameters of the nonterminals.
Instead there is a concise description of what each rule means
and what semantics the parser extracts from it.
The syntax notation is close to that used by Yacc. Every

rule has a head and a body, separated by a colon (:). The body
ends with a semicolon (;). The body can contain alternatives,
separated by vertical bars (j). For example, the rule

factor

: IDENTIFIER

| STRING

| LPAR value RPAR

;

says that a factor can be formed in three ways: either from an
identifier, or from a string, or from an lpar followed
by a value followed by an rpar.

111

A Gist syntax

token representation token representation

ACTIVATE ACTIVATE IDENTIFIER identi�er
ACTIVE ACTIVE INITIALIZE INITIALIZE

BEEP BEEP LPAR (

CLOSE CLOSE MINUS -

CLOSED CLOSED MOUSECLICK MOUSE-CLICK

COLON : MOUSEDOUBLE MOUSE-DOUBLE

COMMA , MOUSEDOWN MOUSE-DOWN

COMMAND `. . . command. . . ` NEW NEW

DEACTIVATE DEACTIVATE OBJECT OBJECT

DIV DIV OPEN OPEN

DOLLAR $ PLUS +

DOT . PRINT PRINT

EVENT f. . . event. . . g REGEXP /. . . reg. exp.. . . /
FIELD $digit RPAR)

FINALIZE FINALIZE STRING ". . . string. . . "
HALT HALT TIMES *

Figure A.1 Terminals

Parameters are added using the C notation, which leads to,
e.g.,

factor(Expression *e)

: IDENTIFIER

| STRING

| LPAR value(e) RPAR

;

A.1 Terminal symbols

The terminal symbols in the rules below are all written in
uppercase. Most of them correspond closely to their repre-
sentation in the script. Table A.1 lists them all.
A \command" is a normal shell command. An \identi�er"

is a sequence of letters, digits, underscores and dashes. An
\event" is an event in the standard X Toolkit notation. A
regular expression must be written in the posix extended
syntax (but see section 4.8.2). The de�nition of the syntax
can be found in unix manuals under regexp(5).
Note that self and parent do not appear as terminals.

Although they have a clear semantic meaning that is di�erent
from other identi�ers, that fact is not visible in the syntax.

112

A.2 Rules

A.2 Rules

The start symbol is parse. It is called either to create a new
object or to set the attributes of an existing object. In the
�rst case, the rule returns the widget it created, the type of
object, and whether it should be opened during initialization.
In the second case *widget and *classname already have a
value. The parameter def parent is both input and output, for
if the created object is a window or box it will become the
new default parent, otherwise the new object will be assigned
the current value of def parent if it does not specify an explicit
parent.

parse(Widget *widgetp, XrmQuark *classname,

Boolean *closed, Widget toplevel, GistObj *def_parent)

: OBJECT class(classname, &class) unique_name(&name)

parent_opt(&parent) closed_opt(closed)

parse_attribs(*widgetp, *classname)

| parse_attribs(*widgetp, *classname)

;

parent_opt(GistObj *parent)

: parent(parent)

| /* empty */

;

parent(GistObj *parent)

: LPAR name(&name) RPAR

;

name(XrmQuark *name)

: constant(name)

;

closed_opt(Boolean *closed)

: CLOSED

| /* empty */

;

class(XrmQuark *classp, WidgetClass *class)

: IDENTIFIER

;

unique_name(XrmQuark *namep)

: constant(namep)

;

A constant is an expression that can be evaluated at compile
time by the parser itself. Such expressions are needed in a
few places, such as the name of an object and the value of
an attribute. The returned value is a string, hashed into an
XrmQuark.

constant(XrmQuark *namep)

: value(&expr)

113

A Gist syntax

;

Expressions are strings or numbers, connected by operators
+, �, � and DIV. For strings only + is meaningful. Strings
and numbers are dynamically converted into each other when
needed.

value(Expression *exprp)

: term(exprp) more_terms(exprp)

;

more_terms(Expression *exprp)

: plus_or_minus(&plus) term(&(*exprp)->node.right)

more_terms(&(*exprp)->node.right)

| /* empty */

;

plus_or_minus(Boolean *plus)

: PLUS

| MINUS

;

term(Expression *expr)

: factor(expr) more_factors(expr)

;

more_factors(Expression *expr)

: times_or_div(×) factor(&(*expr)->node.right)

more_factors(&(*expr)->node.right)

| /* empty */

;

times_or_div(Boolean *times)

: TIMES

| DIV

;

factor(Expression *e)

: IDENTIFIER attrib_opt(ident, e)

| STRING attrib_opt(ident, e)

| COMMAND attrib_opt(ident, e)

| LPAR value(e) RPAR attrib_opt(ident, e)

| FIELD attrib_opt(ident, e)

;

attrib_opt(XrmQuark ident, Expression *e)

: DOLLAR IDENTIFIER

| /* empty */

;

In an expression, an identi�er on its own is just a string, but
an identi�er followed by a dollar sign and another identi�er is
a reference to an attribute. For example, list is the same as
"list", but box1$list is replaced by the current value of the
list attribute of the object called box1.

114

A.2 Rules

A field is a reference to the message that triggered a
regular expression. It starts with a $. In an expression it will
be replaced with the appropriate substring of the message
that triggered the action.

