
Active User Guide

Matthew Arnison
webcoders (http://cat.org.au/lists/webcoders/) (the active software

development collective)

maffew@cat.org.au

Active User Guide
by Matthew Arnison

Active is a set of web scripts for helping activists share news, events, and group information. The
news system handles multimedia, open publishing, and high traffic. This guide explains how to
use the software at several different levels: for users of an active web site, for people organising
the site, for people setting up and maintaining the software, and for people programming the
software.

The current release version of active is 1-7-0cvs .

The guide is under the GNU Free Documentation License. http://www.gnu.org/copyleft/fdl.html

Table of Contents
1. About Active...4

1.1. About the Active Software..4
1.2. Goals and Context...4
1.3. Features...6

1.3.1. How does active compare to slashdot’s code?.......................................8
1.4. Thankyou..9

1.4.1. Documentation helpers..10
1.5. About This Guide..11
1.6. sections of this guide we still need to write:...11

2. Editing and Managing an Active Website..13

2.1. Overview: how active creates pages...13

3. Setting up and maintaining active on a web server..14

3.1. what software it depends on..14
3.2. Learning Linux..15
3.3. Handy shell environment tricks..16
3.4. Setting up postgresql for communication with PHP.......................................17
3.5. Active installation notes..21

3.5.1. What’s in which folder...22
3.5.2. how to setup a new active city...28

3.5.2.1. Things to customise for a new active site:................................29
3.5.3. how to setup a new indymedia city..31

3.5.3.1. How to setup the calendar within an indymedia city................32
3.5.3.2. Things to customise for a new indymedia site:.........................35

4. Active Software Development...38

4.1. Contributing to the active software development..38
4.2. Key design ideas...38
4.3. Code Versioning System...40
4.4. Releasing a new version of active...41

A. Editing This Guide ..45

3

Chapter 1. About Active
Active is a set of web software that does multimedia news, events and groups listings.
In this chapter we go into detail about what active is designed to do, why it exists, and a
little bit about this guide too.

This chapter is $Revision: 1.6 $. The last update was on $Date: 2001/05/19 12:47:24 $,
at which time the current release version of active was 1-7-0cvs .

1.1. About the Active Software
The active software creates a set of web pages which allow web surfers to contribute to
a shared calendar, groups listing, and multimedia news with discussion. It’s designed to
be easy to use, and easy to read the results. It is free software, and copyleft
(http://www.gnu.org). It can be run on an entirely free software server.

active is under ongoing development as the backend for www.active.org.au
(http://www.active.org.au), an activist web site in Sydney, Australia and indymedia.org
(http://www.indymedia.org), a global network of activist news sites. It’s primarily
designed for busy activists, but by tailoring the text and graphics, you could probably
use it in a bunch of different situations. See www.active.org.au/source
(http://www.active.org.au/source/) for the latest version of this software.

1.2. Goals and Context
This is what I think the goals are.

We want to help activists organise and motivate and inform. We want to create a
website that’s a positive heartland for activists, a sense of place, a sense of achievement
and reflection; and vibrant and open enough that it attracts people who are interested in
actvism; and practical and focussed enough that all sorts of people in our audience
dream up solutions to local and global problems and get out there and make them

4

Chapter 1. About Active

happen. A nice side-effect is that we also become a source for stories for the wider
media.

We want to help people develop the art of story telling and debate. We want to be a
catalyst for those stories to reach into other media, parts of the city and the planet not
touched by the web. We want to break down barriers and encourage the flow of
information from people with both good and bad stories to tell, to the people we know
are out there who want to hear them.

We are using the internet because it’s cheap, it allows anyone connected to contribute,
it’s global as well as local, and it feeds into and out of other media. And it’s fun too. It’s
free software (http://www.gnu.org) so that anyone can take it and reuse and adapt it,
and contribute back in too if they want.

I wrote a rant about activist webcasting, and how it’s important to have open publishing,
frozen media nuggets, and free software (http://cat.org.au/cat/webcast.html). See also
this quick and dirty explanation of what free software is (../freesoftware.txt).

How about some examples:

• Money from the rich countries is tied to privatisation for poor country social services
- after a sell off the price of water in Bolivia rises higher than Washington DC USA,
people living there can describe the experience direct to activists worldwide
(dc.indymedia.org) (http://dc.indymedia.org) as part of the corporate globalisation
protests on April 16 2000.

• A local community radio station is looking for volunteers, a dozen of the people who
show up at the first training session say they found out about it on the
www.active.org.au/sydney (http://active.org.au/sydney/) events calendar.

• November 30 1999, and the corporate media is doing the usual snow job on protests
in Seattle. Giving the lie to patronising mainstream coverage, the Independent Media
Centre (seattle.indymedia.org (http://seattle.indymedia.org)) brings to light the brutal
violence of police, the passion and creativity of the protestors, and the ultimate
success in shutting down the World Trade Organisation. Pictures, sound, video and
hot text circle the globe independent of centralised corporate control.

• Looking for a local group campaigning on cycling, housing, indigenous justice?

5

Chapter 1. About Active

Over a hundred such groups have contributed their own details to active-sydney
(http://active.org.au/sydney/).

• Of course there’s a lot of fantastic projects doing these kinds of things. The ones
above are just some examples of ones tht are using the active software. Here’s some
other approaches:

• news.tao.ca (http://news.tao.ca)

• protest.net (http://protest.net)

• damn.tao.ca (http://damn.tao.ca)

• www.schnews.org.uk (http://www.schnews.org.uk)

• www.activistsandiego.org (http://www.activistsandiego.org)

• San Francisco Bay Area Progressive Calendar
(http://www.emf.net/~cheetham/cal.html)

Toby from Schnews helped me (Matthew) draw up a very personal journey through the
roots and shoots of the active software (../roots.pdf), no doubt I left out some huge
influences that should be in there. People for Global Action (http://www.agp.org/)
should definitely be in there. And Next 5 Minutes (http://www.n5m.org/), a series of
three tactical media meetings in Amsterdam.

1.3. Features
Here’s some specifics on what the active software does.

As of version 1.41 (April 2000):

• overall design

• easy to contribute info using web page forms - if you can use hotmail, you can
contribute to active!

6

Chapter 1. About Active

• open publishing: there is no editorial approval process - items submitted over the
web show up immediately on the web pages, some people consider this a feature,
others a bug!

• information is clearly presented, designed to print out clearly

• does not use fancy browser options like Java, Javascript or frames; so it works
with older equipment and also with software for people with disabilities, see
www.useit.com (http://www.useit.com) for writings about this sort of design
philosophy

• designed so it can be set up for independent use in different cities, even on the
same server - but no ability yet to share info between those web sites

• colours, headers, footers and graphics can be customised for a specific city
installation without breakign the ability to upgrade to new verisons later

• basic syndication - news and events details can be delivered in raw text for reuse
and reformatting on other web sites

• the package is free software, everything you need to run it on a web server is also
free software

• news / webcast

• users can add their own news articles

• contributed stories can be text, images, sound or video; all published and managed
using a simple web page form

• basic ability for readers to add comments underneath stories

• any new stories go immediately into the summary view of the news, which can be
included in the front page of the website

• if images are bigger than a given size, a thumbnail is generated for display in the
summary view

• related stories can be linked so that they are grouped together in the summary
display. e.g. a picture with a text story; a modem quaity realaudio sound piece

7

Chapter 1. About Active

with a high quality MP3 for reuse by radio stations; a colleciton of pictures of the
same event; a video with a freeze frame image

• management page for editing, linking and removing news

• facilities to help manage rewriting web addresses for multimedia stored on
different servers (mirrored), and optionally delay linking to stories while they are
transferred behind the scenes

• the summary pages are cached on the server to dramatically increase the number
of viewers the web server can deal with if the site gets busy

• events calendar

• calendar presented as either a listing with events about to happen shown first, or as
a monthly calendar

• users can add their own events

• users get a login on the calendar so they can come back and edit or remove them

• new events can be emailed to an announcements list, and a weekly email calendar
can also be generated

• editing users and events that you did not create is fiddly, involves hand editing the
text databases

• groups listings

• currently very basic display

• readers can add info about groups they are involved in, some details in the form
are Australian specific

• admin page for editing and deleting groups

Please see also the wishlist (../wish).

1.3.1. How does active compare to slashdot’s code?
I wrote up a comparison in this email to webcoders

8

Chapter 1. About Active

(http://reflect.cat.org.au/lists/webcoders/msg01464.html).

1.4. Thankyou
Gabrielle Kuiper for the energy and the name behind the launch of active-sydney
(http://active.org.au/sydney/) in 1998-99. The active collective for organising
active.org.au, trusting our audience and exploring open publishing.

Cameron Shorter and Matthew Arnison for initial programming on the website calendar
and groups listings, including generalising it just enough to be used by other cities as
free software (open source). xchange (http://www.xchange.anarki.net) anarchist BBS in
Melbourne for demonstrating so quickly how open source can autonomously spread.

Selena Sol for the calendar code we started from and for granting our request to
relicense it under the GNU copyleft GPL. Richard Stallman for suggesting we chase
Selena about that option.

The cat (http://www.cat.org.au/) crew for the J18 webcast (http://www.j18.cat.org.au/)
(June 18, 1999) when we first designed and used the webcast software. cat is also
where active is hosted.

Andrew Nicholson for programming the first version of the news and then the webcast
software, and continued contributions to mutations thereof. Matthew Arnison for dodgy
hacks on the server-side caching and multimedia support.

The late EMU technology cafe (Sydney) for lots of lovely vegan meals and positive
vibe - a great place to have meetings and geek out. We miss you! The activist
warehouse in St Peters (Sydney), a home base for cat and sydney.indymedia.org
(http://sydney.indymedia.org/). Colene Woods for putting so much of her heart into the
start up of indymedia in Sydney.

Inspirations, ideas, skills: community media in Australia, including the Community
Broadccasting Association of Australia and their virtual conferences where we learnt
lots about webcasting, Community Access TV (CAT’s ancestor), all the groups
mentioned in the goals and context section above. Reclaim the Streets (Sydney and

9

Chapter 1. About Active

globally) for great parties and webcasting from the footpath. The free software
movement for providing so many powerful tools we could learn from and build on.
slashdot (http://slashdot.org/) for making the free software movement visible and
self-aware, and for trusting their audience.

The folks at freespeech.org (http://freespeech.org) (Colorado, USA) for meeting up
with a stranger from Australia in October 1999. Peter McGregor for making the email
link between cat and the indymedia centre in Seattle USA. Mansour Jacobi for trusting
in our cobbled together software mess and linking it into the indymedia project, web
design hacks and generally being a technical backbone.

All the amazing street activists, media activists and geek activists who made the Seattle
World Trade Organisation protests (November 1999) such a turning point. The activists
from the global South for still being there when finally us rich country folks woke up
and were ready to hear the real story and help fix it. The people who posted their
personal stories to the web, showing the power of open publishing. The organisers of
the Seattle indymedia centre for linking so many media activists together in a powerful
network.

The ongoing indymedia audience for being creative, diverse and inspiring. The
contributing media activists for continuing to collaborate.

The indymedia volunteers all around the world who have stretched this dodgy software
way beyond what we ever dreamed it would do, including translating it into a dozen
languages.

Rabble Rouser for the front page features code. Bonnie in NYC USA for various helper
scripts. John Kawakami for trying to get server side caching improved into something
half reasonable. The SF Indybay geeks for adding in ratings, even if it never got to a
state where it could be patched in. Idan Sofer for active in the first non-latin language:
Hebrew.

All the people who have contributed ideas (see the wishlist) and code (see the cvs logs
and the CHANGES file). If you’ve contributed and I’ve left you out, please let me
know and I’ll add you in!

10

Chapter 1. About Active

1.4.1. Documentation helpers
christopher mitchell <cmitchell@macalester.edu > for the section on learning
Linux.

1.5. About This Guide
It’s about time we had a place to bring all the doumentation together for active.

The newest version of this guide can be found at http://active.org.au/doc
(http://active.org.au/doc/).

Tip: Technical note: throughout this guide the technical information assumes you
are running Debian GNU/Linux (http://www.debian.org/) 2.2 on your webserver
and possibly for other tasks such as documentation. It’ll probably work fine on
other versions of Unix (and probably not so well on Windows or Mac), it’s just that
I wanted to work out a complete reproducible path to setting things up, and
Debian seems to provide a good starting point. It’s also what I have easily
available to test with. If you’d like to see it documented it under alternative
systems, please write it up and send it in, and I’ll include it.

1.6. sections of this guide we still need to write:

• how to use the site as a web surfing reader and writer and media producer

• how to maintain the site over the web and otherwise

• step by step installation and setup

• software design (or lack of it :)

11

Chapter 1. About Active

• how to best contribute programming to the project: check for consensus on new
features or make them optional

• how the webcoders collective is organised

12

Chapter 2. Editing and Managing an
Active Website

This chapter is $Revision: 1.2 $. The last update was on $Date: 2001/05/19 12:47:24 $,
at which time the current release version of active was 1-7-0cvs .

2.1. Overview: how active creates pages
The web pages are generated in several different ways.

1. the static web pages, including the about and howto sections, are generated using
server side includes (.shtml files), to ensure a common look for all pages

2. the news and groups listings are programmed using PHP3 web scripting (.php3
files) with PostgreSQL storing the information in a database, and multimedia files
received using http push from the user’s browser and stored in the local filesystem

3. the events calendar is generated using a large Perl script with the database stored
in text files. This is a heavily modified version of the WebCal script from
www.extropia.com (http://www.extropia.com)

4. the front page is generated by combining static text with a dynamic headline view
of the current events

The common graphics, headers and footers for the site are in the "local/include" and
"local/images" folder. The configuration files are also all in the "local" folder.

13

Chapter 3. Setting up and maintaining
active on a web server

This chapter is $Revision: 1.8 $. The last update was on $Date: 2001/06/11 04:57:53 $,
at which time the current release version of active was 1-7-0cvs .