The syntax of expressions is not yet completely satisfactory.
For example, it is impossible to pass arguments to a shell
command (command).
The de�nition of an object has two parts: the attributes

and the handlers. The attributes are a set of keyword-value
pairs: the name of the attribute followed by a constant ex-
pression that gives the value. The expression must be con-
stant, because the value will be installed in the widget (with
XtVaSetValues) before the whole script has been read.

parse_attribs(Widget widget, XrmQuark class)

: attributes(widget, class)

handlers(class, &handlers, &n)

;

attributes(Widget widget, XrmQuark class)

: attribute(widget, class) attributes(widget, class)

| /* empty */

;

handlers(XrmQuark class, Handler **handlers, int *n)

: handler(class, &(*handlers)[*n])

handlers(class, handlers, n)

| /* empty */

;

attribute(Widget widget, XrmQuark class)

: resource(class, &resource) constant(&val)

;

resource(XrmQuark class, XrmQuark *resource)

: IDENTIFIER

;

There are four types of handlers. string handlers and
regexp handlers are triggered by text messages, either com-
ing from other objects or { in the case of the special in-
put widget { from the application. event handlers pro-
vide the means to attach actions to general events. The
special handlers are handlers for the mouse-down, mouse-
click and mouse-double-click events that are generated by
Gist itself and for the \map" and \unmap" events that occur
when an object is opened or closed.

handler(XrmQuark class, Handler *h)

: string_handler(class, h)

| regexp_handler(class, h)

115

A Gist syntax

| event_handler(class, h)

| special_handler(class, h)

;

string_handler(XrmQuark class, Handler *handler)

: STRING

condition_opt(handler) COLON

actionlist(class, &handler->actions) DOT

;

regexp_handler(XrmQuark class, Handler *handler)

: REGEXP

condition_opt(handler) COLON

actionlist(class, &handler->actions) DOT

;

It is not possible to attach conditions to event handlers,
because it is impossible to install two translations for the
same event. This is an unfortunate restriction in Gist, but
it would be very expensive to �x. The special events (below)
can have conditions, however.

event_handler(XrmQuark class, Handler *handler)

: EVENT COLON actionlist(class, &handler->actions) DOT

;

special_handler(XrmQuark class, Handler *handler)

: special_event(&handler->tp) condition_opt(handler)

COLON actionlist(class, &handler->actions) DOT

;

special_event(HandlerType *tp)

: FINALIZE

| INITIALIZE

| MOUSEDOWN

| MOUSECLICK

| MOUSEDOUBLE

;

condition_opt(Handler *handler)

: condition(handler)

|

;

condition(Handler *handler)

: plus_or_minus(&plus) closed_or_sensitive(&closed)

;

closed_or_sensitive(Boolean *closed)

: CLOSED

| ACTIVE

;

The comma between actions is optional. It can sometimes
help to improve the lay-out, especially when actions are typed

116

A.2 Rules

one after another on the same line.

actionlist(XrmQuark class, Action *actions)

: action(class, *actions)

more_actions(class, &(*actions)->next)

|

;

more_actions(XrmQuark class, Action *actions)

: COMMA action(class, *actions)

more_actions(class, &(*actions)->next)

| action(class, *actions)

more_actions(class, &(*actions)->next)

|

;

The di�erent kinds of actions are clearly recognizable in
the following rule. The �rst alternative refers to the ASend
action, that sends a message to another object. It is also used
to set attributes in the receiver. In this case the value for the
attribute need not be a constant, since it can be evaluated at
run-time.
The second alternative creates a new object, by cloning the

named object and all its children. The actions AOpen and
AClose open and close objects, respectively. The AActivate
and ADeactivate actions make objects (in)sensitive to user
input. The APrint action sends a string to the application,
which will appear on the application's standard input.
AHalt simply stops execution of both Gist and the appli-

cation. It is only used in exceptional cases, since normally
the application determines when the interface should stop,
instead of the other way round. The ABeep action sounds the
terminal bell.

action(XrmQuark cl, Action act)

: receiver(&act->receiver)

resource_opt(cl, &act->sub) value(&act->value)

| CLONE receiver(&act->receiver) AS value(&act->receiver)

| OPEN receiver(&act->receiver)

| CLOSE receiver(&act->receiver)

| ACTIVATE receiver(&act->receiver)

| DEACTIVATE receiver(&act->receiver)

| PRINT value(&act->value)

| HALT

| BEEP

;

resource_opt(XrmQuark class, Expression *sub)

: DOLLAR resource(class, &attrib)

|

117

A Gist syntax

;

parent_expr_opt(Expression *sub)

: parent_expr(sub)

|

;

receiver(Expression *receiver)

: value(receiver)

;

118

Appendix B

Gist example

This example contains a complete interface to the game of tic-
tac-toe { or crosses and noughts { as found on many unix
machines. The game was chosen for the simplicity of its I/O.
Nevertheless, the example shows all the features of Gist. A
larger example would simply be \more of the same".
We assume most people now the rules of the game: a 3�3

square must be �lled by two players, taking turns. One player
draws X's, the other O's. The player that gets three symbols
in a row wins. In the computer version, the computer plays
with O's and the user with the X's.
The output of the tic-tac-toe program consists of the follow-

ing texts:

Accumulated knowledge?

This is asked at the start of the game and must be an-
swered with y or n. When answered with y, the program
will learn from its mistakes.

123

456

789

This is actually three lines, so the interface has to collect
them before actions can be taken. The three lines contain
the digits 1 to 9, with X's and O's replacing the digits if
the corresponding position has been crossed by either the
computer or the user/player.