3.1. what software it depends on
Currently the active software depends on a handful of software installed on a web
server (if there is a minimum required version for the software it is shown in brackets):

• a unix operating system has been assumed (e.g. linux)

• a web server (we use apache (http://www.apache.org)) - with access to server side
includes (.shtml) and perl and PHP, plus local write access to certain folders for
storing the calendar text databse, and multimedia news uploads

• perl (http://www.perl.org) scripting, including the Time::DaysInMonth module from
CPAN (http://www.cpan.org)

• the ImageMagick program "convert" is used on the web server to create thumbnails
of published images

• the unix program wget is used for certain page refreshing functions

• PHP (http://www.php.net) scripting (version 4.x), including PHP support for
PostgreSQL

• PostgreSQL (http://www.postgresql.org) - an SQL database (version 6.5.x)

• access to a mailing list server, such as majordomo
(http://www.greatcircle.com/majordomo/) or mailman
(http://www.gnu.org/software/mailman/mailman.html) for distributing events and
news by email - or you could use an online service like egroups
(http://www.egroups.com)

14

Chapter 3. Setting up and maintaining active on a web server

• access to a unix shell for things like a scheduler, like unix cron, for weekly automatic
emailing of event calendars, and for creating symbolic links within the web scripts
folder

• access to a streaming media server, currently RealMedia (http://www.real.com) and
MP3 are supported, and some sort of mirroring system such as "mirrordir" (active
patched version (http://active.org.au/source/mirrordir/) recommended) or "rsync"

• code versioning system (CVS) if you want to keep up to date with the latest
versions, or easily contribute your changes to the code back into the project

If you’ve not heard of some of this software, check freshmeat (http://freshmeat.net) for
details.

3.2. Learning Linux
For many people, indymedia is their first experience with Linux. Here are some good
places to start learning about the Linux way of doing things.

• A good primer for general linux knowledge appears to be this Linux Tutorial
(http://www.linuxdoc.org/LDP/gs/node5.html). That primer is part of the Linux
Documentation Project (http://www.linuxdoc.org/), a great place to look for FAQs,
HOWTOs, and online books about Linux.

For something on paper, check out the excellent Linux and Advanced Linux
Pocketbooks (http://www.pocketbooks.net.au/).

• A crucial tool for remote administration isssh. It allows you to execute typed
commands on the server interactively. You might be more familiar with its ancestor
telnet: ssh is simply an encrypted version on telnet, and therefore much better for
server security. You can find more information about ssh including free software
servers and clients for various operating systems at the Open SSH
(http://www.openssh.org/) website.

• You might know ftp, but unfortunately it’s not very secure because it sends your

15

Chapter 3. Setting up and maintaining active on a web server

password in plain text over the net. Check out the secure alternative in this
introduction to sftp and scp
(http://www.linuxgazette.com/issue64/dellomodarme.html).

• For tips on general Linux server security, check out this quick reference card
(http://www.linuxdoc.org/LDP/ls_quickref/QuickRefCard-A4.pdf).

• If you’re setting up a server from scratch you’ll need to choose an operating system
(OS) and a distribution of that OS. I (Matthew) have had a lot of good experiences
with Debian Linux (http://www.debian.org/). Debian is an awe-inspiring collective
effort of hundreds of volunteers who package up Linux and associated free software.
It works particularly well for remotely-maintained web servers, and it’s used at cat
(active’s home) and indymedia on the US (stallman) and London (durutti)
webservers.

3.3. Handy shell environment tricks
It’s always a bit confusing to me how best to configure default shell aliases and
environment variables. Unfortunately debian doesn’t seem to be well documented in
this regard. But by playing with debian 2.2, I think I figured out how it works.

For normal text shell logins, either at the machine or over the net with ssh, you need to
add aliases and environment variables to /etc/profile. Except for some annoying reason
this file is not read when you login under X, for that you need to add stuff to
/etc/bash.bashrc (which is not read by text mode shells at startup!). There must be a
better way to do this!

So it’s useful to add aliases for: proc, cvsa, cvsp.

function proc () { \
com-

mand echo "USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COM-
MAND"; \

command ps auxwwwwwww | grep $* | grep -v grep; }

export CVSA=:pserver:anonymous@cvs.cat.org.au:/usr/local/cvsroot

16

Chapter 3. Setting up and maintaining active on a web server

export CVSP=:pserver:${USER}@cvs.cat.org.au:/usr/local/cvsroot
export CVSROOT=:ext:cvs.cat.org.au:/usr/local/cvsroot

alias cvsa="cvs -d $CVSA"
alias cvsp="cvs -d $CVSP"

• proc is a shortcut for searching through the list of running processes by name. You
can use it to quickly find matching process names or users. E.g.proc apacheto find
how many apache processes are running.

• cvsaandcvspare shortcuts tocvs(Code Versioning System).cvsais for read-only
anonymous access to the active CVS server, andcvsp is for read-write access where
you have a login and password on cvs.cat.org.au (assuming your cat username is the
same as your current login). Before using either you will need to login (the password
for anonymous access is blank) e.g.cvsa login.

3.4. Setting up postgresql for communication
with PHP

PostgreSQL (http://www.postgresql.org/) is a free software SQL database server. When
we began programming on active in 1999, it was GPL (copyleft) but MySQL was not.
Also PostgreSQL has a richer feature set. It also has better bugs, increased quirks, and
decreased speed, although things seem to be improving.

One of the challenges with PostgreSQL is setting it up to communicate with PHP so
that web scripts can access information in the database tables. So this is how to setup
PostgreSQL, atleast on a Debian GNU/Linux (http://www.debian.org/) system.

1. Install these debian packages and their dependencies: postgresql, postgresql-client
(you want atleast postgresql 6.5.x which is in debian 2.2 stable - postgresql 7.x is
worth getting if you think your server might get really busy), makepasswd (needed

17

Chapter 3. Setting up and maintaining active on a web server

to manually make encrypted passwords), php4-pgsql (now available in debian 2.2
stable).

2. Change to the postgres user, e.g. withsu - postgresor by puttingsudo -u postgres
in front of your command. I’m going to usesudobecause it’s cool.

Make yourself a postgres database admin user:createuser your-username

$ sudo -u postgres createuser your-username
Enter user’s postgres ID -> xxxx
Is user "your-username" allowed to create databases (y/n) y
Is user "your-username" a superuser? (y/n) y
WARNING: Any user who can add users can also modify the sys-
tem catalog
createuser: your-username was successfully added

wherexxxx is your Unix userid (you can find that out by runningid when you’re
logged in).

3. Now that you are a postgresql superuser, you can setup another database user (not
a Unix user) for communication between PostgreSQL and PHP:createuser php

$ createuser php
Enter user’s postgres ID -> xxx
Is user "php" allowed to create databases (y/n) n
Is user "php" a superuser? (y/n) n
createuser: php was successfully added
Shall I create a database for "php" (y/n) n
don’t forget to create a database for php

where xxx is some userid that isn’t going to conflict with a human username id, I
used 100 because on Debian the userid’s for humans start at 1000.

Now setup a password for this user:

• Pick a password for the php user to use when connecting to postgresql, for this
example I’m gonna picksecret. Except you should pick one that’s not an
english word because it’s more secure.

18

Chapter 3. Setting up and maintaining active on a web server

• [optional] Encrypt the password. This is good security - it means a cracker
cannot easily find out the password even with system level access - which is
good because those passwords might be used in other places a cracker hasn’t got
access to yet. However, it’s maybe more hassle than it’s worth because
sometimes as a system admin you might need to find out the password without
wanting to reset it, and it is only useful for connecting to the database from the
local machine (unless you open up your database to other machines, which is
not recommended for beginners). Also, the active code contains the password in
plain text, so a cracker can easily find it there if they have a login on the server.

Anyway, the command ismakepasswd, see below for how to use it:

$ echo "secret" > /tmp/phppass; makepasswd --crypt --
clearfrom /tmp/phppass; rm /tmp/phppass
secret DpR4hs.6l19SI

the bit on the left is the crypted password. Use that instead ofsecret below.

• Connect to the default databasetemplate1 and set the password for the php
user:

$ psql template1
Welcome to the POSTGRESQL interactive sql monitor:

Please read the file COPYRIGHT for copy-
right terms of POSTGRESQL
[PostgreSQL 6.5.3 on i686-pc-linux-
gnu, compiled by gcc 2.95.2]

type \? for help on slash commands
type \q to quit
type \g or terminate with semicolon to execute query

You are currently connected to the database: template1

template1=> up-
date pg_shadow set passwd=’secret’ where usename=’php’;
UPDATE 1
template1=> \q
$

19

Chapter 3. Setting up and maintaining active on a web server

• Edit the PostgreSQL security filter to tighten up security so that a password or
identity is checked before allowing access, and so that access is only offered to
people on the same machine as the database:
/etc/postgresql/pg_hba.conf . The default debian setup gives users on the
local machine access as whatever username they want (if they know the right
psql options) and denies connections from other machines.

Warning
I think a good security balance would be to allow
local users to connect using their own username
without a password or with a different username
and a password. However, I haven’t figured out how
to actually do this; my attempts so far at what looks
logical seem to fail.

• Edit the PostgreSQL startup options so that it listens for TCP/IP connections
(even though we are only connecting from the localhost, PHP only knows how
to connect over TCP/IP):

sudo vi /etc/postgresql/postmaster.init

Uncomment thePGALLOWTCPIPoption and set it to yes, so that the whole line
reads:PGALLOWTCPIP=yes

Then restart postgresql:sudo /etc/init.d/postgresql restart

4. Setup a database for your active city website:createdb active_cityname

5. Run the database definition scripts for the parts of active you want to use, e.g:psql
-e active_cityname < /www/active/cityname/webcast/webcast.def. This creates
the tables, indexes and sets access permissions for PHP.

The SQL database definition files in active assume you are using the usernamephp

to connect PostgreSQL with PHP. If you are using a different username, you’ll
need to edit theGRANT lines at the bottom.

20

Chapter 3. Setting up and maintaining active on a web server

6. Test it works from the command line usingpsql -u active_cityname(postgresql
version 6.5.x) orpsql -U php active_cityname(postgresql version 7.x).

3.5. Active installation notes
We designed this software to be easy for people to use on the web, and also to be easy
for us to code. I think we may have achieved these things, but ended up with something
a little harder to install.

The top folder is designed to be the top of the active web site. So index.shtml is the
front page. Then there are various scripts (inline via PHP3 and CGI via Perl). These
depend on text include files, text static images (see the local/include and local/images
folders), databases, and SQL databases (PostgreSQL).

More detail on what you will need:

• a server machine (we use Linux www.linux.org on a Pentium, you could probably
use any Unix) with web server software (we use apache www.apache.org)

• add index.shtml, index.cgi and index.php3 to the line in your web server config
specifying the default web page for a folder when the user only gives the filename
(e.g. active.org.au/news/)

• server side includes turned on for the active folder

• CGI scripts turned on for .cgi files in the "active" scripts folder

• the right permissions, symbolic links, and folders (see the Makefiles)

• the PostgreSQL database with access via TCP/IP enabled for localhost connections
(i.e. an internet link from your web server direct back to your web server). the
permissions for this can be tricky. we set up a special PostgreSQL user, then
GRANTed it permissions to read and modify the database. you also need to tell
PostgreSQL seperately that locahost internet access is OK and set a password, other
wise it’s off by default. look in the news/news.def, groups/groups.def and
webcast/webcast.def files for table definitions within the "active" database

21

Chapter 3. Setting up and maintaining active on a web server

• the PHP software installed as a loadable apache module. you might be able to use it
via a CGI script (we haven’t tested this)

• the PHP loadable module that lets you talk to the PostgreSQL database server

3.5.1. What’s in which folder
[Need to check if this is still up to date.]

See the file layout diagrams (http://process.indymedia.org/tech/active-files/) for more
clues.

• top level folder "active"

• the front page wrapper scripts index.cgi and index.shtml (index.shtml should have
precedence - check your web server configs if it doesn’t)

• calendar

• the main calendar perl script index.cgi, uses forms to let people add their own
events

• also daystogo.pl and hourstogo.pl which use some of the calendar libraries to
provide a plain text countdown to an event, which can then be included in a front
splash page or something, updated using cron

• calendar/Documentation

• the docs that came with WebCal before we heavily hacked it

• calendar/Library

• some libraries that the calendar script depends on

• groups

• code for the groups listings, uses forms to let people add info about their group

22

Chapter 3. Setting up and maintaining active on a web server

• news

• code for the news

• webcast

• multimedia version of the news, specialised for a webcast of a live event

• shared

• shared code which both the news and webcast code uses, at the moment just the
code which handles SQL queries

• local

• all the configurations or local info for a given city or site using the active code
should be in here. To get a new active site up and going, you shouldn’t need to edit
anything outside of the local folder and its subfolders. Unless of course you want
to do some heavy duty customising!

• local/db-setup.php3

• the configuration stuff on how to access the PostgreSQL server over TCP/IP

• local/about

• the about page, currently static with header and footer includes

• local/calendar/calendar.setup

• the main configuration file for the calendar

• local/calendar/Calendar_session_files

• temporary session files used to keep track of individual visitor settings

• local/calendar/Databases

• the flat text event databases: events, users, and a unique ID counter

• local/calendar/Databases/dummy

23

Chapter 3. Setting up and maintaining active on a web server

• I think you can have subfolders like this to manage multiple calendars, not sure
because we don’t use it

• local/groups

• configuration files for the groups listing

• local/howto

• the howto page, listing useful resources, currently static with header and footer
includes

• local/images

• the logo that goes in the top right hand corner, and some other images we use

• local/include

• front page bits including a feature banner (feature.inc) and a blurb at the bottom
of the left hand column (front.inc), and the headers and footers used for all pages
(header is formed by sandwiching the logo in between top1.inc and top2.inc --
footer just uses bottom.inc)

• local/news

• news setup

• local/news/cache

• as the front page news only needs to be changed when a story is added, edited or
deleted, we keep a copy here to save time in serving the front page. To force a
refresh of this file (say, if your database crashed and you recovered it - i find
PostgreSQL’s command "vacuum" very handy in this situation by the way) access
the script news/refresh_front.php3 from your web browser

• local/news/uploads

• for the multimedia news, this is where we store images, sounds and videos that
people upload