You win

The user wins.

I win

The program wins.

Your move?

When the user has to choose a square.

119

B Gist example

Thinking

When the computer is choosing a square.

The input is even simpler. At the start of the game the user
must enter y or n in response to the question about learning.
In the course of the game the user must enter digits between
1 and 9 and at the end of the game again y or n in answer to
the question about starting another game.
The interface will be modeled as a direct manipulation in-

terface. As much as possible the user is given control over
the dialogue. The playing �eld is shown on the screen and the
user can click on empty squares. The question about learning
right after startup is shown in a dialog box. There is a quit-
button that the user can click at any time to stop the game.
Error messages are not needed, since the only thing the user
can do wrong { clicking on a square that is already marked
{ can be easily intercepted by the interface itself.
\You win" and \I win" messages are displayed in another

dialog box, that has just an OK button.
The interface will therefore consist of a main window with

ten buttons (nine squares plus quit), a dialog box with a yes
and a no button, and a dialog box with an OK button.

B.1 Application model

The script starts with the input model. There are handlers
for each of the possible outputs of the application. The ques-
tion \Accumulated knowledge?" results in the opening of the
modal dialog box called learn. Lines with just X's, O's and
digits are catched by a regular expression and are appended to
a local variable, until the text \. . . your turn. . . " is received.
At that moment the stored text is taken apart by a separate
handler and used to set the labels of the nine buttons. The
nine parenthesised parts of the regular expression correspond
to the nine �elds $1 to $9 in the action list.

"Accumulated knowledge?": OPEN learn.

"You win" : show-win $0.

"I win" : show-win $0.

/[XO1-9]+/ : SELF$state "" + SELF$state + $0.

"Thinking" : SELF "do " + SELF$state.

"Your move?" : SELF "do " + SELF$state.

/do (.)(.)(.)(.)(.)(.)(.)(.)(.)/:

"1" $1, "2" $2, "3" $3

"4" $4, "5" $5, "6" $6

"7" $7, "8" $8, "9" $9.

self is a prede�ned name, which always refers to the current
object, even if that object is the nameless input object. The

120

B.2 Dialog boxes

�rst line opens the learn box (de�ned below). The second line
sends the message \You win" to the show-win object. The $0

represents the message that triggered the action, which is in
this case simply \You win".
A \virtual attribute" state is used to collect the three lines

that represent the board. The fourth handler is triggered by
any input that contains just three letters, this will match the
three lines that represent the board. state will be the concate-
nation of these three lines. The addition of the empty string
at the beginning is there to force the + to be interpreted as
string concatenation and not as addition of numbers.

B.2 Dialog boxes

The dialog box learn displays a text and two buttons. It is
initially closed, since it will be opened by the input object
above.

OBJECT box learn CLOSED

width 300

height 200

OBJECT label label

location "0 0 1.0 1.0-40"

label "Should the program learn from mistakes?"

OBJECT button yes

location "0.5-100 1.0-30 80 20"

label "Yes"

MOUSE-CLICK: PRINT "y\n", PARENT CLOSE.

OBJECT button no

location "0.5+20 1.0-30 80 20"

label "No"

MOUSE-CLICK: PRINT "n\n", PARENT CLOSE.

Note that the identi�er label is used in three di�erent roles:
type of object, name of object and name of attribute. Gist is
able to keep the three usages separate, because they always
occur in speci�c contexts.
The quotes around Yes and No are optional. When a value

does not include whitespace, the quotes can be omitted.
parent is a prede�ned identi�er, which always refers to

the parent of the current object. In this case it refers to the
learn box.
The second dialog box is called show-win. It displays either

the text \You win" or \I win", but the way it is de�ned below
it just displays any text that is sent to it. It has a single

121

B Gist example

button that pops down the box. The text to display is sent as
a message to the box and the box asigns it to the label, and
then opens itself.

OBJECT box show-win CLOSED

width 300

height 200

/.*/: # matches any message

win-label$label $0

SELF OPEN.

OBJECT label win-label

location "0 0 1.0 1.0-40"

OBJECT button ok

location "1.0-40 1.0-30 80 20"

label "OK"

MOUSE-CLICK: PARENT CLOSE.

B.3 Main window

The main window is given a title and a size. When it is
opened, it creates the nine buttons for the nine squares and
assigns them a position. Since there are only nine buttons,
there is no real need for creating them dynamically, except as
an example.

OBJECT window tic-tac-toe

width 80

height 120

title tic-tac-toe

initialize:

CLONE proto-btn AS 1, 1$x 10, 1$y 10,

CLONE proto-btn AS 2, 2$x 30, 2$y 10,

CLONE proto-btn AS 3, 3$x 50, 3$y 10,

CLONE proto-btn AS 4, 4$x 10, 4$y 30,

CLONE proto-btn AS 5, 5$x 30, 5$y 30,

CLONE proto-btn AS 6, 6$x 50, 6$y 30,

CLONE proto-btn AS 7, 7$x 10, 7$y 50,

CLONE proto-btn AS 8, 8$x 30, 8$y 50,

CLONE proto-btn AS 9, 9$x 50, 9$y 50.

The nine buttons that form the 3� 3 square each have a han-
dler for mouse clicks and two handlers that are triggered by
the message from the input objects. Note that that message
can be either an X, an O or a digit. There are two handlers,
because the X and O are treated di�erently from the digit.
When the digit is received, nothing will be displayed, if the X

122

B.5 Using higher level objects

or O is received, it will be displayed.