24

Chapter 3. Setting up and maintaining active on a web server

• local/webcast

• webcast setup

• local/webcast/cache

• again because the index pages involve quite complex SQL queries, we cache a
copy here between story changes

• local/webcast/uploads

• for the multimedia items, this is where we store images, sounds and videos that
people upload

• local/log

• any logs, currently just sql_log which lists all SQL queries made by the news and
webcast code, together with a datestamp

Some tech. details on thewebcastfolder:

web browser start points:

active.org.au/dev/maffew/active/webcast/display.php3
- display front page sum-

maries, does database query and HTML construction on
the fly, also displays articles (al-

ways done on the fly at the moment) using
?article_id=N where N is the database article ID

active.org.au/dev/maffew/active/webcast/refresh.php3
- calls the above code in a special mode so that in-

stead of outputting the
page to the browser, it dumps them in files called
../local/webcast/cache/frontN.html where N is the page number
this saves the web server thrash-

ing when we get lots of visitors

25

Chapter 3. Setting up and maintaining active on a web server

active.org.au/dev/maffew/active/webcast/front.php3?page=N
- wraps the ../lo-

cal/webcast/cache/frontN.html files with the header and
footer

active.org.au/dev/maffew/active/webcast/search.php3
- searching, currently very specific to seattle, needs head-

ers and footers
generalised to point at ../local and date specifica-

tion made more general

active.org.au/dev/maffew/active/webcast/publish.php3
-

enter new stories, or click on link to link/edit/delete existing
ones

- i suggest adding a few dummy sto-
ries to get a feel for how this works

active.org.au/dev/maffew/active/webcast/display.php3?led=y
- story edit mode
- can link related items here, e.g. a still im-

age to a text story about
the same event
- can delete items
- needs a few added features: ability to un-

delete, show a page of stories at
a time instead of all of them

script files layout:

[slightly out of date]

active/webcast:

auto_add.php3 not sure

26

Chapter 3. Setting up and maintaining active on a web server

cast_class.inc display routines for front page sum-
maries or articles
debug if this is present, the de-
bug database tables are used,

so we can play without stuff show-
ing on the live site
display.php3 main display routine -
front page summaries, article

display, linking, editing, delet-
ing (led)
edit_webcast.php3 edit a story
entry_munger.php3 i think this takes entryform.inc and in-
serts data

into the fields so a story can be edited
entryform.inc the plain form for entering and edit-
ing stories
led-process.php3 processes actions from the LinkEdit-
Delete form
make_anim perl script to make ani-
mated GIFs, not used
make_thumb perl script to make thumbnails if up-
loaded image is

bigger than, say, 160x120
new_data-
process.php3 processes data after people press publish
publish.php3 publish form
refresh.php3 hacked version of dis-
play.php3 which creates html files

instead of writing front page to stan-
dard out
search.php3 search for articles
uploads symlink -
where uploaded images / vids / sounds get put

also i think dis-
play.php3 looks for static.html here,

which is a header that goes on ev-
ery page

27

Chapter 3. Setting up and maintaining active on a web server

webcast-debug.def postgresql table definition
webcast.def postgresql table definition
webcastd.pl daemon which monitors mirroring of au-
dio / video files

used for J18 but not for N30

active/shared:

db_class.php3 all functions for accessing sql ta-
ble (all sql queries

get logged to ../local/log/sql_log)

active/local/:

appear.inc sets colours for all active apps
db-setup.php3 sql db config
webcast/webcast-setup.php3 config variables for webcast
webcast/webcast.inc header and footer defini-
tions for webcast

3.5.2. how to setup a new active city

Warning
These notes assume you already have active running atleast one
city on your server. They’re also out of date. Sorry about that.

Permissions needed to do it:

• a login to cat with membership of theactive, andgeeksgroups (setup withusermod

-G active,geeks <username>)

• access to the postgresql database as a user on cat with permissions to create
databases(createuser <username>)

28

Chapter 3. Setting up and maintaining active on a web server

• super user on cat to setup mailing lists for the city (usemakelist and
makelistarchive)

If the city will be hosted on cat.org.au also known as active.org.au, login to cat, and
then run the commands:

cd /www/active
./new_city cityname

Thenew_cityscript checks out copies of the code, puts them in the new cityname
folder (/www/active/cityname), also it creates a new copy within CVS of the local
folder for the new city (active/cityname/local, copied from the active/template city) and
checks it out into /www/active/cityname/local. Certain folders and files are created and
marked with open permissions so the web server can write to them (e.g. the calendar
text databases, and the webcast uploads folder). It then creates a new SQL database
active_cityname.

There is also a need to setup the mirroring of multimedia content. This is not yet
automated by the new_city script. We do this by making each cities’ uploads folder a
link into a folder named after the city in /www/active/uploads, e.g. for a new city

cd /www/active/uploads
mkdir cityname
chmod 777 cityname
cd /www/active/cityname/local/webcast
rm -r uploads
ln -s /www/active/uploads/cityname uploads

The new city will be then available at the web address active.org.au/cityname

3.5.2.1. Things to customise for a new active site:

• local/appear.inc defines the colour scheme for the site

• the local/include folder has the front page, and the headers and footers for all pages.
Specifically, edittop1.incand top2.incto change the HTML that appears at the top

29

Chapter 3. Setting up and maintaining active on a web server

of the generated file (e.g. a banner at the top of every page, or a left hand sidebar).
And edit bottom.incto change what appears at the bottom of the HTML (e.g. a right
hand side bar or a footer). You can edit local/webcast/webcast.inc to change the way
these include files are used, or add new ones - see the top() and bottom() functions,
which get called anywhere a page is being generated in the webcast code. E.g.

index.php3 -symlink to-> front.php3 -> which then calls:

• top($title) [function defined in local/webcast/webcast.inc] which writes the HTML
header (HTML / BODY tags) then includes:

• local/include/top1.inc

• the page heading $title as passed to the top() function

• local/include top2.inc

• local/webcast/cache/frontN.html which is page N of a dynamically generated list
of summaries of the stories (you can refresh these by calling webcast/refresh.php3
from your web browser - don’t edit them manually as your changes will get
overwritten)

• bottom() [function defined in local/webcast/webcast.inc] which includes

• local/include/bottom.inc

and then writes the HTML footer (/BODY and /HTML tags)

• the local/images folder has the logo that goes in the top right hand corner, and some
other images we use

• you will want to set the passwords in local/password.php3

• local/calendar/calendar.setup will definitely need attention -- make sure you change
the announce email address!

• local/webcast/uploads is where uploaded multimedia stories end up (including text
stories longer than 6K). You may need to make sure this folder gets mirrored onto
your multimedia server (e.g. a realmedia server).

30

Chapter 3. Setting up and maintaining active on a web server

• please put anything specific to the local city in the local folder somehow, and only
put code that would be applicable to any installation of active into the other folders
such as webcast. this makes itmucheasier to share enhancements to the code, and
upgrade to new versions of the software. e.g. if you are adding a new page such as a
list of allies, provide a warpper script to call it in webcast, but provide the specific
details in the local/include folder, and include it from the wrapper script.