OBJECT button proto-btn

width 20

height 20

MOUSE-CLICK: PRINT SELF$label + "\n".

/[XO]/: SELF$label $0.

/[1-9]/: SELF$label "".

The last object in the interface is the quit button. It simply
aborts the program when it is clicked.

OBJECT button quit

location "10 80 60 15"

label "Quit"

MOUSE-CLICK: SELF HALT.

B.4 Flagging impossible moves

It was said in the introduction to this chapter that the inter-
face could prevent erroneous moves, but the de�nitions above
do not yet do that. The obvious place to check for such moves
is in the buttons, since the buttons contain the necessary
information { an empty or non-empty label { and also pass
the move on to the application.
Each of the nine buttons above should therefore be changed

as follows: the handler for mouse clicks must be replaced by
the two handlers

MOUSE-CLICK: SELF "?" + SELF$label.

"?": PRINT "1\n".

with the 1 replaced by the appropriate digit for that button.
The button now sends a message to itself consisting of a
question mark concatenated with the current label. Only if
the label is empty will the message match the next handler
and cause a digit to be sent to the application. If the message
turns out to be \?X" or \?O" it will simply be ignored, since
there is no handler for it.
But the ignored message can also be used to give a warning

signal to the user, for example in the form of a short beep.
That can be accomplished by adding the next handler to all
nine buttons:

/?./: SELF BEEP.

B.5 Using higher level objects

The interface contains two dialog boxes, that have in this case
been constructed from a box, a label and one or more buttons.

123

B Gist example

Such boxes are so common that there is likely to be a special,
integrated object for this task. If we assume an object type
alert, we can replace the two boxes with two alerts. The learn
box becomes:

OBJECT alert learn

message "Should the program learn from mistakes?"

buttons "Yes|No"

"1": PRINT "y\n".

"2": PRINT "n\n".

The alert object has attributes message and buttons. The
latter contains the labels for the buttons, separated by |. The
alert object is further assumed to close itself when a button
is clicked and send the number of the pressed button { 1 or
2 { to itself.
The show-win box can become:

OBJECT alert show-win

buttons "OK"

/..+/: SELF$message $0, SELF OPEN.

A slight subtlety is involved in the regular expression. We
want it to match the texts \You win" and \I win", but not the
digit \1" that the alert sends to itself when the OK button
is pressed. A simple solution is to require the message to
contain at least two characters.

124

Bibliography

Apple Computer Inc. (1987). Human interface guidelines: the
Apple desktop interface. Addison Wesley, Reading, MA. Style
guide.

Apple Computer Inc. (1988). Hypercard script language: the Hy-
pertalk language. Addison-Wesley, Reading, MA.

G. Avrahami, K. Brooks and M. Brown (1989). `A two-view
approach to constructing interfaces'. In: siggraph '89 Confer-
ence Proceedings, pages 137{146. as cited in Heeman [1992].

Simon Been (1993). `E-mail: en dan nu het (slechte) nieuws'.
In: Computable, vol. 26 nr. 16, pages 17{19, April 1993. (in
Dutch).

Maurice Bergmans (1993). `X, osf/motif en x-designer, een
technisch overzicht'. In: Werken met Sun, February 1993.

Jan van den Bos (1988). `Abstract interaction tools: a language
for user interface management systems'. In: ACM Transactions
on Programming Languages and Systems, vol. 10 nr. 2, pages
215{247, April 1988.

Jan van den Bos and Chris La�ra (1990). `Project digis, build-
ing interactive applications by direct manipulation'. In: Com-
puter Graphics Forum, nr. 9, pages 181{193, 1990.

C. Marlin `Lin' Brown (1988). Human-computer interface design
guidelines. Ablex publishing corp., Norwood, New Yersey.

Marc H. Brown and James R. Meehan (1992). The Formsvbt
reference manual. A draft version. Comments are most wel-
come. (Available by ftp.).

125

Bibliography

D. Browne, M. Norman and D. Riches (1990). `Why build
adaptive systems?'. In: Dermot Browne, Peter Totterdell
and Mike Norman (eds.), Adaptive user interfaces, chapter 1,
pages 15{58. Academic Press / Harcourt Brace Jovanovich,
London, 1990. Computers and people series.

D. Browne, P. Totterdell and M. Norman (eds.) (1990). Adap-
tive user interfaces. Computers and people series. Academic
Press, London.

Hans de Bruin, Peter Bouwman and Jan van den Bos (1993).
`digis, a graphical user interface design environment for non-
programmers'. In: Proceedings Eurographics '93, Barcelona,
Amsterdam, 1993. North-Holland. To be published.

Mark A. Clarkson (1991). `An easier interface'. In: Byte, vol. 16
nr. 2, pages 277{282, February 1991.

Pierpaolo Degano and Erik Sandewall (eds.) (1983). Integrated
interactive computing systems. North Holland.

Edsger W. D�kstra (1987). `The humble programmer'. In: ACM
Turing award lectures, the �rst twenty years 1966{1985. ACM
Press/Addison Wesley, Reading, Mass., 1987.

James D. Foley (1987). `Interfaces for advanced computing'. In:
Scienti�c American, vol. 257 nr. 4, pages 83{90, October 1987.