There is some pretty reasonable documentation of the calendar script in the
calendar/Documentation folder, unfortunately, we haven’t updated it to reflect any
changes we made to it from the Extropia version.

3.5.3. how to setup a new indymedia city

Warning
These notes assume you already have active running atleast one
city on your server. They’re also out of date. Sorry about that.

Permissions needed to do it:

• superuser access on fs.freespeech.org to setup the domain name
cityname.indymedia.org

• superuser access on emma / turtle to setup the apache virtual web server for
cityname.indymedia.org

• a login to the web server to be used:

• turtle with membership of thewebgroup (setup with usermod -G web

<username>) OR

• login to emma with membership of theimcgroup (setup with usermod -G

imc <username>)

31

Chapter 3. Setting up and maintaining active on a web server

• access to the postgresql database as a user on emma / turtle with permissions to
create databases (setup withcreateuser <username> from a user that has
postgres super user access, e.g. the userpostgres)

• the loudeye.com login and password (one way to get it is given below, but only
works if you have superuser on emma or turtle)

On cat each city has its config stored in CVS separately from the main code, so that it is
easy to setup test verisons of a city’s configuration on other machines or in different
folders on the same machine.

To setup a new indymedia city, you would do this:on stallman:

cd /www/active-cvs
toplevel/new_city_imc cityname /www/active-cvs

[this pulls across the shared code in /www/active-cvs/cityname, and new city config
using the template_imc indymedia style, via anonymous CVS from cat, and sets up a
symlink folder /www/cityname which will be the entry point from the web, plus a few
other things]

Then edit the DNS and the apache web server configuration to add the virtual server.
The virtual server should point to /www/cityname.

Finally you will need to manually ftp into centerstage.loudeye.com (see
/usr/local/sbin/pushtoeye for the password, but you need root access to read
/usr/local/sbin/pushtoeye - because it has a password in it!). Anyway, you will need to
ftp into there and create the cityname folder and a metafiles/cityname folder, which is
needed for MP3 and image hosting.

3.5.3.1. How to setup the calendar within an indymedia city

If you have a default indymedia-style install of active, you can easily activate the web
calendar:

$ cd /www/cityname
$ ln -s ../calendar .

32

Chapter 3. Setting up and maintaining active on a web server

Test it by running:

$ cd calendar
$./index.cgi

if it fails with:

$./index.cgi
Can’t locate Time/DaysInMonth.pm in @INC (@INC contains: ...
...

you need to install the CPAN Time::DaysInMonth module:

perl -MCPAN -e shell;
cpan> install Time::DaysInMonth
cpan> quit

then test it again:

$./index.cgi
Content-type: text/html

<HTML>
<HEAD>

...

and when it prints a web page it means it’s working.

For an example layout, see the template indymedia calendar
(http://template.indymedia.org/calendar/?display=front&days=8)
(template.indymedia.org is a copy of what a default new indymedia city looks like).
The newswire is on the left, and the events for the next week are listed on the right.
Obviously we need to tweak the defaults. :) For a good looking active calendar site, see
active sydney (http://active.org.au/sydney/).

33

Chapter 3. Setting up and maintaining active on a web server

You can control a lot of things in local/calendar/calendar.setup, the rest are in
local/appear.inc, e.g. the colour settings are shared between the webcast newswire and
the calendar. See below for details on customisation.

One important feature you might want to use is theweekly email calendar. You’ll need
a mailing list to send the calendar out to, which active doesn’t do, so get one from an
activist server or Yahoo groups or something. You can usually add a subscription box to
your headers or sidebar on your site, to make it easy for people to sign up. Then choose
someone to receive the calendar every week and pass it on to the list. Let’s say their
email address is:someone@activist.org.

Then you’ll need to usecron, the Unix system scheduler, to generate the calendar at
regular intervals. Get a shell prompt on the server that’s running the active calendar,
then type in:

$ export EDITOR=pico
$ crontab -e

(use another editor apart from pico if you like of course!). Then paste in 3 lines like the
following:

0 18 * * 0 (cd /www/cityname/calendar; /usr/bin/perl \
/www/cityname/calendar/index.cgi dis-
play=mail_text days=15 | mail \
-s"Cityname Events" someone@activist.org)

Note that the sloshes "\" must be the very last character on the first 2 lines.

The above example will send out a calendar every Sunday (day zero - 5th number 1st
line) at 6pm (18:00 - 1st two numbers, 1st line), using the active calendar installed in
/www/cityname/calendar . The calendar will have events for the next two weeks
(15 days), and will be sent tosomeone@activist.org. The subject line on the email will
be "Cityname Events".

Note that you can also get events emailed to someone as announcements when they are
entered into the website. That email address is set in
local/calendar/calendar.setup .

34

Chapter 3. Setting up and maintaining active on a web server

3.5.3.2. Things to customise for a new indymedia site:

All file paths are relative to/www/cityname.

• local/appear.inc defines the colour scheme for the site

• local/include has a bunch of files that get used to make up the pages and give them a
consistent look:

• local/include/bottom.inc - included at the bottom of every page

• local/include/cities.inc - used in the sidebar to list other indymedia sites, usually is
a symlink pointing to /www/cities.inc

• local/include/feature.inc - not used in the indymedia style

• local/include/front.inc - not used in the indymedia style

• local/include/howto-publish.html - the text above the form on the publish page

• local/include/imcfront-header.inc - the text at the top of the front page

• local/include/imcfront.inc - the text in the middle column of the front page,
usually used to list featured stories

• local/include/sidebar.inc - the sidebar that appears on every page (including the
front page)

• local/include/top1.inc - not used in the default indymedia style, but if you put
something in here, it will show upbeforethe page numbers in the main body of
every page

• local/include/top2.inc - not used in the default indymedia style, but if you put
something in here, it will show upafter the page numbers in the main body of
every page

• the local/images folder has the logo that goes in the top left hand corner
(local/images/imcfront.gif), and the banner across the top of the front page
(local/images/imcfront-banner.gif)

• you will want to set the story administration password in local/password.php3

35

Chapter 3. Setting up and maintaining active on a web server

• to change the window title and bookmark label (i.e. the <title> tag) edit
local/webcast/webcast.inc

• local/webcast/uploads is where uploaded multimedia stories end up (including text
stories longer than 6K, images and image thumbnails). You may need to make sure
this folder gets mirrored onto your multimedia server (e.g. a realmedia server).

• major known problem withtimezones: the times shown on the website are currently
set by which web server is being used. emma is on US east coast time, and turtle is
on US mountain time.

• Advanced users: You can edit local/webcast/webcast.inc to change the way these
include files are used, or add new ones - see the top() and bottom() functions,
which get called anywhere a page is being generated in the webcast code. E.g.

index.php3 -symlink to-> front.php3 -> which then calls:

• top($title) [function defined in local/webcast/webcast.inc] which writes the
HTML header (HTML / BODY tags) then includes:

• local/include/top1.inc

• the page heading $title as passed to the top() function

• local/include top2.inc

• local/webcast/cache/frontN.html which is page N of a dynamically generated
list of summaries of the stories (you can refresh these by calling
webcast/refresh.php3 from your web browser - don’t edit them manually as
your changes will get overwritten)

• bottom() [function defined in local/webcast/webcast.inc] which includes

• local/include/bottom.inc

and then writes the HTML footer (/BODY and /HTML tags)

• please put anything specific to the local city in the local folder somehow, and only
put code that would be applicable to any installation of active into the other
folders such as webcast. this makes itmucheasier to share enhancements to the

36

Chapter 3. Setting up and maintaining active on a web server

code, and upgrade to new versions of the software. e.g. if you are adding a new
page such as a list of allies, provide a wrapper script to call it in /www/cityname,
but provide the specific details in the local/include folder, and include it from the
wrapper script.