Adele Goldberg (1983). Smalltalk-80: the language and its imple-
mentation. Addison-Wesley, Reading, Mass.

Charles F. Goldfarb (1991). The sgml handbook. Oxford Uni-
versity Press, New York.

Nick Hammond, Margaret M. Gardiner, Bruce Christie and
Chris Marshall (1987). `The role of cognitive psychology in
user-interface design'. In: Margaret M. Gardiner and Bruce
Christie (eds.), Applying cognitive psychology to user-interface
design, pages 13{53. John Wiley & Sons, Chichester, 1987.

Frans C. Heeman (1992). State-of-the-art in window systems and
uims's. Report 92/07, Software Engineering Research Center
(SERC), Utrecht.

D. Austin Henderson Jr. (1986). `The trillium user interface de-
sign environment'. In: Marilyn Mantei and Peter Orbeton
(eds.), Human factors in computing systems III, pages 221{
227. North-Holland, Amsterdam, 1986.

126

Bibliography

Richard Hesketh (1992). The Dirt User Interface Builder. Tech-
nical report, Computing Laboratory, University of Kent, Canter-
bury.

H. J. A. Ho
and (1992). `Aan de andere kant van de spiegel'. In:
NRC Handelsblad (Cultureel Supplement), nr. 1133, pages 1{2,
August 1992. (Newspaper 14-8-92, in Dutch).

Mark R. Horton (1983). Standard for interchange of usenet
articles. RFC 850, usenet.

Edwin L. Hutchins, James D. Hollan and Donald A. Nor-
man (1986). `Direct manipulation interfaces'. In: Stephen W.
Draper (ed.), User centered system design, chapter 5, pages
87{124. Lawrence Erlbaum, Hillsdale, NJ, 1986.

IBM (1989). Common User Access, advanced interface design
guide. Technical Report SC26-4582-0, IBM. Style guide.

Bob Jacobson (1992). `The ultimate user interface'. In: Byte,
vol. 17 nr. 4, pages 175{182, April 1992.

S. C. Johnson (1975). Yacc { yet another compiler compiler.
Computing science technical report 32, AT & T Bell Labora-
tories, Marray Hill, N.J.

Richard D. Lasky (1989). `Hypertalk program design'. In: Byte,
vol. 14 nr. 8, pages 205{210, August 1989.

M. E. Lesk (1975). Lex { a lexical analyzer generator. Computer
science technical report 39, Bell Laboratories, Murray Hill, N.J.

M. Linton, J. Vlissides and P. Calder (1989). `Composing user
interfaces with interviews'. In: IEEE Computer, vol. 20 nr. 1,
pages 32{44, 1989.

Paul Lu�, Nigel Gilbert and David Frohlich (eds.) (1990).
Computers and conversation. Computers and people series.
Academic Press, London.

Lindsay MacDonald (1991). `Smart use of color in displays'. In:
Byte, vol. 16 nr. 13, pages 84IS.35{84IS.46, December 1991.

Chris Marshall, Bruce Christie and Margaret M. Gardiner
(1987). `Assessment of trends in the technology and techniques
of human-computer interaction'. In: Margaret M. Gardiner
and Bruce Christie (eds.), Applying cognitive psychology to
user-interface design, pages 279{312. John Wiley & Sons,
Chichester, 1987.

127

Bibliography

Microsoft Corporation (1991). The gui guide, localizing the
graphical user interface.

Paul Molenaar (1988). Het HyperCard handboek. Addison-
Wesley, Amsterdam.

C. Musciano (1988). Tooltool user's guide, version 2.1. Technical
report, Advanced Technology Department, Harris Corporation.

Donald A. Norman (1988). The psychology of everyday things.
Basic Books, New York.

Donald A. Norman and Stephen W. Draper (1986). User cen-
tered system design: new perspectives on human-computer in-
teraction. Lawrence Erlbaum Associates, Hillsdale, NJ.

Open Software Foundation (1991). OSF/Motif Style Guide.
Prentice Hall, Englewood Cli�s, New Jersey, revision 1.1 edi-
tion.

John K. Ousterhout (1993). An introduction to Tcl and Tk.
Addison-Wesley. This is a partial draft of a book to be published
in 1993. The draft version is available by anonymous FTP.

Randy Pausch, Nathaniel R. Young II and Robert DeLine
(1991). `suit: the pascal of user interface toolkits'. In: Proc. of
the acm symposium on user interface software and technology,
pages 117{125.

Jon Peddie (1992). Graphical user interfaces and graphic stan-
dards. McGraw-Hill,, New York.

M. Rochkind (1989). `Xvt: a virtual toolkit for portability be-
tween window systems'. In: Proceedings of the winter 1989
usenix conference, pages 151{163.

Frank Rose (1989). West of Eden, the end of innocence at Apple
Computer. Penguin, Harmondsworth, Middlesex, England.

Yen-Ping Shan (1991). `An object-oriented framework for direct-
manipulation user interfaces'. In: E. H. Blake and P. Wis-
skirchen (eds.), Advances in object-oriented graphics I, chap-
ter 1, pages 3{19. Springer, Berlin, 1991. (Eurographic Sem-
inars) Contains extensively revised versions of some of the pa-
pers presented at the Eurographics workshop on object-oriented
graphics, held in K �onigswinter, Germany in June 1990.