37

Chapter 4. Active Software
Development

Active is a free software project under the GNU Public License (http://www.gnu.org/)
(also known as copyleft). See www.active.org.au/source
(http://www.active.org.au/source/) for the latest version of this software.

You are invited to help develop new features and fix problems. Hopefully this chapter
will help explain how best to do that.

This chapter is $Revision: 1.7 $. The last update was on $Date: 2001/05/19 12:47:24 $,
at which time the current release version of active was 1-7-0cvs .

4.1. Contributing to the active software
development

There is a separate list for discussing and organising the programming of the active
software, calledwebcoders. To get on it, send a blank email to
geton.webcoders@cat.org.au (mailto:geton.webcoders@cat.org.au). Or visit the
archive (http://cat.org.au/lists/webcoders/).

There is a lot of more up to date info at tech.indymedia.org (http://tech.indymedia.org/).

We have a to-do list using the bugs tracking system at sourceforge
(http://sourceforge.net/project/?group_id=819). If you’re really keen, you can join the
webcoders-cvs list (geton.webcoders-cvs@active.org.au
(mailto:geton.webcoders-cvs@cat.org.au)) where you will be barraged with automated
logging emails everytime someone is hacking on the code. There is a digest version on
the indymedia servers, also called webcoders-cvs
(http://lists.indymedia.org/mailman/listinfo/webcoders-cvs).

38

Chapter 4. Active Software Development

4.2. Key design ideas

• any story can be linked to any other. e.g.

• a picture can be linked to a report about the same thing

• a still image from a video can be linked to the video

• a high quality MP3 audio file can be linked to a lower quality realaudio version

• a series of pictures from the same event can be linked

this is the best way we could think of letting people collect related webcast stories
together, yet still keep the flow of new stories coming. The logic is, if people have to
wait until they’ve got all the related stories together, before posting them in a bunch,
or figure out what keywords to use, it just slows people dowm, and when you slow
people down who are publishing for a live webcast, that means you end up simply
missing out on a lot of stories.

There is probably a lot more that could be done here. But this seemed to work quite
well at both J18 and N30.

• cache pages that are heavy duty database queries - the frontN.html pages require
quite a nasty SQL query because of the completely general (and probably vastly
improvable) way we have implemented story linking

• the scripts in the actual webcast folder are kept as general possible; anything specific
to a particular city or eevent should go in the ../local/ folder. This helps in two ways
(1) people wondering what to customise first can go to the local folder, (2) it helps us
developers manage changes to the software.

• use relative links always - in both the URLs and within scripts for including files - in
fact there are no absolute paths ideally - this gets a bit tangly, but makes it heaps
easier to setup new sites for new cities or events, and also new sites for testing, or for
different developers to play with, because you can put the active folder wherever you
want to in the web tree and it still works.

39

Chapter 4. Active Software Development

If you want the webcast folder to be top-level, you can do it with symlinks, but i
think are nicer ways to do it, like having the front page do a static include of
active/local/webcast/cache/front0.html, although you do need to munge the relative
links in that case, which is what we have done for active.org.au/sydney and friends.

• config files with passwords in them end in .php3 so they can’t be snooped over the
web

• all the uploaded files go in the one messy folder. That includes text files for stories
longer than 8192 bytes (a PostgreSQL hard limit on transaction length - *warning*
postgresql can trash your database if you throw long queries at it. Use VACUUM to
recover it.) It also of course includes images, their automatically generated
thumbnails, realaudio, mp3’s, realvideo, etc. The new_data-process.php3 script
which processes the publish.php3 form, makes sure any new files get a unique name.
We got several hundred megs during N30, including some very big movie files
(encoded at multiple quality levels in RealMedia).

• pushing files (realmedia, images) to different servers has to be handled outside these
scripts, because it varies a lot depending on what setup, security etc. the mirror
servers have. rsync is I think the absolute bees knees for mirroring files, because it
handles a lot of niggles automatically, but you can use FTP to push files as well. I’d
still like to see some sort of wrapper for both rsync and ftp that writes a lock file, so
that if you have a short wait time between mirroring (e.g. 10 minutes) a second copy
doesn’t start up during a long transfer. You could also use a daemon, but I had
trouble with one daemon I wrote in perl (webcastd.pl) mysteriously dying. cron
seems much more reliable.

4.3. Code Versioning System
Many people from around the world are contributing to the active software. This takes
some co-ordination! We use the Code Versioning System (CVS) software to help us
manage multiple versions of the code, and to make it easier for more than one person to
work on the code at the same time.

40

Chapter 4. Active Software Development

CVS takes a little getting used to. However, it is very powerful, and allows us to be
much more effective as a group.

I want to use this section to write up a lot of specific details about how to use CVS for
programming on active. Meanwhile, I just ran across an excellent description of CVS
(http://lists.debian.org/debian-devel-0102/msg00824.html) from a Debian developer.
Scroll down 3 pages to get to the part of the email that talks about CVS. It looks like
that project uses a very similar approach to CVS. I’ll be using his description as a
starting point for writing this section.

You can browse the active code CVS tree online at cvs.cat.org.au
(http://www.cvs.cat.org.au/).

4.4. Releasing a new version of active
The latest version of the code is available to anyone at any time through CVS.
However, it is useful to mark particular versions with a release number, so we can refer
to them more easily, and to help document changes in the code.

It can be tricky to decide when a new release is needed. The general free software
approach is "release early, release often." So if in doubt, it probably doesn’t hurt to
release, although it does take a few moments to do. In fact, that’s even more motivation
for more frequent releases: the longer we leave it, the longer it takes to write up the
release notes!

Specifically, I think a new release is needed when:

• a lot of changes have been made to the code, without introducing signifigant new
bugs or surprises to people upgrading (atleast not undocumented surprises) -
however, if you’re not sure whether the version works or not, a release is still often a
good idea, because if you wait then new features may get added with new bugs
before the existing bugs are fixed

• there is an important new feature or bugfix

• some time has elapsed since the last release

41

Chapter 4. Active Software Development

• the database schema has changed (this should be indicated by increasing the second
number in the version number, e.g. 1.7.3 to 1.8.0)

Because we are always guessing when is a good time to make a release, some releases
might be bad. That’s part of open source - hopefully our documentation can highlight
which versions are good, which are bad, and which introduce features or bugfixes.

These are the steps I go through when releasing a new version of the code:

1. ChangeLog: Ideally you could just generate a ChangeLog straight away. However,
as of April 2001 there are corrupt headers in some of the files in the active CVS
repository.

So the workaround is to lookup the archives of the webcoders-cvs list to see which
folders in the code have changed since the last release (ignore changes to city
specific local folders, e.g. active/sydney/local, but do include changes to template
or template_imc as these are the defaults for new active and indymedia cities).
Then checkout a temporary workarea that includes all these folders. E.g. for
release 1.7.0 the folders active, active/shared, active/webcast, active/template_imc,
active/doc, active/source have all had changes since the last release, so in my home
folder I ran:

cvsa co -l active
cd active
cvsa co -d shared active/shared
cvsa co -d webcast active/webcast
cvsa co -d template_imc active/template_imc
cvsa co -d doc active/doc
cvsa co -d source active/source

You can then generate a ChangeLog using cvs2cl.pl
(http://www.red-bean.com/cvs2cl):

cvs2cl.pl --usermap usermap --gmt

cvs2cl.pl uses the fileusermap to convert cat login names (used for write
permission to CVS) into email addresses. Have a look in the ChangeLog to see if
any of the latest changes are by new people not listed inusermap , if so, add them
in, and re-run cvs2cl.pl as above.

42

Chapter 4. Active Software Development

Since the ChangeLog shows the newest changes first, you can select the first part
of the file up until the previous release, which will be marked with a CVS
comment like this:

* shared/release-version.txt: release version 1-62 of active

The cvs2cl website has some good notes on how to write good CVS commit
messages (http://www.red-bean.com/cvs2cl/changelogs.html) with the ChnageLog
in mind.

2. CHANGES: You can use the changelog to write a summary of the changes for
people who don’t have time to read through it all. It’s important to highlight: new
features, bugfixes, known bugs, database schema changes, and special steps needed
to upgrade.

Paste the summary and the ChangeLog since the last release into
active/source/CHANGES, then commit that change to CVS.

3. Login into the cat CVS server (cvs.cat.org.au) and run the actual release script:

cd /www/active
cvs update source/CHANGES
./release x-y-z

where x-y-z is the version number to release, e.g. 1-7-0 (we can’t use 1.7.0 here,
because CVS release tags can’t have dots in them). The release script does a few
things:

• Opens source/CHANGES invi for you to edit (in these instructions we’ve
already done that, so you can just quit vi using:q[enter])

• Writes the release version intoshared/release-version.txt , then
commits the changed release-version.txt and source/CHANGES to CVS.

• Tags the current version of all source and template files in CVS with the tag:
relx-y-z

• Exports a copy of the code and makes a tar file, copies it into the source folder
so people can download it. Writes the current.tar.gz symbolic link to point at the

43

Chapter 4. Active Software Development

new version.

• Reminds you to announce the new release on webcoders and freshmeat.

You can repeat the release script with the same verison number if you got
something small wrong that you need to fixup. Just quit straight out when
CHANGES comes up in an editor, and answer "y" when asked if you want to
overwrite the tar file. It will generate a couple of extra CVS commit messages as it
switches the release-version.txt version number back and forth, but that’s OK.

4. Do as the script says: write an email to webcoders@cat.org.au (blind CC to the big
users of the software at imc-tech@indymedia.org and webkids@cat.org.au). At
some point we will probably want to setup a list just for announcements of new
releases. (A list for general users might be good too.) And announce on
freshmeat.net (ask maffew for the freshmeat login which controls the active project
lsiting on there).

You will need an even more summarised list of changes for freshmeat,
approximately 1-2 paragraphs. Include this at the top of the webcoders email too.

44

Appendix A. Editing This Guide
This guide is written in Standard Generalized Markup Language (SGML) DocBook.
This is a bit like HTML, but it has better features for longer documents. It can be used
to generate contents, cross-references and indexes, multipage HTML manuals, PDF or
postscript, and a bunch of other things. For a rough and ready quickstart read Get
Going With DocBook
(http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro/docbook-intro.html).

Unfortunately, SGML is less forgiving than HTML. So there are a bunch of tools that
make it easier. See the LDP Author Guide
(http://www.linuxdoc.org/LDP/LDP-Author-Guide/)for details. If you’re running
Debian Linux, you can get a lot of useful tools by installing the packages: sgmltools-2,
docbook, docbook-stylesheets, and cygnus-stylesheets.

For editing SGML, I’ve found using emacs in psgml mode is the most convenient,
because it helps you insert valid tags in the right context, and will verify your tags on
the spot. It even promises to have colour syntax highlighting, but I haven’t figured out
how to get that to work yet. I had a little trouble getting xemacs to work with psgml,
until I upgraded to a newer version of emacs21-basesupport - version 2000.10.23-1
(http://packages.debian.org/testing/editors/xemacs21-basesupport.html) available in
Debian testing.

Useful emacs tricks for SGML editing include:

• the first time you work on the document, load active.sgml and use the menuDTD ->
Save Parsed DTDto saveactive.ced which makes work much quicker and
allows the subfiles to be edited in SGML mode

• Ctrl-C Ctrl-E inserts valid tag pairs in a given context andCtrl-C Ctrl-R wraps
selected text with a tag, and both haveTab completion for the SGML tags, which is
lovely; also handy isCtrl-C / which finishes an open tag.

• useTab to indent tagged text to show the nesting level, andMeta-Q to fill or
word-wrap paragraphs (theMeta key took me a while to figure out:Escalways
works, but sometimes you can useAlt or theleft-hand Windows key). Turn on auto

45

Appendix A. Editing This Guide

word wrapping usingMeta-X auto-fill-mode.

• explore the menus, I’ve found the following especially useful:SGML -> Validate
(you will be prompted for the file to validate - you want to validate from the top file:
active.sgml), Markup -> Tag region tags an existing area of text

To compile SGML into a set of HTML files, you can use:

$ db2html -d $PWD/active.dsl active.sgml

Note that you can editactive.dsl to change how the document is displayed or
printed, e.g. how many levels to show in the table of contents, what background colour
to use, etc.

One common task in dealing with SGML is converting an existing document from
HTML into SGML. More specifically, we need to go from HTML to SGML DocBook.
I’ve found a couple of different ways to do this:

• Using thehtml2sgml perl script you can go from HTML to SGML LinuxDoc. To
get from LinuxDoc to DocBook (both SGML variants with different Document Type
Definitions (DTDs)) you can usesgmltools -b ld2db.

• I just found a much newer package called html2db
(http://freshmeat.net/projects/html2db/) that promises to convert straight from
HTML to SGML DocBook. This uses openjade, which is not in Debian 2.2, but it is
in Debian testing & unstable. I found I could get something half-decent to work
using jade:jade -t sgml -d ~/html2db/html2db.dsl < filename.html >
filename.sgmlwherehtml2db.dsl is from html2db.

However, this leaves the > tag dangling over the end of the lines. I used this perl
script to clean up the output from the above hack to make it easier to read and edit:
perl -pi.bak -e ’$/ = undef; s/\n>/>\n/g’ filename.sgml

For more than you ever wanted to know about DocBook, see DocBook: The Definitive
Guide (http://www.oreilly.com/catalog/docbook/chapter/book/docbook.html).

This appendix is $Revision: 1.5 $. The last update was on $Date: 2001/06/11 04:57:53
$, at which time the current release version of active was 1-7-0cvs .

46