K. Shmucker (1986). `Macapp: an application framework'. In:
Byte, vol. 11 nr. 8, pages 189{193, August 1986.

128

Bibliography

Ben Shneiderman (1987). Designing the user interface: strate-
gies for e�ective human-computer interaction. Addison-Wesley,
Reading, Mass. Reprinted May, 1987.

G. Singh, C. Kok and T. Ngan (1990). `Druid: a system for
demonstrational rapid user interface development'. In: Proceed-
ings of the acm siggraph symposium on user interface soft-
ware and technology (uist '90), pages 167{177, Snowbird,
Utah, 1990.

D. Smyth (1991). `Wcl { widget creation library, a thin veneer
over xrm'. In: 5th annual X technical conference, Boston, 1991.

Lee Sproull and Sara Kiesler (1991). `Computers, networks
and work'. In: Scienti�c American, vol. 265 nr. 3, pages 84{91,
September 1991.

Joseph W. Sullivan and Sherman W. Tyler (eds.) (1991). Intel-
ligent user interfaces. ACM Press frontier series. ACM Press /
Addison-Wesley, Reading, Massachusetts.

Sun Microsystems (1990). Open Look graphical user interface
technical reference, volume 1 & 2. Addison Wesley, Reading,
Massachusetts. Contains style guide.

Harold Thimbleby (1990). User interface design. ACM Press
Frontier series. Addison-Wesley, Wokingham, England.

Pietje van der Velden (1992). Analyzing design tasks and con-
cepts in user-interface design. report 92/05, Software Engineer-
ing Research Center (SERC), Utrecht.

B. Webster (1989). The NeXT book. Addison Wesley, Reading,
Massachusetts.

Charles M. M. de Weert (1988). `The use of color in visual
displays'. In: Gerrit C. van der Veer and G�sbertus Mul-
der (eds.), Human-computer interaction: psychonomic aspects,
pages 26{40. Springer Verlag, Berlin, 1988.

G. M. Welling (1991). `Van dienstbodes, databases en didactiek:
`̀ al doende leert men'''. In: VGI-cahiers 4, pages 78{96. Hilver-
sum, 1991.

George M. Welling (1992). `Intelligent large-scale historical
direct-data-entry programming'. In: History & Computing V,
Proc. 5th int. congress AHC 1990, pages 563{571, Montpel-
lier, September 1992.

129

Bibliography

H. Willemse and G. Lind�er (1988). Software ergonomie.
Schoonhoven.

Robin Woo�tt (1990). `On the analysis of interaction'. In: Paul
Lu�, Nigel Gilbert and David Frohlich (eds.), Computers and
conversation, chapter 1, pages 7{38. Academic Press / Har-
court Brace Jovanovich, London, 1990. Computers and people
series.

130

Samenvatting

Het gedeelte van een computerprogramma dat zich bezig
houdt met de communicatie tussen programma en gebruiker
is het gebruikersinterface. Programma's kunnen zeer inge-
wikkeld worden of ze kunnen gebruikt moeten worden door
onervaren gebruikers. Het belangr�kste middel om de com-
puter dan toegankel�ker te maken is een aantrekkel�k inter-
face. Voor veel toepassingen betekent dat gebruik van de muis
en gra�sche elementen op het scherm, voor sommige is een
natuurl�ke taal (b�voorbeeld communiceren in Nederlands of
Engels) de aangewezen weg. B� het maken van zo'n interface
doen zich een aantal problemen voor, zoals:

� Het is voor de programmeur veel werk om een interface
te implementeren. De talen waarin applicaties worden
geschreven z�n vaak niet zo geschikt voor het schr�ven
van gra�sche interfaces. Meestal wordt een programma
meer dan tweemaal zo lang als een gra�sch interface
wordt toegevoegd.

� Het is niet te voorzien hoe een interface uiteindel�k vol-
doet. Maar prototypes maken is moeil�k, door het vele
programmeerwerk. Toch zou het eigenl�k nodig z�n, om-
dat het nu eenmaal niet mogel�k is een formele speci�-
catie te geven van een interface. Mensen z�n daarvoor
te complex.

� Aanpassen van een interface in een later stadium wegens
overbrengen naar een andere taal of voldoen aan speci-
�eke wensen van de gebruiker kan vaak alleen met behulp
van de oorspronkel�ke programmatekst (en soms alleen
door de auteur. . .). Het inbouwen van mogel�kheden
voor de gebruiker om zelf dingen te w�zigen kost extra
inspanning.

131

Samenvatting

� Interfaces z�n vaak gebonden aan een bepaalde compu-
ter, ook al zou de applicatie zelf eenvoudig op andere
typen computers kunnen draaien.

Voor deze problemen z�n oplossingen gezocht in verschil-
lende richtingen, de meeste in de vorm van hulpmiddelen voor
de programmeur.
Een interface voldoet als de gebruiker er met plezier mee

werkt (subjectief) en als h� er sneller mee kan werken dan
met andere programma's (objectief). Vooraf is het resultaat
nauwel�ks te garanderen, hoewel er inmiddels wel zoveel in-
zicht is verkregen, dat er enkele algemene richtl�nen z�n te
geven.
Het bl�kt echter dat veel programmeurs geen idee hebben

van de eigenschappen van een goed interface. Deze disserta-
tie probeert een beeld te geven van interfaces, met name van
gra�sche interfaces. Daarb� komen inzichten uit informatica,
sociologie, psychologie en ergonomie b� elkaar.
Het resultaat is een voorstel voor een benadering die wel-

iswaar niet voor alle gevallen kan voldoen, maar die wel kan
helpen b� het grootste deel van de toepassingen zoals die nu
worden gemaakt. De methode is gebaseerd op twee principes:
modulariteit en \het juiste gereedschap".
Modulariteit, omdat het interface zodanig anders van ka-

rakter is dan het achterliggende programma, dat het het beste
is voor beide delen eigen ontwikkelmethoden te gebruiken.
Beide delen z�n bovendien gebaat b� een eigen programmeer-
taal.
De aangewezen methode voor het interface is prototyping of

iterative design, terw�l voor de applicatie formele speci�catie
beter werkt. De taal voor de applicatie is meestal een tradi-
tionele programmeertaal, het interface vraagt om een speci-
ale taal, b�voorbeeld de door voor dit onderzoek ontwikkelde
Gist.
Relatief nieuw in deze benadering is (de uitwerking van)

het idee dat een interface door een ontwerper gemaakt moet
kunnen worden, zonder tussenkomst van een programmeur.
Het hoofdstuk \Human factors & GUI's" beschr�ft hoe

gra�sche interfaces worden ontwikkeld en aan welke eisen
ze moeten voldoen. Het belangr�kste concept in dit verband
is direct manipulation. In deze theorie wordt ervan uitge-
gaan dat veel dingen kunnen worden gerepresenteerd door
een plaatje of symbool en dat acties heel goed duidel�k kun-
nen worden gemaakt door het plaatje van vorm of van plaats
te laten veranderen. Dat geldt zelfs voor abstracte objecten

132

Samenvatting

1 zie Musciano

[1988]

als �les en directories. Het kopi �eren van een �le naar een
andere directory kan b�voorbeeld worden uitgebeeld door het
plaatje dat de �le voorstelt uit de ene rechthoek op het scherm
naar de andere te bewegen. Met behulp van de muis kan de
gebruiker dit ook zelf doen.
Het hoofdstuk \User interface development systems" be-

schr�ft de meest gebruikte elementen in gra�sche interfaces,
zoals windows, butttons en icons. Het z�n de elementen die
typerend z�n voor direct manipulation, hoewel ze niet alleen
daarvoor gebruikt hoeven te worden.
Deze dissertatie beschr�ft een software-pakket dat in het

kader van het onderzoek is ontwikkeld. Gist is bedoeld voor
het ontwerpen en implementeren van gra�sche interfaces.
Het is een uids met een ge��nterpreteerde, \object-oriented"
taal voor het beschr�ven van interfaces. De sterke punten van
Gist z�n de volgende:

� Gist is eenvoudig te gebruiken. Het kan gebruikt worden
als interface voor programma's in elke programmeertaal,
zelfs voor shell-scripts. Dit is vergel�kbaar met Tool-
Tool,1 maar de interfaces die daarmee te maken z�n, z�n
zeer beperkt.

� Doordat invoer beschreven wordt met reguliere
expressies is het eenvoudig Gist aan te sluiten op allerlei
bestaande programma's.

� Gist is object-oriented, zodat het beter aansluit b� het
intu��tieve model dat programmeur en gebruiker van een
interface hebben.

� Alle objecten hebben defaults die voor veel toepassingen
voldoende z�n. De defaults kunnen achteraf nog worden
vervangen.

� Gist is een taal. Dat maakt het mogel�k het interface op
papier af te drukken en op te nemen in de documenta-
tie en in versie-controle programmatuur, zoals sccs en
rcs.

� Omdat Gist ge��nterpreteerd wordt, kan het interface nog
veranderd worden als het applicatieprogramma al klaar
is, dus ook door de gebruiker zelf.

� De interpreter werkt ook los van de applicatie en kan
gebruikt worden om interfaces te testen en prototypes te
laten zien.

� Gist kan worden gecon�gureerd met willekeurige inter-
face elementen en is dus niet gebonden aan b�voorbeeld
Motif of Athena widget sets.

133

Samenvatting

Gist heeft ook nadelen:

� Gist helpt niet b� het voldoen aan \guidelines" of vuistre-
gels voor het cre �eren van interfaces. M.a.w. het voorziet
in alle noodzakel�ke materiaal maar helpt niet b� het
correct gebruik ervan.

� Er is geen direct manipulation editor voor het cre �eren van
interfaces.

134

Index

7-stage model, 26

accelerators, 41
access keys, 41
Action, 98
actions, 75, 78
actions, reversible, see re-

versible actions
ActionType, 98
adaptability, 44
advisory system, 15
alert, 31
alert box, 31
analogue input, 6
animation, 28, 30, 55
anthropomorphic, 16
Apple, 53
Arti�cial Intelligence, 43
aspect ratio, 6
asynchronous input, 7
attrib descr, 106
attributes, 30, 73

for groups of objects, 88
global defaults, 88

augmentation, 3
auto-completion, 41, 45

balloon help, 30
bitmapped, 49
boxes, 31
button, 34

callbacks, 56, 61, 63, 108
calling external programs,

84
canvas, 91
check or create parent, 103
city information system, 15
class descr, 106
click-and-drag, 33
cloning, 79
clutter, 17
CodeCenter, 58
colour

and the human eye, 18
command language, 15
CommonView, 56
con�gurability, 43
con�guration, 60
consistent, 24
continuous input, 6
Conversation Analysis, 44
conversation analysis, 2, 8
curtoken, 102

database, 16
defaults

global, 88
type-speci�c, 89

demo mode, 94
demonstration, 24

automatic, 94
desktop, 53, 55

135

Index

details, see attributes
dialog box, 31
digis, 61, 87
D�kstra, Edsger W., 49
dimmed menu item, 32
direct engagement, 27
direct manipulation, 24, 61
Dirt, 56, 61, 87
discrete input, 6
display, 4
display types

capabilities, 6
quality, 5

DM, see direct manipula-
tion

drop-down menu, 33
Druid, 56

eager evaluation, 52
editor, 38
education

computer-aided, 15
e�ciency, 9
enabling, 3
encapsulation, 51
end scan, 102
ergonomics, 3

cognitive, 3
hard, 3
soft, 3

error, 103
error handling, 93
error messages, 24
eval const, 103
event, 7
event loop, 7
event-driven, 52
events

physical, 77
synthetic, 77

experimentation, 4
expert system, v, 15
Expression, 97
expressions, 80
eye movements, 28

feedback, 9
�le manager, 41
�le selector, 39
�le selector box, 39

ight simulator, 27

owcharts, 55
force feedback, 28
Forms vbt, 61, 72, 87
Formsvbt, 58, 72

gconfig, 106
gestures, 28
gif, 36
Gist

con�guring, 89
scripts, 73

grayed menu item, 32
GRiDPad, 54
gui, 29
guidelines, 47
gulf of evaluation, 26
gulf of execution, 26

Handler, 99
handler, 73
HandlerType, 99
handwriting, 55
Hewlett Packard, 55
human factors, see er-

gonomics
HyperCard, 47, 53, 58, 62,

72
hypermedia, 11
HyperTalk, 62, 72
hypertext, 10, 35

icons, 33
image, 35, 36
imperative languages, 52
Information Visualizer, 55
inheritance, 51
intelligent

defaults, 45
objects, 45

intelligent defaults, 45

136

Index

intelligent user interfaces,
43

interface
adaptive, 19, 44
atomic, 19
continuous, 19
graphic user, 19
smart, 19
symbolic, 19

Interface Architect, 55
InterViews, 56
intuitive software, v
iterative design, 4, 50

joystick, 6

Kay, Alan, 53
keyboard, 4
keyboard focus

not controlled by Gist,
69, 90

lazy evaluation, 52
LeafNode, 97
lexical scanner, 102
light-pen, 6
Lilith, 53
list, 38
ll1gen, 102
logging, 94

MacApp, 56
Macintosh, 53
macros, 24
MacWrite, 17
magic, 16
manage maybe, 103
Matrix Layout, 55, 58, 61
mental distance, 26
menu, 32
menu system, 15
method, see handler
Motif uil, 58, 63, 91
motivation

of users, 3, 21, 43
mouse, 4, 19

new leaf, 103
new node, 103
NeXT computer, 54
NeXT IB, 56
NeXTStep, 54
nextsym, 102
nli, 19
Node, 97
Non-deterministic design,

52

Object Oriented Program-
ming, 51

object-oriented, 49
object-oriented program-

ming, 27
on-line help, 92
Operation, 97
output relations, 8

palette size, 6
paradigm, 8
PARC, 53
pbm, 36
pen, 20
physical events, 77
pixel, 5
pointing device, 6
polymorphism, 51
pop-up menu, 33
post a menu, 32
preferences, 43
process handlers, 103
program generators, 8
progress indicator, 37
projection, 16
prompt, 37
property sheets, 93
protocol, 51
Prototyping, 51
Psychology, 2, 44
pty, 101
pull-down menu, 33

quark, 102
query language, 16

137

Index

radio buttons, 35
random behaviour, 16
Rank Xerox, 53
raster display, 5
read up to object, 101
redundancy, 21
regular expressions

not user-friendly, 92
ResEdit, 87
resolution, 6
resource, 9, 42
resource editor, 9
resources, 30
response time, 21
reversible actions, 25
rooms, 55

scan status, 102
script, 73
scroll bar, 37
semantics, 7
set attribute, 103
set default attribute, 103
ShellType, 99
simulation, 36
slider, 37
Smalltalk, 49, 52, 53
smart systems, 43
Sociology, 2, 44
Software engineering, 4
spreadsheet, 25
sql, 16
style guide, 47
style guides, 47
stylus, 20, 55
suit, 72
sym, 102
symbolic input, 6
synchronous input, 7
syntax, 7
synthetic events, 77

tablet, 6
Tcl/Tk, 63
tear-o� menu, 33

telephone, 15
television, 15
text �eld, 37
tiff, 36
timing, 94
toolkit, 56
toolkits, 60
ToolTool, 59, 71, 87, 88
touch-screen, 6
Tovenaar, 69
tracing, 94
transference, 16
Trillium, 54

UIDE, 8
UIMS, 8
user interface, 7

vector image, 36
Virtual Reality, 27
Visual Basic, 56
visual e�ects, see animation
voice, 28
VR, see Virtual Reality

Wbuild, 69
Wcl, 56, 58, 63, 87
what-if experiments, 93
WidgetDesc, 99
wildcards, 92
Will-writer, 15
window, 31

overlapping, 28
tiling, 28

windows, 53
Wirth, Niklaus, 53
workstation, 4

X Window System, 54
X-Designer, 58
Xerox Alto, 53
Xerox Star, 53
xpm, 36
XVT, 56

yacc, 103

138

